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Energy is the common currency of life. To guarantee a homeostatic supply of energy, 
multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate 
food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation 
of the delicate balance of energy intake and expenditure may result in severe pathol-
ogies. Feeding-related pathologies have fueled research on mammals, including of 
course the human species. The mechanisms regulating food intake and body mass are 
well-characterized in these vertebrates. The majority of animal life is ectothermic, only 
birds and mammals are endotherms. What can we learn from a (comparative) study on 
energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget 
and expenditure? We present several adaptation strategies in fish. In recent years, the 
components that regulate food intake in fishes have been identified. Although there is 
homology of the major genetic machinery with mammals (i.e., there is a vertebrate blue-
print), in many cases this does not imply analogy. Although both mammals and fish must 
gain their energy from food, the expenditure of the energy obtained is different. Mammals 
need to spend vast amounts of energy to maintain body temperature; fishes seem to 
utilize a broader metabolic range to their advantage. In this review, we briefly discuss 
ecto- and endothermy and their consequences for energy balance. Next, we argue that 
the evolution of endothermy and its (dis-)advantages may explain very different strategies 
in endocrine regulation of energy homeostasis among vertebrates. We follow a compar-
ative and evolutionary line of thought: we discuss similarities and differences between 
fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with 
an estimated number of 33,400 contemporary species, or over 50% of vertebrate life 
forms), we also compare strategies in energy homeostasis between teleostean species. 
We present recent developments in the field of (neuro)endocrine regulation of energy 
balance in teleosts, with a focus on leptin.

Keywords: leptin, insulin, gills, metabolism, aerobic scope, oxygen, teleost, fish

iNTRODUCTiON

Among contemporary vertebrate species, none are as abundant as the teleostean fish. With an esti-
mated number of 33,400 species, fish comprise roughly half of all vertebrates (1). The earliest verte-
brates originated approximately 530 million years ago (Mya) in the Panthalassan, Paleo-Thetys, and 
Iapetus oceans (2, 3). The rise of primitive fishes in the Ordovician was followed by an unparalleled 
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radiation of the aquatic vertebrates in the Devonian period (the 
“Age of fish”), and next, ~380 Mya, after the water–land transition, 
terrestrial tetrapods radiated (4, 5).

Before the teleost–tetrapod split, at least two whole (or large-
scale) genome duplication (WGD) events occurred (6). These 
duplication events have been paramount in expanding the func-
tional gene repertoire of all vertebrates and facilitated functional 
divergence of genes. The “Ohno-mechanism” (2) states that of a 
pair of duplicated genes, one can retain its original function while 
the other one is silenced to become a pseudogene (is no longer 
expressed) or acquire a new function, and this is called neo- or 
sub-functionalization (7). These phenomena may also explain 
why fish lineages escaped from five major mass extinctions (and 
many smaller ones) that raged on earth and challenged all life 
forms (8).

Within the class of the Actinopterygii (ray-finned fishes), 
a third genome duplication occurred around 350 Mya (9); in 
cyprinid and salmonid lineages, even a fourth major duplica-
tion occurred (10, 11). An attractive hypothesis is that the 
phylogenetic timing of these events suggests that fish-specific 
genome duplications accommodated the extent of radiation 
and phenotypic diversification seen in the teleostean lineage 
(12). However, ecophysiological factors appear to be primary 
drivers of the rate of salmonid diversification, not the salmonid 
WGD per  se (13). Indeed, a more extensive study shows that 
there is no direct association between the teleostean WGD and 
the rate of diversification in lineages (14). Whatever mechanism 
prevails, of all extant actinopterygian fishes (except for ~44 
basal non-teleostean species), the teleosts (the largest group of 
bony fishes) comprise, with about 96%, the majority of all fishes 
(9, 12, 15, 16).

Modern bony fish are found in virtually all aquatic niches 
imaginable (17) and even in terrestrial environments (lung-
fishes, mudskippers) and display amazing adaptations in energy 
homeostasis. Fish have adapted to extremely challenging envi-
ronments offering them either high tolerance or strong acclima-
tion capacity to unfavorable conditions (18). Indeed, as energy 
homeostasis requires regulation of the balance between anabo-
lism and catabolism, between energy intake and expenditure, we 
find adaptations in both. Energy intake essentially equals food 
intake, expenditure concerns adenosine trisphosphate (ATP)-
consuming processes and thermogenesis. Breakdown of energy 
carriers (sugars, fatty acids, and protein) will free energy that is 
then temporarily stored in ATP. This molecule is, therefore, called 
the “currency of energy” (19). Under anaerobic conditions, in 
a fermentation pathway, glucose breakdown to pyruvate yields 
only two ATP’s, while under aerobic conditions and operational-
izing the citric acid cycle a total of up to 38 ATP’s are formed per 
glucose molecule.

In the first part of this review, we discuss key physiological 
aspects of energy metabolism that determine how energy is budg-
eted: metabolic strategies, thermal physiology, and aerobic scope 
are addressed with a special attention to the earliest vertebrates, 
fish. We (non-exhaustively) look at changes in the regulation 
of the metabolic demand depending on an organism’s thermal 
physiology. In the second part, we discuss the consequences 
of these different physiologies for the endocrinology of energy 

metabolism, with a focus on insulin and, mainly, leptin. These 
hormones are key in manipulating energy stores, i.e., the regula-
tion of energy intake and expenditure, on the long term.

LiviNG iN AN AQUATiC NiCHe

The inefficiency of metabolism under hypoxia (a regular phenom-
enon in water bodies) or anoxia must have favored adaptations 
toward optimization of branchial oxygen uptake mechanisms, 
oxygen carrying capacity by adjustment of hematocrit, hemo-
globin content or oxygen affinity, or facilitating anaerobic metab-
olism. Fish, gill-bearing vertebrates, threatened by hypoxia invest 
in adaptations that boil down to adjustments in oxygen provision 
and rely secondarily on modifications of metabolic pathways.

When oxygen levels become limiting or 0, fish living in 
such niches exhibit strong metabolic suppression and use 
fermentation pathways for ATP production as escape; goldfish 
(Carassius auratus), bitterling (Rhodeus amarus), and crucian 
carp (Carassius carassius) avoid lactate accumulation by pyruvate 
dehydrogenase-mediated production (in their muscle compart-
ment) of acetaldehyde and ethanol, which is excreted via the gills. 
By doing so, potentially lethal lactic acidosis is avoided (20, 21).

Antarctic icefishes (with many representatives in the families 
of Nototheniidae and Channichthyidae) live at ambient seawater 
(SW) temperatures of −1.9°C and below [having evolved anti-
freeze proteins that prevent ice crystals in their bodily fluids 
from growing and by doing so, prevent cryodamage (22)] in 
normoxic seawaters. Although more oxygen dissolves in colder 
water, the bioavailability of oxygen is much lower (23). This is 
due to lower O2-diffusion rates in the cold, reducing an organ-
ism’s capacity to take up oxygen and ensure an adequate oxygen 
supply. Icefishes have lost hemoglobin (Hb) (and lack red blood 
cells) and often also myoglobin (Mb). This remarkable feature is 
not, as was widely assumed, an adaptation to prevent their blood 
from becoming too viscous. In fact, in terms of energetic cost, it 
would be a disadvantageous adaptation, as icefishes pump a far 
greater blood volume per time unit than “red-blooded” teleosts 
of equal body mass (24). Instead, the loss of Hb and Mb includes 
the loss of a primitive function of these proteins: the oxygenation 
of NO to NO3

− (25). Indeed, icefishes have high concentrations 
of circulating NO, which stimulates vasodilation, angiogenesis, 
and mitochondrial biogenesis. Hence, elevated NO levels might 
have been the evolutionary driver of unique adaptations in the 
oxygen delivery system of icefishes [reviewed in Ref. (24)]. The 
very-low aerobic metabolism of these carnivores depends merely 
on oxygen diffusion over an enlarged gill surface from water to 
blood and from blood to tissues from a large vessel bed; a large 
heart, with cardiocytes and with an extreme mitochondrial den-
sity, pumps the blood through the vessel bed that is expanded 
to compensate for the limited oxygen carrying capacity of the 
plasma (26).

The scaleless carp (Gymnocypris przewalskii) meets extreme 
conditions, including chronic mild hypoxia, in Lake Qinghai 
[6  mg  O2  L−1; 9–13  ppt salinity; pH ~9.3 (27)] on the Tibetan 
Plateau at 3,200  m. When challenged with extreme hypoxia 
(0.3 mg O2 L−1), its gills are remodeled by lamellar expansion in 
a matter of hours to increase (diffusional) oxygen uptake (27). 
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The inherent consequences for hydromineral disturbances are 
counteracted by changes in ion channel and aquaporin expres-
sion in osmoregulatory organs (28).

The crucian carp survives over six dark winter months of 
anoxia by strong metabolic suppression. The mechanisms of 
hypoxia/anoxia-tolerance of this fish are only partly understood; 
preferentially, the fish stores energy in glycogen, and the glyco-
gen volume determines the duration of hypoxia it can survive. 
Preceding the switch to anaerobic metabolism (see above), the 
crucian carp remodels its gills in response to the imminent anoxic 
conditions. An extensive gill remodeling takes place under control 
of hypoxia-inducible factor 1α (HIF-1α) (29): the gas exchange 
surface increases due to a reduction of filamental epithelial thick-
ness resulting in a further protrusion of lamellar epithelium. This 
comes with a cost as energy consuming osmoregulatory adjust-
ments are required to compensate diffusional flows of Na+ and 
Cl− (reminiscent of the situation in the scaleless carp) over the 
expanded gill surface. The investment in an expansion of the 
machinery to obtain oxygen has high priority to keep on fueling 
aerobic metabolism. Next, anaerobic metabolism offers an escape 
when oxygen diffusion becomes limiting to fuel the citric acid 
cycle.

The Magadi tilapia (Alcolapia grahami) from Lake Magadi 
in Kenya is described as the “hottest fish on earth”: it thrives in 
highly alkaline (pH 9.8), hypersaline (880 mOsmol kg−1) waters 
with temperatures over 40°C (critical temperature: 45.6°C, i.e., 
above this temperature loss of equilibrium and often death 
occurs). The concentration of oxygen in SW (at 35‰ salinity, 
comparable to the water in which this fish lives and 101.1 kPa 
pressure1) will drop from 7.2 mg L−1 at 20°C to 5.3 mg L−1 at 40°C, 
and, thus, although a large water body in principle provides an 
infinite oxygen source for the fish, its uptake mechanisms need 
adjustment to compensate for this roughly 30% drop in water 
oxygen content. Indeed, upon comparison with the same species 
kept at lower temperatures, compensation was seen in a very high 
mass-specific gill area to facilitate oxygen uptake, a high meta-
bolic rate (of which an estimated 50% seems needed for acid–base 
regulation), and a high mitochondrial respiration rate. Moreover, 
because of the basic environment and its consequences for 
ammonium excretion, this fish is 100% ureotelic, i.e., it does not 
produce ammonium but the energetically costlier urea as waste 
(30). The rates of O2 consumption and swimming performance 
at 39°C in laboratory setting indicate that this tilapia exhibits the 
greatest metabolic performance recorded in any fish, in the basal 
metabolic rate (BMR) range of a similar sized shrew (31).

PHYSiOLOGY

Metabolic Rates
Metabolism (sensu lato) can be defined as “the complex of physi-
cal and chemical processes involved in the maintenance of life” 
(32). Metabolic rate is a measure for the amount of energy used 
per unit of time by an organism, generally assessed as rate of 

1 http://www.engineeringtoolbox.com/oxygen-solubility-water-d_841.html.

oxygen consumed per hour [e.g., O2 consumption in millimoles 
per hour (33, 34)]. In fish and other bradymetabolic animals (see 
Data Sheet S1 in Supplementary Material), and these are mostly 
ectotherms, the standard metabolic rate (SMR) and maximum 
metabolic rate (MMR) are generally used as ratios to define the 
“scope for activity” (35). SMR refers to the minimal rate of energy 
expenditure in an organism at rest. Basically, this equals the BMR 
in the tachymetabolic birds and mammals. However, SMR can 
be influenced by ambient temperature (36). MMR indicates the 
highest possible rate of energy expenditure, e.g., during sustained 
and aerobic maximal activity. In between these states, the routine 
metabolism is defined as energy expenditure during spontane-
ous activity in common life processes (35). Note that only the 
aerobic metabolism is taken into account when metabolic rate is 
measured via oxygen consumption.

ectothermy Meets endothermy
The majority of animal life forms are ectothermic (see Data Sheet 
S1 in Supplementary Material for discussion on terminology). The 
environment determines the body temperature of ectotherms for 
the major part and, with that, the pace of biochemical reactions 
and rates of physiological processes. If we go back to the Magadi 
tilapia, we have seen, to the best of our knowledge, the upper 
limit of metabolic performance of an aquatic ectotherm. Note 
that the maximum performance of this fish comes to 35% of that 
of a similar sized mammal (31). After the water–land transition 
of vertebrates (~390–360 Mya) and the evolution of endothermy, 
new niches of the terrestrial environment became available. True 
endothermy (by this we do not mean regional endothermy, as 
we will discuss below) evolved independently in two different 
clades: (i) the diapsid clade that gave rise to extant birds and (ii) 
the synapsid clade that gave rise to the contemporary mammals 
(37). Animals that invest in endothermy (birds, mammals) can 
stay active independent of meteorological conditions, but do so 
at phenomenal cost [i.e., it requires lots of fuel (38)].

One could argue that ectotherms function at the mercy of 
ambient temperature; however, they are not passive and have the 
potential to regulate their body temperature. By shifting thermal 
preference and actively migrating toward warmer or colder envi-
ronments, ectotherms are capable of sophisticated and adaptive 
behavioral thermoregulation (39, 40). To cope with challenges 
like infections or stressors (41–43), some fish migrate to warmer 
water, i.e., behavioral fever, a process that should be regarded as 
an intrinsic feature of ectothermic physiology.

Indeed, ectothermy comes with many benefits: it is energeti-
cally more economical, since the energy demand per unit mass, 
compared to an endothermic animal of the same size, is four to 
five times lower (44). Therefore, ectotherms require less time for 
foraging, and by doing so reduce their energy demand even more 
as a result of less locomotor activity. Moreover, as ectotherms 
need not invest in maintenance of a relatively high and constant 
body temperature, they can allocate more energy to growth and 
reproduction (44).

Here, we seem to reach a paradox, as endothermy also has 
advantages over ectothermy. Besides relative independence 
from ambient temperatures, energy metabolism is significantly 
enhanced in a warm body, which allows for high and fast 
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muscular activity, fast metabolism, and growth during circadian 
and seasonal fluctuations. Notably, locomotion requires much 
more energy in terrestrial than in aqueous environments [the 
energetic cost for transport is about 10 times higher in terrestrial, 
running or walking, vertebrates than in equal-sized swimmers 
(45)], which might have been an important determinant in the 
evolution of endothermy. In addition, endothermy provides a 
stable thermal environment, securing optimal enzyme activities 
(46) and facilitating the ultimate parental care seen in mammals 
(47, 48).

What drove the evolution of endothermy? Three major 
hypotheses addressed this question. Crompton et  al. (49) pro-
posed that endothermy evolved in a two-step process: first, a more 
or less constant body temperature was acquired; next, the body 
temperature and metabolic rate increased. McNab (50) argued 
that early reptiles with a large body mass were de facto inertial 
homeotherms. Following an evolution of fur and decreasing 
body size, with a modest increase in mass-specific metabolic rate, 
inertial homeothermy became true endothermy. The most widely 
accepted theory, however, was put forward by Bennett and Ruben 
(38), who argued that higher body temperatures and endothermy 
have evolved secondarily to the selection on enhanced maximal 
aerobic capacity. This is known as the aerobic scope hypothesis. 
The evolution of endothermy is maybe the single most debated 
topic in comparative biology. The proposed hypotheses are not 
mutually exclusive. For this review, we focus on the aerobic scope 
hypothesis, as it conveniently joins aspects of metabolic demand 
and energy balance.

Bennett and Ruben (38) showed that the ratio between resting 
and maximal metabolic rates in vertebrate ectotherms and endo-
therms is roughly the same [on average 10 (51)], although the 
resting metabolic rate in endotherms is around 10 times higher 
than in ectotherms of similar body mass, i.e., the factorial aerobic 
scope is comparable for ectotherms and endotherms, but the 
absolute aerobic scope (the difference between resting and maxi-
mal metabolic rates) is much greater in endotherms. As a result, 
endotherms have, in general, more energy available for processes 
other than resting metabolism. The aerobic scope hypothesis 
holds aerobic metabolism at its center, which is important in 
sustained muscular activity. Still, a reptile can outrun a mammal, 
achieving great muscular power through anaerobic metabolism 
(52). This burst activity is time limited, as lactic acid builds up; 
some lizards and amphibians are highly tolerant to these meta-
bolic waste products (53, 54).

Clarke and Pörtner (37) modified the original aerobic scope 
hypothesis: they regard a higher body temperature as the mecha-
nism by which a greater aerobic scope was achieved, rather than 
as a consequence. They point out that an endotherm is not merely 
a warm ectotherm, since several processes are linked to the evolu-
tion of endothermy, such as the modification of mitochondrial 
membranes and heat retention (insulation by feathers, hair, and 
fat) mechanisms. In their view, the evolution of endothermy is 
considered a gradual process in which the driving force was selec-
tion for increased aerobic scope (37).

The magnitude of aerobic scope is greatly influenced by 
temperature. An optimal aerobic scope, associated with a spe-
cies’ thermal niche specialization, is of vital importance for their 

performance and fitness [reviewed by Pörtner et al. (55)]. The first 
indication for thermal intolerance in ectotherms is a decreased 
aerobic scope due to a mismatch in oxygen supply and demand 
in tissues (56). Even before critical temperatures (here defined by 
the switch from aerobic to anaerobic metabolism) are reached, 
failure of circulatory and ventilatory systems occurs, which affects 
all higher functions (e.g., locomotor activity, behavior, growth, 
and reproduction) (57). Hence, even slight decreases in aerobic 
scope can result in lowered performance and enhanced mortality. 
The mechanisms that are crucial for aerobic scope and related to 
thermal intolerance are best studied in cold-adapted eurytherm 
and stenotherm fishes. These special adaptations allow them to 
withstand seasonal and permanent cold, respectively (58).

Eurythermal fishes are those that tolerate a wider thermal 
range than stenothermal fishes, and this relates to their ability to 
increase mitochondrial density or capacity in the cold to prevent 
hypoxia in tissues (58, 59). This is energetically costly, since they 
need to upregulate their SMR for mitochondrial maintenance. 
Stenotherm fishes have a permanently low SMR, associated 
with specialized cold-adapted mitochondria. These are found in 
extremely high densities in aerobic tissues, but do not increase 
overall aerobic capacity (60). Sidell (61) explained that the high 
density of enlarged mitochondria, seen in the icefishes lacking 
Hb and Mb, forms an interwoven membrane network, acting as 
a “lipid highway” for oxygen delivery. Selection for energy savings 
may have narrowed the thermal window for stenotherm fishes to 
survive with minimal aerobic capacity and energy expenditure, 
but allows them to preserve metabolic energy for processes like 
growth and reproduction, which are temporarily suspended in 
cold-acclimatized eurytherm fishes (55, 58).

Where is the heat coming from in an endotherm? During gen-
eration of ATP in the mitochondria, highly energetic electrons 
pass through the electron transfer chain and protons are pumped 
from the mitochondrial matrix into the intramembranous space. 
Following build-up of that gradient, protons flow back over the 
mitochondrial inner membrane and drive an H+-ATP synthase. 
As membranes are somewhat leaky for protons, some protons 
passively diffuse over the membrane and, without being used for 
ATP synthesis, emit energy as heat. Controlled uncoupling via 
the mitochondrial uncoupling proteins (UCPs), of the proton flux 
from ATP generation was thought to be the main source of heat 
in endotherms (62). However, more recent research shows that 
UCPs are not the exclusive actors in proton conductance, as the 
observed proton leak contributes proportionally and equally to 
the SMR in ectotherms and endotherms (63).

In mammals, five UCPs are present. In mammals UCP1 is 
responsible for non-shivering thermogenesis, whereas UCP2 
and UCP3 are thought to be involved in maintaining the rest-
ing metabolism. In fish, we find orthologs of UCP1, UCP2, and 
UCP3, illustrating that the presence of UCPs is not restricted 
to endothermic animals (64, 65). In common carp (Cyprinus 
carpio), hepatic ucp1 transcript abundance was significantly 
downregulated in response to cold (opposing the function of 
UCP1 in mammals). Note that the fish liver is a primary storage 
site of energy. In red muscles, ucp3 is predominantly expressed 
and increases up to fivefold in response to fasting (65). As fasting 
leads to high lipid oxidation and reactive oxygen species, UCP3 
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is suggested to protect mitochondria and cells from damage via 
mild uncoupling activity or fatty acid anion export (66–68). The 
omnipresent UCP2 may play a similar scavenging role. Certainly, 
UCPs are evolutionary much older than originally thought; they 
were already present in fish ~420 Mya (65).

Although most fishes are strictly ectothermic, there are (of 
course) also fish that attain a regional endothermy in important 
organs and tissues, such as muscles, eyes, visceral organs, and the 
brain (69). We follow the nomenclature proposed by Clarke and 
Pörtner (37) (see Data Sheet S1 in Supplementary Material), and 
name this process heterothermy. An exceptional group of teleosts 
capable of heterothermy are the Thunnini (tuna).

Tuna are obligate ram ventilators and they are not sufficiently 
buoyant, which means they have to swim continuously to main-
tain a constant water flow over their gills (to fuel their relatively 
high metabolic activity) and to prevent sinking (70). Tuna have 
a specialized red muscle (RM) that is constantly metabolically 
active to power this so-called cruise swimming. Since the byprod-
uct of all metabolic processes is heat, tunas have developed a way 
to retain the heat that is generated by RM and use it to elevate 
their body temperature regionally (69).

In tuna, the circulation to and from RM is structurally 
arranged in so-called retia mirabilia (literally: wonderful nets) 
(71). In these parallel to one another organized vascular bundles 
with very thin vessel walls, arterial and venous vessels lay side by 
side with the blood flowing in opposite directions, so that they 
function as countercurrent heat exchangers. Hence, a stable ther-
mal gradient is established, which warms the cool arterial blood 
coming from the gills. The heat conserved is used to warm other 
body parts (72). When tuna dive during predation from pelagic 
zones with high temperature (e.g., 20°C) to more benthic zones 
where temperatures may drop to around 4°C, the biochemistry 
of brains, eyes, and swimming muscles is guaranteed of a rather 
constant temperature.

Considering that the SMR of tuna is 2–10 times higher than 
in most other fish species of comparable size and activity (69), 
this demonstrates that metabolism, and more specifically meta-
bolic rate, is at the basis of thermal regulation in both ecto- and 
endotherms. The production of heat and having heat-retaining 
mechanisms are equally important. In general, maintaining the 
temperature of (part of) the body above the ambient temperature, 
is energetically costlier than keeping the body at lower tempera-
tures, due to higher standard or basal metabolic rates. However, 
it also results in enhanced ATP production, which in turn allows 
for higher locomotor activity, growth rate and, completing the 
circle, metabolic rate. To understand causality, one needs to take 
a closer look at the regulation of energy intake and expenditure, 
and a comparative endocrine view may facilitate this, as we will 
do in the next section. Yet, it is clear why temperature is regarded 
as the abiotic master factor (73).

eNDOCRiNOLOGY

Regulation of energy Balance
Metabolism, thermoregulation, and aerobic performance are 
intertwined and have one nexus in common: they are all dependent 

on food intake, food being the source of chemical energy for these 
related processes. In general, and despite mismatches in energy 
intake and expenditure on the short term, on the long term, 
they are carefully balanced and regulated by several endocrine 
systems, which together guarantee energy homeostasis (74).

A plethora of research on mammals is available in this field, 
not in the least to gain a better understanding of disturbances 
in energy homeostasis, which are pivotal for the current obesity 
pandemic (75, 76). In a healthy animal, the control system that 
matches energy intake to energy expenditure is remarkably 
accurate. A striking example is put forward by Seeley and Woods 
(75), who calculated that it takes only a mismatch of 46 kJ per 
day (0.55% of the daily energy intake!) for an adult human male 
to gain a pound in a year. Such tight regulation of energy bal-
ance can only be achieved by an accurate integration of signal 
molecules from stored and currently available fuel, in accordance 
with internal set points reflecting energy availability.

Where these signals come from and how they contribute to 
the regulation of food intake is of ongoing research interest. It 
has long been recognized that specific hypothalamic nuclei are 
crucial in monitoring energy balance (77), and these seem to be 
mainly tuned by signals regarding the storage of fat (i.e., lipo-
static regulation). Another theory about hypothalamic tuning of 
energy balance through signaling of carbohydrate storage [i.e., 
glucostatic regulation (78)] has largely been abandoned in the 
past decades, as it has become clear that neurons are well pro-
tected from fluctuating glucose levels and usually feeding takes 
place when plasma glucose levels are within normal physiological 
values (75).

The link between body-fat stores (adiposity) and food intake 
was formalized by Kennedy (79), when he postulated that signals 
distributed in proportion to the total amount of body fat influence 
the control of food intake by the brain. This lipostatic regulation 
is based on a negative feedback system involving communication 
on the total amount of fat by adiposity signals and the central 
nervous system (CNS) (80).

Since adipose tissue is poorly innervated by the peripheral 
nervous system, research has been directed mainly to humoral 
signals. Adiposity signals (see below) should fulfill three criteria, 
viz.,: they should circulate in proportion to the total body fat, 
they should reach specific nuclei within the CNS [i.e., cross the 
blood–brain barrier (BBB)], and they should produce predictable 
changes in energy balance by altering food intake and energy 
expenditure dose-dependently (74).

insulin and Leptin: Adiposity Signals in 
Mammals
In the 1980s, ample evidence identified insulin as a major adi-
posity signal (81, 82). Porte and Woods (81) showed that intrac-
erebroventricular (icv) infusion of insulin in baboons induced 
drastic weight loss and decreased food intake dose-dependently. 
In additional studies, insulin receptors were found in key brain 
areas involved in control of food intake, including the hypotha-
lamic arcuate nucleus (ARC, see below) (83, 84). Insulin is shut-
tled over the BBB via receptor-mediated transport (85). Insulin, 
produced by pancreatic β-cells, is best known for its involvement 
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in carbohydrate metabolism; in response to high plasma glucose 
levels, insulin enhances the uptake of glucose by adipocytes, 
liver, and skeletal muscle cells, storing energy as glycogen or 
triglycerides (86). Insulin circulates in proportion to the amount 
of adipose tissue, although its levels fluctuate greatly when food 
is ingested and absorbed, in accordance with its hypoglycemic 
actions. However, baseline insulin levels and the magnitude of 
the fluctuations following food intake are directly proportional 
to body adiposity (87).

A second adiposity signal, leptin, a type-I α-helical cytokine, 
is encoded by the obese (ob) gene and was discovered in mice in 
1994 (88) and has gained unparalleled momentum in research 
on energy homeostasis. It is a potent anorexigenic hormone 
produced in peripheral white fat and meets the aforementioned 
criteria for an adiposity signal. In addition, receptors for leptin are 
present in brain areas involved in the regulation of food intake, 
especially in the ARC (75).

Two subpopulations of neurons in the ARC integrate 
peripheral signals regarding energy homeostasis: the “anabolic” 
population expresses neuropeptide Y and agouti-related peptide, 
is orexigenic, and inhibited by leptin (89), whereas the “catabolic” 
population expresses pro-opiomelanocortin and cocaine and 
amphetamine regulated transcript, is anorexigenic, and stimu-
lated by leptin (90). In line with this model, leptin administration 
in rodents was shown to decrease body mass dose dependently 
(91, 92). During fasting, plasma leptin levels fall dramatically and 
over prolonged periods of food deprivation, changes in the activi-
ties of the gonadal, adrenal, and thyroid axes are observed (93). 
Postprandially, leptin does not increase significantly, nor does it 
lead to termination of a meal by itself, indicating that leptin is 
largely involved in long-term regulation of feeding behavior and 
energy balance (94).

Leptin administration is an effective treatment for obesity in 
mice and humans with genetic leptin deficiency (95–97). However, 
in most cases of obesity, circulating leptin levels are already high 
and leptin therapy is not effective. Indeed, leptin resistance and 
the consequent lack of anorexic signaling in the ARC is commonly 
associated with obesity (98). Interestingly, leptin resistance in the 
ARC does not cause obesity, but it contributes to its persistence, 
as it develops secondarily after adiposity and body mass increase 
(99). More recent research revealed that vagal afferent neurons 
(VAN), apart from their role in meal termination via short-term 
gut–brain signaling, are involved in the long-term regulation of 
food intake (100–102). The authors showed that leptin resistance 
developed in VAN, before hypothalamic leptin signaling became 
disturbed (100). Moreover, when the leptin receptor is knocked 
out in VAN specifically, mice displayed increased food intake, 
body mass, and adiposity, indicating that the absence of leptin 
signaling in VAN is an important factor in the onset of hyperpha-
gia and obesity (101).

Both adiposity signals (insulin and leptin) exert their function 
centrally through signaling via the ARC neurons, which results 
in reduced food intake and increased energy expenditure (103, 
104). Arguably, leptin, for a while thought to be the panacea to 
beat obesity (105), received major attention in obesity research, 
whereas the role of insulin was less appreciated. This might be due 
to the opposing actions of insulin in peripheral tissues and the 

CNS; its hypoglycemic and anabolic function (energy storage) 
peripherally; and its catabolic effect (steering energy expenditure) 
in the hypothalamus (106). In the periphery, however, obesity 
eventually leads to inflammation of adipose tissue, and the fol-
lowing interplay between leptin signaling and the inflammatory 
cytokines secreted by macrophages seems to contribute to insulin 
resistance (107).

The complementary, and sometimes redundant, roles of leptin 
and insulin in the central regulation of energy homeostasis are 
best illustrated in a condition known as diabetic hyperphagia. 
When pancreatic β-cells become non-functional, complete deple-
tion of insulin leads to strong hyperglycemia and an inability 
to store energy peripherally, with considerable weight loss as a 
result. However, without the catabolic insulin action in the hypo-
thalamus and the co-occurring decrease in plasma leptin levels, 
increased compensatory food intake is initiated, counteracting 
energy wasting and preventing more rapid weight loss (106). 
Administration of either leptin or insulin to the CNS in rats 
with streptozotocin-induced diabetes blocks this compensatory 
hyperphagia almost completely (108, 109).

In fact, one can state that leptin and insulin are equally 
important adiposity signals involved in a negative feedback loop, 
as has been shown in many studies before (Figure 1) (75, 103, 
110, 111). We focus on leptin mainly in this review, because leptin 
received the lion’s share of attention in recent research; however, 
we recognize the significance of the undervalued role of insulin. 
As Seeley and Woods (75) point out, insulin provides the brain 
with information not only about fat storage (long-term energy) 
but also about glucose availability (short-term energy). From this 
perspective, although indirectly, glucostatic regulation of food 
intake is indeed taking place. Thus, insulin signaling to the brain 
could provide the link that integrates glucostatic and lipostatic 
peripheral signals, allowing for a precise monitoring and accurate 
regulation of energy balance.

insulin and Leptin: Adiposity Signals in 
Fish?
The insulin signaling pathway and its role in energy metabolism 
is evolutionary conserved and serves fundamentally the same 
physiological functions from invertebrates to mammals; it is 
found in phylogenetically distant invertebrate species, such as 
Caenorhabditis elegans and Drosophila melanogaster, where 
it is involved in energy storage (106, 112–114). Interestingly, 
these animals express homologs of key players in the insulin 
signal transduction pathway, but do not seem to actively regulate 
carbohydrate fluxes. They do regulate fat stores: insulin appears 
to limit energy storage in C. elegans (mutants for insulin signal 
transduction had increased fat deposits), which indicates a cata-
bolic function of this protein in early evolution (106).

In elasmobranchs (mostly carnivores), protein and lipid 
metabolism are the primary energy sources (115), and although 
infusion of mammalian insulin resulted in severe prolonged 
hypoglycemia in spiny dogfish (Squalus acanthias) (over 15 times 
lower than time-zero levels), these fish did not exhibit any symp-
toms of illness (116). Apparently, strict glucose regulation is not 
as vital in these animals as it is in later vertebrates. The structure 
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of insulin and its receptor is also highly conserved among verte-
brates (117). Fish insulins, as their mammalian orthologs, consist 
of an α- and β-chain, linked by disulfide bridges (118); when we 
align the zebrafish an human insulin genes, we find a sequence 
of 60%.

As in mammals, it is important to distinguish between periph-
eral and central functions of insulin. The role of insulin in the 
periphery as an anabolic hormone has gained more attention, as it 
was long, but erroneously thought that fish were glucose intoler-
ant [reviewed in Ref. (117)]. He argues that metabolic rate is a 
factor commonly overlooked in the studies performed on glucose 
clearance in fish. Acknowledging the fact that the metabolic rate 
of fish is about 10 times lower than in mammals, it may not come 
as a surprise that glucose turnover is rather slow (119). For several 
fish, it was shown that amino acids are a more potent stimulator of 
insulin secretion than glucose (120, 121), and fish are in general 
much slower in clearing a glucose load, compared to mammals 
(117). Notwithstanding, hyperglycemia does induce hyperinsu-
linemia in vivo (122–124). Significant differences between species 
exist: in the herbivorous carp glucose is more potent in stimulating 
insulin secretion than it is in carnivorous species, such as trout 
(Oncorhynchus mykiss) and sea bream (Sparus aurata) (125).

Contrasting results have been found in studies that address 
the central role of insulin. Fish brains are likely insulin-sensitive 
organs, as they contain insulin receptors (126–128). In channel 
catfish (Ictalurus punctatus), 24  h of icv injection of insulin 
appeared to have no effect on food intake (128). In contrast, icv 
administration of insulin in rainbow trout elicited a reduction 
of food intake after 26 h (129). Moreover, it has been shown in 
rainbow trout that insulin levels drop dramatically after 6 weeks 
of fasting, a response also seen in mammals (130). These con-
flicting outcomes could be the result of the longer administration 
time in the trout study or, more likely, central insulin effects could 
be species dependent. Progressive insight suggests that fish, like 
mammals, have specialized neurons involved in glucose sensing, 
which modulate the hypothalamic neurocircuitry controlling 
food intake (131).

Whether insulin has similar functions in fish as in mammals 
in communicating adiposity status to the CNS is not evident. In 
studies on rainbow trout, insulin stimulates lipogenesis in the liver 
and, more recently, in white mesenteric adipose tissue (132, 133). 
Traditionally, researchers considered the fish liver to be the main 
lipogenic tissue (134). However, Polakof et al. (133) showed that 
in rainbow trout fed a carbohydrate-rich diet and provided with 
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insulin, lipogenesis in adipose tissue was significantly enhanced. 
The researchers hypothesized that the increased lipogenic 
capacity helps to regulate glycemia when excess carbohydrates 
need to be processed. In addition, these results are indicative 
for the utilization of lipids, stored in white adipose tissue, as an 
energy source. In juvenile chinook salmon, circulating insulin 
levels increased with a high-fat diet, and body adiposity clearly 
reduced food intake compared to fish that were fed a low-fat diet 
(135). However, no direct association between insulin levels and 
adiposity was found, but insulin levels correlated with dietary fat 
content.

More than a decade after the breakthrough identification of 
the mammalian ob gene and its protein product leptin (1994), the 
first non-mammalian ortholog was characterized in a teleostean 
fish [common carp (136, 137)] and many other fish species fol-
lowed, including zebrafish (Danio rerio) (138), Atlantic salmon 
(Salmo salar) (139), and tiger pufferfish (Takifugu rubripes) (140). 
More recently, the first non-vertebrate functional leptin homolog 
was identified in Drosophila (141). The Drosophila cytokine 
Unpaired 2 has structural and functional similarities with mam-
malian leptin, is secreted by the fat body and signals via a similar 
intracellular messenger signaling pathway to reduce growth 
and alter energy metabolism. The canonical paper by Zhang 
et  al. (88) addressed the ob gene as “evolutionary conserved” 
after demonstrating its presence in evolutionary distant species 
like Drosophila and eel (Anguilla rostrata LeSueur). However, 
once fish leptin was cloned and sequenced in 2004 (Huising 
et al.; accession numbers AJ868357 and AJ868356), the primary 
sequence identity between fish leptins and mammalian leptins 
turned out to be less than 25% (136), at variance with the earlier 
proposed “evolutionary conservation.” However, conserved gene 
structure, phylogenetic analyses, the conservation of essential 
cysteine residues, and tertiary structure, as well as synteny, firmly 
demonstrated true orthology of teleostean leptins (136, 138, 140). 
This indicates that if one wants to study the original function(s) 
of leptin(s), fish should be addressed.

The organization of hypothalamic nuclei involved in energy 
metabolism and food intake is conserved throughout the ver-
tebrate lineage (142, 143), yet reports on leptin’s physiological 
role(s) have not been consistent for different fish species, which 
may not be surprising considering the vast number of species and 
niche adaptations. Most studies, however, recognize the organs 
and tissues with a high-fat content (liver or muscle) as the main 
expression sites for leptin in fish, not adipose tissue like in mam-
mals (136, 138–140, 144, 145). In contrast with mammals, the 
liver is one of the major energy depots (glycogen and fat) in fish, 
together with muscle tissue and mesenteric fat (146). Moreover, 
lipid catabolism is the main source of energy in many fish species 
(147). Next to being the primary energy storage site, hypodermic 
fat in endotherms serves a second function, viz. insulation (148). 
No such insulation is required in an ectotherm, which then may 
explain differential leptin functioning (see below).

In some fish, leptin inhibits food intake through an interac-
tion with hypothalamic orexigenic and anorexigenic genes, as it 
does in mammals. For example, in goldfish, administration of 
heterologous (murine) leptin caused a decrease in food intake, 
with lower doses needed when applied centrally than when 

applied peripherally to exert the same effect (149). In rainbow 
trout, recombinant homologous leptin injected intraperitoneally 
(144) and recombinant human leptin, administered icv, reduces 
food intake (150).

In common carp, two leptin paralogs were characterized ini-
tially, designated leptin-I and leptin-II, which, given their similar-
ity, are probably the result of the tetraploidization following the 
“recent” cyprinid WGD ~16 Mya (11, 136, 138). These were later 
renamed leptin-a paralogs. The common carp leptin-a paralog 
did not respond to 6  weeks of fasting, nor to feeding to satia-
tion, which feeding regime caused the experimental fish to grow 
twice as fast as controls. Only transient postprandial increase 
and decrease were observed in hepatic leptin-a-II and leptin-a-I 
mRNA, respectively (136).

Reduction of food intake is an early response of fish when 
exposed to stress in general (18) and hypoxia in particular (151, 
152); in mammals, leptin levels are known to increase in hypoxic 
conditions (153). Indeed, the mammalian ob gene contains 
hypoxia response element (HRE) sites which can be bound by 
HIF-1α, a transcription factor that regulates the expression of 
hypoxia-sensitive genes (153–155). Analyses of the promotor 
region of zebrafish leptin and the leptin receptor (lepr) revealed 
putative HRE in both genes (156). Therefore, a follow-up study 
with common carp was done to elucidate the relation between 
leptin, hypoxia, and the hypothalamic regulation of food intake. It 
was shown that hepatic leptin-a-I, leptin-a-II, and lepr expression 
in common carp is indeed stimulated in hypoxic conditions, which 
is congruent with a reduction in food intake (156). This fits with 
a well-known strategy among fishes to deal with hypoxia (152, 
157, 158), since appetite suppression leads to precious energy and 
oxygen savings by reducing the cost of specific dynamic action 
(i.e., the metabolic energy cost of digestion) (159). These results 
were subsequently confirmed by a study in zebrafish, in which 
chronic hypoxia and HIF-1α induced a rise in hepatic leptin 
mRNA levels (160).

The Bernier laboratory (2012) compared hypothalamic gene 
expression between hypoxic and fasted (pair-fed to the hypoxic 
groups) carp, which led to the suggestion that during hypoxia, 
leptin counteracts the suppression of pomc and upregulation of 
agrp, characteristic for fasted carp (136), since agrp levels were 
not affected in hypoxia and the suppression of pomc was attenu-
ated (156). These data provide grounds for the involvement of 
leptin in re-establishing energy balance during chronic hypoxia 
and indicate a broader physiological role for leptin beyond the 
signaling of nutrient status.

LePTiN: STATe OF THe ART

More than 20 years after the discovery of leptin, a picture emerges 
of a pleiotropic cytokine, apart from its well-known roles in 
regulation of appetite and energy balance in mammals, which 
relates energy status to adaptive responses of multiple physi-
ological systems within vertebrates. In a comprehensive review 
on mammalian leptin physiology, Friedman (161) elaborates on 
leptin involvement in the entire neuro-endocrine axis: he points 
out that already in 1991, Bray noted that ob/ob mice are infertile, 
euthyroid sick, hypothermic, and diabetic (162). In addition, ob/
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ob mice have increased corticosterone levels and immunological 
and hematological abnormalities. Most of these abnormalities are 
linked with starvation, not with obesity (163); the lack of leptin 
signaling to inform the brain that adequate fat stores are present, 
elicits physiological responses that reduce energy expenditure 
and stimulate appetite, similar to when the organism is starving 
(161).

In fish, leptin functions appear to share similarities, but also 
differences with their mammalian orthologs. Leptin and its 
receptor have now been cloned for all major vertebrate classes, 
including the notoriously elusive leptin in birds (164–166). The 
aim of this section is to provide a concise overview of the func-
tional divergence and evolution of the leptin system, and to gain 
insights in recently discovered leptin functions in fish.

evolution of Leptin and Leptin Receptor 
Genes
After the initial cloning of leptin in carp, multiple leptin paralogs 
were found in zebrafish (138) and in the Japanese ricefish [Oryzias 
latipes, aka medaka (145)] and named leptin-a and leptin-b. 
Indeed, also in common carp a leptin-b paralog was found (167) 
and the first characterized carp leptins were renamed leptin-a-I 
and leptin-a-II. The leptin-a and leptin-b paralogs most likely find 
their origin in the third, fish-specific, genome duplication, as 
they are found in evolutionary distant species, such as zebrafish 
(Cypriniformes) and medaka (Beloniformes), that shared their last 
common ancestor ~296 Mya (168).

However, reflecting the diversity among teleostean fishes, lep-
tin phylogeny appears to be even more complex (Figure 2). Also 
in the genome of salmonids, four leptin paralogs (leptin-aI/II and 
leptin-bI/II) are present. These paralogs originated as a result of the 
salmonid WGD 88–103 Mya (13, 139, 169). In more modern fish, 
e.g., the Tiger puffer (Tetraodon family), only a single leptin gene 
is found, which suggests that this lineage experienced genome 
reduction, after the split from the Beloniformes ~186 Mya (170).

As some of the leptin paralogs share very low primary amino 
acid sequence identity even within a species [e.g., zebrafish leptin-
a and leptin-b amino acid identity is only 24% (138)], it is likely 
that these leptin genes acquired different functionality (neofunc-
tionalization or sub-functionalization) (165). Testimony to this 
reasoning is that leptin-a and leptin-b are expressed differentially 
(at least spatially); leptin-a is mainly expressed in the liver (138, 
139), while the ovary is the main expression site for leptin-b (138). 
In addition, calculations on binding energy suggest that in both 
medaka and zebrafish, leptin-a has a higher binding energy for 
the leptin receptor than leptin-b (172).

Surprisingly, in all currently available teleostean genomes 
only one lepr gene is found (165). In salmonids [Atlantic salmon; 
Rønnestad et  al. (139), and rainbow trout; Gong et  al. (173)], 
several splice variants have been identified, but, as in the mam-
malian situation, only one of these variants contains the full 
length sequence required for intracellular signal transduction. 
In Atlantic salmon, four truncated and one full length leptin 
receptor variants were identified, the latter of which was ubiq-
uitously expressed, including in gills, gonads, and brain (139), 
whereas in rainbow trout at least three splice variants gave rise to 

functional circulating leptin binding proteins (LepBP1, LepBP2, 
and LepBP3) (173). Together, these findings suggest a complex 
mode of leptin functioning in teleostean fish, with both inter- and 
intraspecies differences in the interaction of leptin (paralogs) 
with the leptin receptor, and in the modulation of endocrine and/
or paracrine signaling pathways.

Recent Discoveries on Leptin Physiology
In the past 5 years, research on leptin functioning in teleostean 
fish has been carried out not only in the field of feeding and 
appetite regulation (156, 174–177) but has extended to other 
endocrine regulatory systems, including sexual maturation (169, 
178), energy expenditure and metabolic rate (179, 180), osmotic 
adaptation (181, 182), and glucose homeostasis (183), all of which 
we will discuss below. In addition, the involvement of leptin in 
reproduction (184), the growth hormone (GH)–insulin-like 
growth factor axis [GH–IGF axis (185)], hypothalamic neu-
rotensin networks (186), and the immune system (187) has been 
studied.

Feeding and Appetite Regulation
The early observations by Huising et al. (136, 137) that leptin-a 
in common carp is regulated by feed intake postprandially are 
strengthened by a study by Klaren et al. (174). Juvenile common 
carp were either fed once daily, or demand fed (via operating a 
pendulum connected to an automatic feed dispenser). An interac-
tion effect between time of day and feeding regime was observed 
for hepatic leptin-a transcript abundance (174), indicating an 
effect of short-term feeding status on leptin expression.

Hypoxia-induced elevation of leptin mRNA levels, congruent 
with a reduction in food intake, has been demonstrated in carp 
(156). MacDonald et al. (176) investigated the effect of hypox-
emia on hepatic leptin expression, plasma leptin levels, and food 
intake in rainbow trout. To establish the hypoxic state, fish were 
infected with a pathogenic hemoflagellate, Cryptobia salmositica, 
which was followed by an immediate drop in hematocrit. After 
14 weeks, infected fish had consumed 75% less food compared 
to controls, an observation accompanied by an initial, transient, 
17-fold increase in hepatic leptin-a1 expression, and a sustained 
increase in plasma leptin-a1 levels. Non-infected fish, pair-fed to 
the infected group, did not exhibit differences in liver leptin-a1 
expression and plasma leptin compared to non-infected fish fed 
to satiety. Thus, leptin-a1 expression appears to be stimulated by 
hypoxemia, not feed restriction (176), consistent with the results 
obtained in carp.

Accordingly, no role for leptin in the regulation of food intake 
in rainbow trout was observed by Jørgensen et al. (177). Plasma 
leptin levels did not change upon fasting for 4 months, compared 
to controls, nor after consumption of a large meal. Levels of 
leptin-a1 mRNA increased in the belly flap of the fasted fish and 
stayed high, even after re-feeding, which suggests a tissue-specific 
role of leptin in long-term fasting. Transcript levels of pomc were 
elevated in fasted fish, possibly to serve as a satiety signal to reduce 
energy expenditure when food is scarce. However, no causative 
role in appetite regulation was found for leptin and hypothalamic 
neuropeptides (177).
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To study leptin functioning in medaka, Chisada et al. (175) 
generated the first fish model deficient of a functional leptin recep-
tor, by inducing a homozygous mutation in the lepr gene. Loss of 
function of the leptin receptor was suggested by disrupted leptin 
signaling: the expression of appetite-regulating genes differed 
between mutant and wild-type fish. Independently of feeding, 
the mutants exhibited constant and upregulated mRNA levels of 
orexigenic npya and agrp, but diencephalic pomc1 expression was 
downregulated. The post-juvenile and adult mutants displayed 
hyperphagia, resulting in a high growth rate in the post-juvenile 
stage, but not in an altered final body size compared to wild-
types. In addition, mutants had large deposits of visceral fat, 
whereas wild-type fish had none (175). These results suggest a 
stage-specific influence for leptin in food intake, growth, and fat 
allocation in medaka.

We see that leptin serves different functions with respect to 
feeding and metabolism among teleosts. Possibly, this is due to 
differences between species in lipid metabolism and energy stor-
age sites (188).

Sexual Maturation
In fish, reproduction is dependent on a healthy energy status. 
Recently, the focus has been on the role for leptin in sexual matu-
ration in Atlantic salmon. A possible role for leptin in the sexual 
maturation of male parr (freshwater, FW, stage) has been pro-
posed by Angotzi et al. (169), since they observed higher hepatic 
leptin-a1 mRNA levels during mid-spermatogenesis compared to 
immature fish. However, plasma leptin levels did not differ, so the 
physiological relevance of these findings is not clear (169).

A seasonal study on the link between leptin and energy balance 
during sexual maturation of the same species revealed that hepatic 
leptin expression was upregulated during mid-spermatogenesis 

with a 7.7-fold increase of leptin-a1 and a 49-fold increase of 
leptin-a2 during final maturation (178). For the first time in fish, 
an upregulation of lepr mRNA was observed in the testis from 
mid- to late spermatogenesis. In non-maturing control fish, the 
hepatic expression of leptin-a1 and leptin-a2 and brain lepr was 
downregulated in early spring, coinciding with the start of growth 
and fat accumulation. The incidence of sexual maturation was 
also assessed in a feed-restricted group (fed a low-fat diet at a 
50% ration of the control group). This resulted in a 53% decrease 
in sexual maturation incidence and a major upregulation of 
both liver leptins and pituitary lepr. It appears that hepatic leptin 
expression and lepr expression in the testis are affected by early 
sexual maturation in male Atlantic salmon. In addition, the 
results suggest that leptin does not signal as an adiposity signal 
in Atlantic salmon, as there is an inverse relationship between fat 
stores and leptin expression (178). Interestingly, zebrafish lacking 
either leptin paralog or the leptin receptor show no difference in 
fecundity compared to wild-type fish (183). Apparently, leptin is 
involved in sexual maturation, but is not critical for reproductive 
capability.

Energy Expenditure and Metabolic Rate
Leptin affects metabolic rate in zebrafish embryos (179). 
Translation of leptin-a was inhibited by injection of an antisense 
morpholino oligonucleotide (MO) in the 1–8 cell stage, and 
oxygen consumption and total acid production were used as 
indicators of metabolic rate. Morphants consumed significantly 
less oxygen until 48 h post-fertilization (hpf) followed by a lower 
acid production, compared to wild-type controls. Co-injection of 
recombinant zebrafish leptin-a and antisense MO rescued these 
effects. In addition, a significant decrease in heart rate was seen 
in morphants, and developmental abnormalities in, inter alia, the 
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eyes and the inner ear (189). Taken together, these results suggest 
that, as in mammals, leptin influences metabolic rate in fishes.

Another study in zebrafish embryos showed that leptin, insu-
lin, and α-MSH, increase energy expenditure dose-dependently 
(180). An assay to measure metabolic rate was developed based 
on the reduction of non-fluorescent resazurin by NADH2 to fluo-
rescent resorufin (alamarBlue®). To validate the results, a com-
pound known to inhibit hypermetabolic effects of leptin in mice 
[etomoxir, a carnitine palmitoyl transferase I inhibitor (190)] was 
tested and shown to block the leptin-induced increase in energy 
expenditure. These results indicate that leptin’s involvement in 
the endocrine regulation of energy expenditure is conserved in 
a teleost (180).

SW Adaptation
When fish move between FW and SW, they are challenged by 
opposite osmotic gradients. Proceeding from a plasma osmolal-
ity of 300 mOsmol kg−1 this gradient in FW (10 mOsmol kg−1; 
20°C) results in an osmotic pressure of 706.8 kPa, while in SW 
(1,000  mOsmol  kg−1; 20°C) this gradient results in an osmotic 
pressure of −1,706.1  kPa. Two type-I α-helical cytokines, viz. 
prolactin and GH, play a key role in dealing with these gradi-
ents, in FW and SW, respectively. Interestingly, in both cases, 
cortisol contributes in a synergistic way to hyper- and hypo-
osmoregulation (191). Thus, in response to SW exposure, a fish 
needs to adjust its hydromineral balance, an adaptive and energy 
demanding process that is associated with enhanced glucose 
(192) and fatty acid utilization (193). Protein utilization, on the 
other hand, decreases, as amino acids are retained and function 
as osmolytes, to maintain cell volume (191, 192). Maybe not 
surprisingly, considering the energetic cost of osmoregulation, 
also leptin is involved.

Indeed, in the euryhaline Mozambique tilapia (Oreochromis 
mossambicus), during a 72-h SW challenge, plasma glucose levels 
were significantly elevated (with a maximum at 12 h after transfer), 
accompanied by a 25-fold increase in hepatic leptin-a expression 
at 4 h, and elevated lepr mRNA levels at 12 h, compared to FW 
controls (181). To test whether leptin stimulates hepatic glycog-
enolysis, FW tilapia were injected with recombinant, homologous 
leptin-a, which resulted in a similar increase in plasma glucose 
levels as observed during the salinity challenge. Liver glycogen 
levels were significantly depleted, indicating that leptin-a induced 
hepatic glycogenolysis necessary for glucose mobilization, to 
meet increased energy demands during hyperosmotic adaptation 
(181).

Due to the absence of species-specific antisera, no plasma 
leptin levels were analyzed in the study described above. In 
their next study, however, the authors developed and validated 
an assay to measure plasma leptin-a levels in the Mozambique 
tilapia (182). This study further identified interactions between 
prolactin, the pituitary hormone key for adaptation to FW (194, 
195), and leptin-a in the euryhaline tilapia. Leptin-a appeared 
to be the dominant paralog in this species (determined by 
qPCR analysis of tissues) and is primarily produced by the liver. 
Hypophysectomized tilapia had higher plasma leptin-a, and 
hepatic leptin-a mRNA levels. These effects could be restored to 
control values by administration of ovine prolactin. As leptin was 

found to stimulate prolactin expression in the pituitary in vitro 
(196), a negative feedback regulatory model for leptin-a and 
prolactin seems likely: leptin-a stimulates the expression and 
secretion of pituitary prolactin (both prl1 and prl2), the prolactins 
in turn inhibit hepatic leptin-a expression, which then translates 
into a decrease in circulating leptin-a levels (182).

Plasma prolactin and pituitary mRNA levels decrease rapidly 
upon SW exposure (195). Douros et al. (182) presented tilapia 
with a 24-h SW challenge, which inactivates the pituitary pro-
lactin cells. During SW acclimation, again a major increase in 
liver leptin-a transcript abundance was observed. Therefore, the 
authors proposed a mechanism in which the sudden decline in 
prolactin levels alleviates the continuous inhibition of leptin-a. 
Prolactin may therefore, via leptin-a, be a key glucose regulator 
in the adaptation to SW (182).

Growth hormone serves to control somatic growth both in 
FW and SW, and prepares the fish for SW entry by increasing 
ionoregulatory capacity (197); moreover, GH is particularly well 
known as permissive for SW adaptation (191). Tilapia leptin-a 
decreases pituitary gh mRNA and hypophysectomy increases 
leptin-a expression, which is rescued by GH replacement. 
Additionally, during fasting leptin-a enhances hepatic gh receptor 
1 & -2 and igf1 & -2, to prepare the hepatosomatic growth axis 
in case feeding resumes (198). We now better understand the 
GH-IGF axis and its control by leptin-a in the euryhaline tilapia, 
as leptin, the energy signal, directly steers the endocrine growth 
axis and, together with cortisol, controls the expensive energy 
expenditure related to SW adaptation.

Both studies by Baltzegar et al. (181) and Douros et al. (198) on 
hyperosmotic adaptation in tilapia provide original evidence that 
leptin-a acts as a potent hyperglycemic factor in tilapia, which is 
functionally distinct from leptin’s actions in mammals. It is, there-
fore, an attractive hypothesis that the functional divergence of the 
leptin protein among vertebrates reflects fundamental differences 
in metabolic regulation between ectotherms and endotherms 
(181). The interplay between these three type-I helical cytokines, 
viz. prolactin, GH, and leptin, once again strengthens the epithet 
pleiotropic of this group of hormones [reviewed in Ref. (137)].

Glucose Homeostasis
In an elegant series of experiments, Michel et al. (183) demon-
strated a role for leptin in glucose homeostasis and disproving a 
role for leptin as an adipostat in zebrafish. To do so, they created 
a zebrafish with a dysfunctional leptin receptor. These mutant 
zebrafish did not exhibit increased adiposity or hyperphagia com-
pared to wild-type controls. In addition, no effect of genotype on 
length or body mass was found in different life stages and fertility 
appeared to be normal in these mutants (183).

Given the profound diabetes observed in leptin receptor-defi-
cient mice (db/db) (199), and leptin being an important hypergly-
cemic factor in tilapia (181), it is very tempting to speculate that 
leptin receptor deficiency in zebrafish would have an effect on 
glucose homeostasis. Indeed, it seems that, at least in zebrafish, a 
role for leptin in glucose homeostasis is more pronounced than a 
role as an adipostat. In the zebrafish leptin receptor mutant, leptin 
is not required for adipostasis, reproductive functions, or appetite 
regulation. However, several aspects of glucose homeostasis were 
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altered in mutant fry compared to controls: a small increase in 
whole body glucose content was found, the expression of the 
preproinsulin gene insulin-a (insa), not insb, was enhanced in 
endocrine pancreas tissue, the number of β-cells was 25% higher 
than in controls, and the expression of key enzymes involved in 
hepatic glucose metabolism was altered (183). A 3-day exposure 
of mutant larvae to metformin [a drug known for its beneficial 
effects on hepatic glucose homeostasis and insulin sensitivity in 
diabetes patients (200)] normalized the number of β-cells to wild-
type levels at 5 days post fertilization. Mutant leptin-a and leptin-b 
zebrafish (generated using CRISPR technology) confirmed that 
lack of leptin-a signaling via the leptin receptor is responsible for 
the increased number of β-cells (183).

With respect to the involvement of leptin in the regulation of 
food intake and adipostasis, the zebrafish and medaka studies 
[Michel et al. (183) and Chisada et al. (175), respectively] present 
opposing results. Whereas Michel et  al. (183) concluded that 
leptin plays a role in glucose homeostasis in zebrafish, but not 
in adipostasis, Chisada et al. (175) concluded that leptin exerts a 
powerful influence on food intake regulation and fat allocation in 
medaka. Although medaka and zebrafish are evolutionary distant 
species [~296 Mya apart (168)], which could explain differential 
functions of leptin, the effect of differences in genetic background 
and raising density in the medaka study cannot be ruled out. A 
study on knock-out medaka with proper genetic background 
controls should resolve this issue.

LePTiN AND STReSS

Re-establishing energy balance is pivotal for vertebrates to realize 
general homeostasis and cope with environmental or physical 
disturbances (18, 201, 202). To cope with a (potential) stressful 
event, vertebrates have to adjust neural, endocrine, and immune 
mechanisms (203), that, together, modulate energy metabolism. 
This is an allostatic response; i.e., the ability of an animal to 
acquire “stability through change” (204, 205). Allostasis is essen-
tial in attaining homeostasis (203), and leptin has been annotated 
as an allostatic hormone (206). This description embraces leptin 
functioning as a pleiotropic hormone, involved in redistribution 
of energy, independent of context.

The stress response is largely conserved from fish to terrestrial 
vertebrates (18, 201), and recently reviewed with respect to fish 
(202). As both leptin and corticotropin-releasing factor (CRF) are 
important modulators of energy balance, a link between these 
hormone systems was predicted soon after the discovery of leptin. 
Indeed, icv injections of recombinant leptin in fasted rats resulted 
in increased Crf mRNA levels in the hypothalamus, decreased 
Npy expression, and a reduction in food intake (207, 208). Leptin 
receptors appeared to be concentrated in the ARC (207), thus lep-
tin exerts its anorexic effect, at least in part, mediated by indirect 
stimulation of CRF via the ARC and paraventricular nucleus in 
mammals (208).

Nutritional state is a crucial component in stress axis activity 
(209). The contribution of leptin and CRF to the regulation of 
the stress axis and energy homeostasis is dependent on shared 
signaling pathways with complementary effects centrally and 
peripherally. The ultimate result of the stress response is the 

production and release of glucocorticoids that stimulate the 
induction of gluconeogenic enzymes in the liver and lipogenesis 
(210). In mammals, peripheral leptin functions directly at the 
level of the adrenal gland, where it reduces cortisol release and 
blunts the adrenal corticotropic hormone (ACTH)-induced 
rise in cortisol levels (211). Thus, leptin stimulates CRF release 
from the hypothalamus, but counteracts the peripheral effects of 
glucocorticoids by inhibiting cortisol release from the adrenal 
gland.

Also in fish, leptin has been shown to modulate the stress 
response at multiple levels (156, 212). We have already consid-
ered the upregulation of hepatic leptin expression during chronic 
hypoxia in common carp (156), and another study with this spe-
cies demonstrated that recombinant (human) leptin decreased 
regulated, CRF-mediated, as well as constitutive ACTH release, 
and lowered basal cortisol secretion from the head kidney (212). 
Leptin may then serve as a master signal to downplay the stress 
response and decrease energy expenditure, as these two processes 
are intimately linked. This situation is strongly reminiscent of the 
role of leptin in the GH-IGF axis, as well as the interaction with 
prolactin.

SYNTHeSiS AND PeRSPeCTiveS

Vertebrates have adapted to essentially all niches found on earth, 
aquatic, terrestrial, and aerial. The conquest of and adaptations 
to these niches come with niche-specific energetic consequences. 
The earliest vertebrates evolved in aquatic niches, and their well-
lubricated integument is an adaptation to save energy spent on 
transportation. Swimming is energetically cheaper than flying 
and running (the most expensive mode of transport). Efficient 
(aerobic) production of ATP requires a guaranteed oxygen uptake 
machinery, which is found in high sophistication in the gills of 
extant fish. The delicate barrier of the gills that facilitates oxygen 
diffusion comes with a cost: the large branchial surface holds the 
danger of unwanted water and ion flows, in hypo- or hypersaline 
waters. Accurate hydromineral balance is secured by the energeti-
cally expensive Na+/K+-ATPase. Fish play with the surface area 
required for oxygen uptake, but also show metabolic suppression 
when hypoxic or anoxic conditions arise.

Although several trials with regional endothermy are found in 
fish, with the transition to land the evolution of true endothermy 
is seen. The terrestrial environment required more expensive 
modes of transportation, facilitated by the large metabolic scope 
inherent to endothermy. Heat loss through air is considerably less 
than through water. The keratinized skin was equipped externally 
with feathers or hair and internally with a hypodermic insulat-
ing fat layer to retain heat. At the same time, the fat tissue is the 
major energy depot, which secures the energy requirements of 
endothermy. In many terrestrial animals, the fat is the largest 
endocrine tissue, production site, and target of humoral factors 
key in energy metabolism. Of note, in some icefishes fat can make 
up 50% of total body mass, fat that serves a role in buoyancy and 
vertical migration (213).

In the first part of this review, we have non-exhaustively 
discussed different metabolic strategies. Metabolism, specifically 
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metabolic rate, is at the basis of thermal regulation in both ecto- 
and endotherms. Metabolism, thermoregulation, and aerobic 
performance affect each other and all depend on food intake, 
food being the source of chemical energy. Diametric differences 
in energy metabolism resulted in different endocrine mecha-
nisms, regulating energy balance and food intake. In the second 
part of this review, we discussed these endocrine mechanisms in 
a comparative way, with a focus on insulin and (mainly) leptin.

Up till now, major differences in leptin function between fish 
species were reported. There is urgent need to find a “common 
denominator” in teleostean leptin physiology. Most of our cur-
rent knowledge arises from studies on cyprinids and salmonids, 
which reflect only a small share of the teleostean diversity. 
Therefore, one should study leptin in a truly comparative way, 
including a broader range of fish species. Furthermore, studies on 
the endocrinology of energy balance should also include insulin. 
An interesting new avenue of research is the contribution of VAN 
to energy balance in early vertebrates, and the effects of insulin 
and leptin thereon.

Insulin and leptin are evolutionary old and the pinnacle 
regulators of energy intake, storage, and expenditure. Our recent 
knowledge, in particular on the involvement of leptin in the entire 
neuro-endocrine axis, is greatly enhanced by comparative studies 
between early vertebrates and mammals. The evolution of and the 
interactions within the type-I helical cytokine family (including 
leptin, prolactin, and GH) elaborated sophisticated control of the 
energy balance in challenging niches. In addition, comparative 

studies keep promise to solve the paradoxical (?) evolution of 
endothermy.

AUTHOR CONTRiBUTiONS

IP drafted the manuscript. IP, GF, and MG, all edited and finalized 
the manuscript.

ACKNOwLeDGMeNTS

Present and former members and students of the department, as 
well as our (inter) national collaborators are acknowledged for 
valuable discussions.

FUNDiNG

MG and GF received funding from the European Community’s 
seventh Framework Program (FP7/2010–2014) under grant 
agreement number 265957 (COPEWELL).

SUPPLeMeNTARY MATeRiAL

The Supplementary Material for this article can be found 
online at http://journal.frontiersin.org/article/10.3389/fendo. 
2017.00036/full#supplementary-material.

ReFeReNCeS

1. International Union for Conservation of Nature. Red List version 2016-3. 
Table 1: numbers of threatened species by major groups of organisms (1996–
2016). IUCN Red List. (2016). Available from: http://cmsdocs.s3.amazonaws.
com/summarystats/2016-3_Summary_Stats_Page_Documents/2016_3_
RL_Stats_Table_1.pdf

2. Ohno S. Evolution by Gene Duplication. New York: Springer-Verlag (1970).
3. Scotese CR. Paleomap project. PALEOMAP Project. (2001). Available from: 

http://www.scotese.com/newpage1.htm
4. Harvey Pough F, Janis CM, Heiser JB. Vertebrate Life. New Jersey: Pearson 

Prentice Hall (1999).
5. Long JA, Gordon MS. The greatest step in vertebrate history: a paleobio-

logical review of the fish-tetrapod transition. Physiol Biochem Zool (2004) 
77(5):700–19. doi:10.1086/425183 

6. Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral 
vertebrate. PLoS Biol (2005) 3(10):e314. doi:10.1371/journal.pbio.0030314 

7. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation 
of duplicate genes by complementary, degenerative mutations. Genetics 
(1999) 151(4):1531–45. 

8. Raup DM, Sepkoski JJ Jr. Mass extinctions in the marine fossil record. Science 
(1982) 215(4539):1501–3. doi:10.1126/science.215.4539.1501 

9. Meyer A, Van de Peer Y. From 2R to 3R: evidence for a fish-specific genome 
duplication (FSGD). Bioessays (2005) 27(9):937–45. doi:10.1002/bies.20293 

10. Allendorf FW, Thorgaard GH. Tetraploidy and the evolution of salmonid 
fishes. In:  Turner BJ, editor. Evolutionary genetics of fishes. New York: Plenum 
Press (1984). p. 1–53.

11. Larhammar D, Risinger C. Molecular genetic aspects of tetraploidy in the 
common carp Cyprinus carpio. Mol Phylogenet Evol (1994) 3(1):59–68. 
doi:10.1006/mpev.1994.1007 

12. Hoegg S, Brinkmann H, Taylor JS, Meyer A. Phylogenetic timing of the 
fish-specific genome duplication correlates with the diversification of 
teleost fish. J Mol Evol (2004) 59(2):190–203. doi:10.1007/s00239-004- 
2613-z 

13. Macqueen DJ, Johnston IA. A well-constrained estimate for the timing of 
the salmonid whole genome duplication reveals major decoupling from 
species diversification. Proc Biol Sci (2014) 281(1778):20132881. doi:10.1098/
rspb.2013.2881 

14. Clarke JT, Lloyd GT, Friedman M. Little evidence for enhanced phenotypic 
evolution in early teleosts relative to their living fossil sister group. Proc Nalt 
Acad Sci U S A (2016) 113(41):11531–6. doi:10.1073/pnas.1607237113 

15. Apschner A, Schulte-Merker S, Witten PE. Not all bones are created equal 
– using zebrafish and other teleost species in osteogenesis research. 3rd ed. 
In:  Detrich H III,  Westerfield M,  Zon L, editors. The Zebrafish: Disease 
Models and Chemical Screens. USA: Academic Press (2011). p. 239–55.

16. Nelson JS, Grande TC, Wilson MV. Fishes of the World. Hoboken, New Jersey: 
John Wiley & Sons (2016).

17. Wootton R. Ecology of Teleost Fishes. London: Springer Science & Business 
Media (1990).

18. Wendelaar Bonga SE. The stress response in fish. Physiol Rev (1997) 
77(3):591–625. 

19. Atkinson DE. Energy charge of the adenylate pool as a regulatory parameter. 
Interaction with feedback modifiers. Biochemistry (1968) 7(11):4030–4. 
doi:10.1021/bi00851a033 

20. Shoubridge EA, Hochachka P. Ethanol: novel end product of vertebrate 
anaerobic metabolism. Science (1980) 209(4453):308–9. doi:10.1126/
science.7384807 

21. Nilsson GE. Surviving anoxia with the brain turned on. Physiology (2001) 
16(5):217–21. 

22. DeVries AL. Freezing resistance in fishes. In:  Hoar WS,  Randall DJ, editors. 
Environmental Relations and Behavior. USA: Elsevier Academic Press (1971). 
p. 157–90.

23. Verberk WC, Bilton DT, Calosi P, Spicer JI. Oxygen supply in aquatic ecto-
therms: partial pressure and solubility together explain biodiversity and size 
patterns. Ecology (2011) 92(8):1565–72. doi:10.1890/10-2369.1 

24. Sidell BD, O’Brien KM. When bad things happen to good fish: the loss of 
hemoglobin and myoglobin expression in Antarctic icefishes. J Exp Biol 
(2006) 209(10):1791–802. doi:10.1242/jeb.02091 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
http://journal.frontiersin.org/article/10.3389/fendo.2017.00036/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fendo.2017.00036/full#supplementary-material
http://cmsdocs.s3.amazonaws.com/summarystats/2016-3_Summary_Stats_Page_Documents/2016_3_RL_Stats_Table_1.pdf
http://cmsdocs.s3.amazonaws.com/summarystats/2016-3_Summary_Stats_Page_Documents/2016_3_RL_Stats_Table_1.pdf
http://cmsdocs.s3.amazonaws.com/summarystats/2016-3_Summary_Stats_Page_Documents/2016_3_RL_Stats_Table_1.pdf
http://www.scotese.com/newpage1.htm
https://doi.org/10.1086/425183
https://doi.org/10.1371/journal.pbio.0030314
https://doi.org/10.1126/science.215.4539.1501
https://doi.org/10.1002/bies.20293
https://doi.org/10.1006/mpev.1994.1007
https://doi.org/10.1007/s00239-004-2613-z
https://doi.org/10.1007/s00239-004-2613-z
https://doi.org/10.1098/rspb.2013.2881
https://doi.org/10.1098/rspb.2013.2881
https://doi.org/10.1073/pnas.1607237113
https://doi.org/10.1021/bi00851a033
https://doi.org/10.1126/science.7384807
https://doi.org/10.1126/science.7384807
https://doi.org/10.1890/10-2369.1
https://doi.org/10.1242/jeb.02091


14

van de Pol et al. Energy Homeostasis in Early Vertebrates

Frontiers in Endocrinology | www.frontiersin.org March 2017 | Volume 8 | Article 36

25. Gardner PR. Nitric oxide dioxygenase function and mechanism of flavohe-
moglobin, hemoglobin, myoglobin and their associated reductases. J Inorg 
Biochem (2005) 99(1):247–66. doi:10.1016/j.jinorgbio.2004.10.003 

26. Bacila M, Rosa R, Rodrigues E, Lucchiari PH, Rosa CD. Tissue metabolism 
of the ice-fish Chaenocephalus aceratus Loenberg. Comp Biochem Physiol B: 
Biochem Mol Biol (1989) 92(2):313–8. 

27. Matey V, Richards JG, Wang Y, Wood CM, Rogers J, Davies R, et al. The effect 
of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai 
scaleless carp, Gymnocypris przewalskii. J Exp Biol (2008) 211(7):1063–74. 
doi:10.1242/jeb.010181 

28. Zhang R, Ludwig A, Zhang C, Tong C, Li G, Tang Y, et al. Local adaptation of 
Gymnocypris przewalskii (Cyprinidae) on the Tibetan Plateau. Sci Rep (2015) 
5:09780. doi:10.1038/srep09780 

29. Sollid J, Rissanen E, Tranberg HK, Thorstensen T, Vuori KA, Nikinmaa 
M, et al. HIF-1alpha and iNOS levels in crucian carp gills during hypoxia- 
induced transformation. J Comp Physiol B (2006) 176(4):359–69. doi:10.1007/
s00360-005-0059-2 

30. Wood CM, Perry SF, Wright PA, Bergman HL, Randall DJ. Ammonia and 
urea dynamics in the Lake Magadi tilapia, a ureotelic teleost fish adapted 
to an extremely alkaline environment. Respir Physiol (1989) 77(1):1–20. 
doi:10.1016/0034-5687(89)90025-X 

31. Wood CM, Brix KV, De Boeck G, Bergman HL, Bianchini A, Bianchini LF, 
et al. Mammalian metabolic rates in the hottest fish on earth. Sci Rep (2016) 
6:26990. doi:10.1038/srep26990 

32. Schilling CH, Letscher D, Palsson BØ. Theory for the systemic definition 
of metabolic pathways and their use in interpreting metabolic function 
from a pathway-oriented perspective. J Theor Biol (2000) 203(3):229–48. 
doi:10.1006/jtbi.2000.1073 

33. Weir JB. New methods for calculating metabolic rate with special reference to 
protein metabolism. J Physiol (1949) 109(1–2):1. doi:10.1113/jphysiol.1949.
sp004363 

34. Clarke A, Fraser K. Why does metabolism scale with temperature? Funct Ecol 
(2004) 18(2):243–51. doi:10.1111/j.0269-8463.2004.00841.x 

35. Steffensen JF. Respiratory systems and metabolic rates. In:  Randall DJ,  Farrell 
AP, editors. The Physiology of Polar Fishes. San Diego: Elsevier Academic 
Press (2005). p. 203–33.

36. McNab BK. On the utility of uniformity in the definition of basal rate of 
metabolism. Physiol Zool (1997) 70(6):718–20. doi:10.1086/515881 

37. Clarke A, Pörtner HO. Temperature, metabolic power and the evolu-
tion of endothermy. Biol Rev Camb Philos Soc (2010) 85(4):703–27. 
doi:10.1111/j.1469-185X.2010.00122.x 

38. Bennett AF, Ruben JA. Endothermy and activity in vertebrates. Science (1979) 
206(4419):649–54. doi:10.1126/science.493968 

39. Covert JB, Reynolds WW. Survival value of fever in fish. Nature (1977) 
267:43–5. doi:10.1038/267043a0 

40. Schurmann H, Steffensen J, Lomholt JP. The influence of hypoxia on the 
preferred temperature of rainbow trout Oncorhynchus mykiss. J Exp Biol 
(1991) 157(1):75–86. 

41. Boltana S, Rey S, Roher N, Vargas R, Huerta M, Huntingford FA, et  al. 
Behavioural fever is a synergic signal amplifying the innate immune response. 
Proc Biol Sci (2013) 280(1766):20131381. doi:10.1098/rspb.2013.1381 

42. Rey S, Huntingford FA, Boltana S, Vargas R, Knowles TG, Mackenzie S. Fish 
can show emotional fever: stress-induced hyperthermia in zebrafish. Proc 
Biol Sci (2015) 282:20152266. doi:10.1098/rspb.2015.2266 

43. Cerqueira M, Rey S, Silva T, Featherstone Z, Crumlish M, MacKenzie S. 
Thermal preference predicts animal personality in Nile tilapia Oreochromis 
niloticus. J Anim Ecol (2016) 85:1389–400. doi:10.1111/1365-2656.12555 

44. Hochachka P, Somero G. Biochemical Adaptation: Mechanism and Process in 
Physiological Evolution. Oxford: Oxford University Press (2002).

45. Schmidt-Nielsen K. Locomotion: energy cost of swimming, flying, and 
running. Science (1972) 177(4045):222–8. doi:10.1126/science.177.4045.222 

46. Heinrich B. Why have some animals evolved to regulate a high body tempera-
ture? Am Nat (1977) 111(980):623–40. doi:10.1086/283196 

47. Farmer CG. Parental care: the key to understanding endothermy and other 
convergent features in birds and mammals. Am Nat (2000) 155(3):326–34. 
doi:10.1086/303323 

48. Koteja P. Energy assimilation, parental care and the evolution of endo-
thermy. Proc R Soc Lond B Biol Sci (2000) 267(1442):479–84. doi:10.1098/
rspb.2000.1025 

49. Crompton AW, Richard Taylor C, Jagger JA. Evolution of homeothermy in 
mammals. Nature (1978) 272(5651):333–6. doi:10.1038/272333a0 

50. McNab BK. The evolution of endothermy in the phylogeny of mammals. Am 
Nat (1978) 112(983):1–21. doi:10.1086/283249 

51. Savage VM, Gillooly J, Woodruff W, West G, Allen A, Enquist B, et  al. 
The predominance of quarter-power scaling in biology. Funct Ecol (2004) 
18(2):257–82. doi:10.1111/j.0269-8463.2004.00856.x 

52. Bennett AF. The evolution of activity capacity. J Exp Biol (1991) 160(1):1–23. 
53. Bennett AF, Licht P. Anaerobic metabolism during activity in lizards. J Comp 

Physiol B (1972) 81(3):277–88. doi:10.1007/BF00693632 
54. Bennett AF, Licht P. Anaerobic metabolism during activity in amphibians. 

Comp Biochem Physiol A (1974) 48(2):319–27. doi:10.1016/0300-9629(74) 
90712-9 

55. Pörtner HO, Bock C, Knust R, Lannig G, Lucassen M, Mark FC, et al. Cod 
and climate in a latitudinal cline: physiological analyses of climate effects in 
marine fishes. Clim Res (2008) 37(2–3):253–70. doi:10.3354/cr00766 

56. Pörtner HO. Climate change and temperature-dependent biogeography: 
oxygen limitation of thermal tolerance in animals. Naturwissenschaften 
(2001) 88(4):137–46. doi:10.1007/s001140100216 

57. Pörtner HO, Knust R. Climate change affects marine fishes through the 
oxygen limitation of thermal tolerance. Science (2007) 315(5808):95–7. 
doi:10.1126/science.1135471 

58. Pörtner HO. Climate variations and the physiological basis of temperature 
dependent biogeography: systemic to molecular hierarchy of thermal 
tolerance in animals. Comp Biochem Physiol A Mol Int Physiol (2002) 
132(4):739–61. doi:10.1016/S1095-6433(02)00045-4 

59. Pörtner HO, Van Dijk P, Hardewig I, Sommer A. Levels of metabolic cold 
adaptation: tradeoffs in eurythermal and stenothermal ectotherms. In:  
Davison W,  Howard Williams C, editors. Antarctic Ecosystems: Models for 
Wider Ecological Understanding. Christchurch, New Zealand: Caxton Press 
(2000). p. 109–22.

60. Johnston I, Calvo J, Guderley H, Fernandez D, Palmer L. Latitudinal variation 
in the abundance and oxidative capacities of muscle mitochondria in perci-
form fishes. J Exp Biol (1998) 201(1):1–12. 

61. Sidell BD. Intracellular oxygen diffusion: the roles of myoglobin and lipid at 
cold body temperature. J Exp Biol (1998) 201(8):1119–28. 

62. Else P, Hulbert A. Evolution of mammalian endothermic metabolism: “leaky” 
membranes as a source of heat. Am J Physiol Regul Integr Comp Physiol (1987) 
253(1):R1–7. 

63. Stuart JA, Cadenas S, Jekabsons MB, Roussel D, Brand MD. Mitochondrial 
proton leak and the uncoupling protein 1 homologues. Biochim Biophys Acta 
(2001) 1504(1):144–58. doi:10.1016/S0005-2728(00)00243-7 

64. Stuart J, Harper J, Brindle K, Brand M. Uncoupling protein 2 from carp and 
zebrafish, ectothermic vertebrates. Biochim Biophys Act (1999) 1413(1):50–4. 
doi:10.1016/S0005-2728(99)00081-X 

65. Jastroch M, Wuertz S, Kloas W, Klingenspor M. Uncoupling protein 1 in 
fish uncovers an ancient evolutionary history of mammalian nonshiver-
ing thermogenesis. Physiol Genomics (2005) 22(2):150–6. doi:10.1152/
physiolgenomics.00070.2005 

66. Himms-Hagen J, Harper M-E. Physiological role of UCP3 may be export of fatty 
acids from mitochondria when fatty acid oxidation predominates: an hypoth-
esis. Exp Biol Med (2001) 226(2):78–84. doi:10.1177/153537020122600204

67. Schrauwen P, Hoeks J, Schaart G, Kornips E, Binas B, van de Vusse GJ, et al. 
Uncoupling protein 3 as a mitochondrial fatty acid anion exporter. FASEB J 
(2003) 17(15):2272–4. doi:10.1096/fj.03-0515fje 

68. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, et  al. 
Mitochondrial superoxide: production, biological effects, and activation of 
uncoupling proteins. Free Radic Biol Med (2004) 37(6):755–67. doi:10.1016/ 
j.freeradbiomed.2004.05.034 

69. Korsmeyer K, Dewar H. Tuna metabolism and energetics. In:  Block BA,  
Stevens ED, editors. Tuna: Physiology, Ecology, and Evolution. London: 
Elsevier Academic Press (2001). p. 36–71.

70. Magnuson JJ. Locomotion by scombrid fishes: hydromechanics, morphol-
ogy, and behavior. Fish Physiology. Vol. 7: Locomotion. London: Academic 
Press Inc (1978). p. 239–313.

71. Stevens E, Lam HM, Kendall J. Vascular anatomy of the counter-current heat 
exchanger of skipjack tuna. J Exp Biol (1974) 61(1):145. 

72. Carey FG, Teal JM. Heat conservation in tuna fish muscle. Proc Natl Acad Sci 
U S A (1966) 56(5):1464–9. doi:10.1073/pnas.56.5.1464 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1016/j.jinorgbio.2004.
10.003
https://doi.org/10.1242/jeb.010181
https://doi.org/10.1038/srep09780
https://doi.org/10.1007/s00360-005-0059-2
https://doi.org/10.1007/s00360-005-0059-2
https://doi.org/10.1016/0034-5687(89)90025-X
https://doi.org/10.1038/srep26990
https://doi.org/10.1006/jtbi.2000.1073
https://doi.org/10.1113/jphysiol.1949.sp004363
https://doi.org/10.1113/jphysiol.1949.sp004363
https://doi.org/10.1111/j.0269-8463.2004.00841.x
https://doi.org/10.1086/515881
https://doi.org/10.1111/j.1469-185X.2010.00122.x
https://doi.org/10.1126/science.493968
https://doi.org/10.1038/267043a0
https://doi.org/10.1098/rspb.2013.1381
https://doi.org/10.1098/rspb.2015.2266
https://doi.org/10.1111/1365-2656.12555
https://doi.org/10.1126/science.177.4045.222
https://doi.org/10.1086/283196
https://doi.org/10.1086/303323
https://doi.org/10.1098/rspb.2000.1025
https://doi.org/10.1098/rspb.2000.1025
https://doi.org/10.1038/272333a0
https://doi.org/10.1086/283249
https://doi.org/10.1111/j.0269-8463.2004.00856.x
https://doi.org/10.1007/BF00693632
https://doi.org/10.1016/0300-9629(74)
90712-9
https://doi.org/10.1016/0300-9629(74)
90712-9
https://doi.org/10.3354/cr00766
https://doi.org/10.1007/s001140100216
https://doi.org/10.1126/science.1135471
https://doi.org/10.1016/S1095-6433(02)00045-4
https://doi.org/10.1016/S0005-2728(00)00243-7
https://doi.org/10.1016/S0005-2728(99)00081-X
https://doi.org/10.1152/physiolgenomics.00070.2005
https://doi.org/10.1152/physiolgenomics.00070.2005
https://doi.org/10.1177/153537020122600204
https://doi.org/10.1096/fj.03-0515fje
https://doi.org/10.1016/
j.freeradbiomed.2004.05.034
https://doi.org/10.1016/
j.freeradbiomed.2004.05.034
https://doi.org/10.1073/pnas.56.5.1464


15

van de Pol et al. Energy Homeostasis in Early Vertebrates

Frontiers in Endocrinology | www.frontiersin.org March 2017 | Volume 8 | Article 36

73. Brett JR. Energetic responses of salmon to temperature. A study of some 
thermal relations in the physiology and freshwater ecology of sockeye 
salmon (Oncorhynchus nerkd). Am Zool (1971) 11(1):99–113. doi:10.1093/
icb/11.1.99 

74. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central ner-
vous system control of food intake. Nature (2000) 404(6778):661–71. 
doi:10.1038/35007534 

75. Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: 
implications for obesity. Nat Rev Neurosci (2003) 4(11):901–9. doi:10.1038/
nrn1245 

76. Gale SM, Castracane VD, Mantzoros CS. Energy homeostasis, obesity 
and eating disorders: recent advances in endocrinology. J Nutr (2004) 
134(2):295–8. 

77. Anand BK, Brobeck JR. Hypothalamic control of food intake in rats and cats. 
Yale J Biol Med (1951) 24(2):123. 

78. Mayer J. Regulation of energy intake and the body weight: the glucostatic 
theory and the lipostatic hypothesis. Ann N Y Acad Sci (1955) 63(1):15–43. 
doi:10.1111/j.1749-6632.1955.tb36543.x 

79. Kennedy GC. The role of depot fat in the hypothalamic control of food intake 
in the rat. Proc R Soc Lond B Biol Sci (1953) 140(901):578–92. 

80. Woods SC, Seeley RJ. Adiposity signals and the control of energy homeosta-
sis. Nutrition (2000) 16(10):894–902. doi:10.1016/S0899-9007(00)00454-8 

81. Porte D Jr, Woods S. Regulation of food intake and body weight by insulin. 
Diabetologia (1981) 20(3):274–80. doi:10.1007/BF00254493 

82. Woods S, Porte D, Bobbioni E, Ionescu E, Sauter J, Rohner-Jeanrenaud F, 
et al. Insulin: its relationship to the central nervous system and to the control 
of food intake and body weight. Am J Clin Nut (1985) 42(5):1063–71. 

83. Marks JL, Porte D Jr, Stahl WL, Baskin DG. Localization of insulin 
receptor mRNA in rat brain by in situ hybridization. Endocrinology (1990) 
127(6):3234–6. doi:10.1210/endo-127-6-3234 

84. Baura GD, Foster D, Porte D Jr, Kahn S, Bergman R, Cobelli C, et al. Saturable 
transport of insulin from plasma into the central nervous system of dogs 
in vivo. A mechanism for regulated insulin delivery to the brain. J Clin Invest 
(1993) 92(4):1824. doi:10.1172/JCI116773 

85. Schwartz MW, Sipols A, Kahn SE, Lattemann DF, Taborsky GJ, Bergman RN, 
et al. Kinetics and specificity of insulin uptake from plasma into cerebrospinal 
fluid. Am J Physiol Endocrinol Metab (1990) 259(3):E378. 

86. Stryer L. Biochemistry. New York: W H Freeman & Co (1995).
87. Polonsky K, Given B, Hirsch L, Shapiro E, Tillil H, Beebe C, et al. Quantitative 

study of insulin secretion and clearance in normal and obese subjects. J Clin 
Invest (1988) 81(2):435. doi:10.1172/JCI113338 

88. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional 
cloning of the mouse obese gene and its human homologue. Nature (1994) 
372(6505):425–32. doi:10.1038/372425a0 

89. Broberger C, Johansen J, Johansson C, Schalling M, Hökfelt T. The neuro-
peptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, 
anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci  
U S A (1998) 95(25):15043–8. doi:10.1073/pnas.95.25.15043 

90. Elias CF, Lee C, Kelly J, Aschkenasi C, Ahima RS, Couceyro PR, et al. Leptin 
activates hypothalamic CART neurons projecting to the spinal cord. Neuron 
(1998) 21(6):1375–85. doi:10.1016/S0896-6273(00)80656-X 

91. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al. 
Weight-reducing effects of the plasma protein encoded by the obese gene. 
Science (1995) 269(5223):543. doi:10.1126/science.7624777 

92. Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM. 
Physiological response to long-term peripheral and central leptin infusion 
in lean and obese mice. Proc Natl Acad Sci U S A (1997) 94(16):8878–83. 
doi:10.1073/pnas.94.16.8878 

93. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, 
et al. Role of leptin in the neuroendocrine response to fasting. Nature (1996) 
382:250–2. doi:10.1038/382250a0 

94. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mam-
mals. Nature (1998) 395(6704):763–70. doi:10.1038/27376 

95. Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS. 
Leptin levels reflect body lipid content in mice: evidence for diet-induced 
resistance to leptin action. Nat Med (1995) 1(12):1311–4. doi:10.1038/
nm1295-1311 

96. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce 
MR, et al. Serum immunoreactive-leptin concentrations in normal-weight 

and obese humans. N Engl J Med (1996) 334(5):292–5. doi:10.1056/
NEJM199602013340503 

97. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al. 
Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neu-
roendocrine/metabolic dysfunction of human congenital leptin deficiency. 
J Clin Invest (2002) 110(8):1093–103. doi:10.1172/JCI15693 

98. Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and 
leptin resistance. Annu Rev Physiol (2008) 70:537–56. doi:10.1146/annurev.
physiol.70.113006.100707 

99. Myers MG, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resis-
tance: distinguishing cause from effect. Trends Endocrinol Metab (2010) 
21(11):643–51. doi:10.1016/j.tem.2010.08.002 

100. de Lartigue G, de la Serre CB, Espero E, Lee J, Raybould HE. Diet-induced 
obesity leads to the development of leptin resistance in vagal afferent neu-
rons. Am J Physiol Endocrinol Metab (2011) 301(1):E187–95. doi:10.1152/
ajpendo.00056.2011 

101. de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in 
vagal afferent neurons results in hyperphagia and obesity. Mol Metab (2014) 
3(6):595–607. doi:10.1016/j.molmet.2014.06.003 

102. de Lartigue G, Diepenbroek C. Novel developments in vagal afferent nutrient 
sensing and its role in energy homeostasis. Curr Opin Pharmacol (2016) 
31:38–43. doi:10.1016/j.coph.2016.08.007 

103. Baskin DG, Lattemann DF, Seeley RJ, Woods SC, Porte D, Schwartz MW. 
Insulin and leptin: dual adiposity signals to the brain for the regulation of 
food intake and body weight. Brain Res (1999) 848(1):114–23. doi:10.1016/
S0006-8993(99)01974-5 

104. Niswender KD, Schwartz MW. Insulin and leptin revisited: adiposity signals 
with overlapping physiological and intracellular signaling capabilities. Front 
Neuroendocrinol (2003) 24(1):1–10. doi:10.1016/S0091-3022(02)00105-X 

105. Caro JF, Sinha MK, Kolaczynski JW, Zhang PL, Considine RV. Leptin: 
the tale of an obesity gene. Diabetes (1996) 45(11):1455–63. doi:10.2337/
diab.45.11.1455 

106. Niswender KD, Baskin DG, Schwartz MW. Insulin and its evolving partner-
ship with leptin in the hypothalamic control of energy homeostasis. Trends 
Endocrinol Metab (2004) 15(8):362–9. doi:10.1016/j.tem.2004.07.009 

107. Neels JG, Olefsky JM. Inflamed fat: what starts the fire? J Clin Invest (2006) 
116(1):33–5. doi:10.1172/JCI27280 

108. Sipols AJ, Baskin DG, Schwartz MW. Effect of intracerebroventricular insulin 
infusion on diabetic hyperphagia and hypothalamic neuropeptide gene 
expression. Diabetes (1995) 44(2):147–51. doi:10.2337/diab.44.2.147 

109. Sindelar DK, Havel PJ, Seeley RJ, Wilkinson CW, Woods SC, Schwartz MW. 
Low plasma leptin levels contribute to diabetic hyperphagia in rats. Diabetes 
(1999) 48(6):1275–80. doi:10.2337/diabetes.48.6.1275 

110. Kolaczynski JW, Nyce MR, Considine RV, Boden G, Nolan JJ, Henry R, et al. 
Acute and chronic effect of insulin on leptin production in humans: studies 
in  vivo and in vitro. Diabetes (1996) 45(5):699–701. doi:10.2337/diab.45. 
5.699 

111. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central ner-
vous system control of food intake. Nature (2000) 404(6778):661–71. 
doi:10.1038/35007534

112. Wolkow CA, Kimura KD, Lee M-S, Ruvkun G. Regulation of C. elegans 
life-span by insulinlike signaling in the nervous system. Science (2000) 
290(5489):147–50. doi:10.1126/science.290.5489.147 

113. Garofalo RS. Genetic analysis of insulin signaling in Drosophila. Trends 
Endocrinol Metab (2002) 13(4):156–62. doi:10.1016/S1043-2760(01)00548-3 

114. Wu Q, Brown MR. Signaling and function of insulin-like peptides 
in insects. Annu Rev Entomol (2006) 51:1–24. doi:10.1146/annurev.
ento.51.110104.151011 

115. Ballantyne JS. Jaws: the inside story. The metabolism of elasmobranch 
fishes. Comp Biochem Physiol B: Biochem Mol Biol (1997) 118(4):703–42. 
doi:10.1016/S0305-0491(97)00272-1 

116. DeRoos R, DeRoos CC. Severe insulin-induced hypoglycemia in the spiny 
dogfish shark (Squalus acanthias). Gen Comp Endocrinol (1979) 37(2):186–91. 
doi:10.1016/0016-6480(79)90106-0 

117. Moon TW. Glucose intolerance in teleost fish: fact or fiction? Comp 
Biochem Physiol B Biochem Mol Biol (2001) 129(2):243–9. doi:10.1016/
S1096-4959(01)00316-5 

118. Mommsen T, Plisetskaya E. Insulin in fishes and agnathans – history, struc-
ture, and metabolic-regulation. Rev Aquat Sci (1991) 4(2–3):225–59. 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1093/icb/11.1.99
https://doi.org/10.1093/icb/11.1.99
https://doi.org/10.1038/35007534
https://doi.org/10.1038/nrn1245
https://doi.org/10.1038/nrn1245
https://doi.org/10.1111/j.1749-6632.1955.tb36543.x
https://doi.org/10.1016/S0899-9007(00)00454-8
https://doi.org/10.1007/BF00254493
https://doi.org/10.1210/endo-127-6-3234
https://doi.org/10.1172/JCI116773
https://doi.org/10.1172/JCI113338
https://doi.org/10.1038/372425a0
https://doi.org/10.1073/pnas.95.25.15043
https://doi.org/10.1016/S0896-6273(00)80656-X
https://doi.org/10.1126/science.7624777
https://doi.org/10.1073/pnas.94.16.8878
https://doi.org/10.1038/382250a0
https://doi.org/10.1038/27376
https://doi.org/10.1038/nm1295-1311
https://doi.org/10.1038/nm1295-1311
https://doi.org/10.1056/NEJM199602013340503
https://doi.org/10.1056/NEJM199602013340503
https://doi.org/10.1172/JCI15693
https://doi.org/10.1146/annurev.physiol.70.113006.100707
https://doi.org/10.1146/annurev.physiol.70.113006.100707
https://doi.org/10.1016/j.tem.2010.08.002
https://doi.org/10.1152/ajpendo.00056.2011
https://doi.org/10.1152/ajpendo.00056.2011
https://doi.org/10.1016/j.molmet.2014.06.003
https://doi.org/10.1016/j.coph.2016.08.007
https://doi.org/10.1016/S0006-8993(99)01974-5
https://doi.org/10.1016/S0006-8993(99)01974-5
https://doi.org/10.1016/S0091-3022(02)00105-X
https://doi.org/10.2337/diab.45.11.1455
https://doi.org/10.2337/diab.45.11.1455
https://doi.org/10.1016/j.tem.2004.07.009
https://doi.org/10.1172/JCI27280
https://doi.org/10.2337/diab.44.2.147
https://doi.org/10.2337/diabetes.48.6.1275
https://doi.org/10.2337/diab.45.5.699
https://doi.org/10.2337/diab.45.5.699
https://doi.org/10.1038/35007534
https://doi.org/10.1126/science.290.5489.147
https://doi.org/10.1016/S1043-2760(01)00548-3
https://doi.org/10.1146/annurev.ento.51.110104.151011
https://doi.org/10.1146/annurev.ento.51.110104.151011
https://doi.org/10.1016/S0305-0491(97)00272-1
https://doi.org/10.1016/0016-6480(79)90106-0
https://doi.org/10.1016/S1096-4959(01)00316-5
https://doi.org/10.1016/S1096-4959(01)00316-5


16

van de Pol et al. Energy Homeostasis in Early Vertebrates

Frontiers in Endocrinology | www.frontiersin.org March 2017 | Volume 8 | Article 36

119. Weber JM, Zwingelstein G. Circulatory substrate fluxes and their regulation. 
Biochem Mol Biol Fishes (1995) 4:15–32. doi:10.1016/S1873-0140(06)80005-6 

120. Navarro I, Rojas P, Capilla E, Albalat A, Castillo J, Montserrat N, et al. Insights 
into insulin and glucagon responses in fish. Fish Physiol Biochem (2002) 
27(3–4):205–16. doi:10.1023/B:FISH.0000032726.78074.04 

121. Andoh T. Amino acids are more important insulinotropins than glucose in a 
teleost fish, barfin flounder (Verasper moseri). Gen Comp Endocrinol (2007) 
151(3):308–17. doi:10.1016/j.ygcen.2007.01.015 

122. Furuichi M, Yone Y. Change of blood sugar and plasma insulin levels of 
fishes in glucose tolerance test. Nippon Suisan Gakk (1981) 47(6):761–4. 
doi:10.2331/suisan.47.761 

123. Mazur CN, Higgs D, Plisetskaya E, March B. Utilization of dietary starch and 
glucose tolerance in juvenile Chinook salmon (Oncorhynchus tshawytscha) 
of different strains in seawater. Fish Physiol Biochem (1992) 10(4):303–13. 
doi:10.1007/BF00004479 

124. Blasco J, Fernandez-Borras J, Marimon I, Requena A. Plasma glucose 
kinetics and tissue uptake in brown trout in  vivo: effect of an intravas-
cular glucose load. J Comp Physiol B (1996) 165(7):534–41. doi:10.1007/
BF00387514 

125. Panserat S, Médale F, Blin C, Breque J, Vachot C, Plagnes-Juan E, et al. Hepatic 
glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead 
seabream, and common carp. Am J Physiol Regul Integr Comp Physiol (2000) 
278(5):R1164–70. 

126. Gutierrez J, Plisetskaya EM. Peptide receptor assays: insulin receptor. In:  
Mommsen TP,  Hochachka PW, editors. Biochemistry and Molecular Biology 
of Fishes Vol. 3: Analytical Techniques. Amsterdam: Elsevier (1994). p. 431–46.

127. Leibush B, Parrizas M, Navarro I, Lappova Y, Maestro M, Encinas M, et al. 
Insulin and insulin-like growth factor-I receptors in fish brain. Regul Pept 
(1996) 61(2):155–61. doi:10.1016/0167-0115(95)00154-9 

128. Silverstein JT, Plisetskaya EM. The effects of NPY and insulin on food intake 
regulation in fish. Am Zool (2000) 40(2):296–308. doi:10.1093/icb/40.2.296 

129. Soengas J, Aldegunde M. Brain glucose and insulin: effects on food intake 
and brain biogenic amines of rainbow trout. J Comp Physiol A (2004) 
190(8):641–9. doi:10.1007/s00359-004-0524-5 

130. Moon TW, Foster G, Plisetskaya E. Changes in peptide hormones and liver 
enzymes in the rainbow trout deprived of food for 6 weeks. Can J Zool (1989) 
67(9):2189–93. doi:10.1139/z89-309 

131. Conde-Sieira M, Agulleiro MJ, Aguilar AJ, Míguez JM, Cerdá-Reverter 
JM, Soengas JL. Effect of different glycaemic conditions on gene expression 
of neuropeptides involved in control of food intake in rainbow trout; 
interaction with stress. J Exp Biol (2010) 213(22):3858–65. doi:10.1242/jeb. 
048439 

132. Cowley DJ, Sheridan MA. Insulin stimulates hepatic lipogenesis in rainbow 
trout, Oncorhynchus mykiss. Fish Physiol Biochem (1993) 11(1–6):421–8. 
doi:10.1007/BF00004592 

133. Polakof S, Médale F, Larroquet L, Vachot C, Corraze G, Panserat S. Insulin 
stimulates lipogenesis and attenuates beta-oxidation in white adipose 
tissue of fed rainbow trout. Lipids (2011) 46(2):189–99. doi:10.1007/
s11745-010-3521-1 

134. Lin H, Romsos DR, Tack PI, Leveille GA. Influence of dietary lipid on lipo-
genic enzyme activities in coho salmon, Oncorhynchus kisutch (Walbaum). 
J Nutr (1977) 107(5):846–54. 

135. Shearer KD, Silverstein JT, Plisetskaya EM. Role of adiposity in food intake con-
trol of juvenile chinook salmon (Oncorhynchus tshawytscha). Comp Biochem 
Physiol A (1997) 118(4):1209–15. doi:10.1016/S0300-9629(97)86801-6 

136. Huising MO, Geven EJW, Kruiswijk CP, Nabuurs SB, Stolte EH, Spanings 
FAT, et  al. Increased leptin expression in common carp (Cyprinus carpio) 
after food intake but not after fasting or feeding to satiation. Endocrinology 
(2006) 147(12):5786–97. doi:10.1210/en.2006-0824 

137. Huising MO, Kruiswijk CP, Flik G. Phylogeny and evolution of class-I helical 
cytokines. J Endocrinol (2006) 189(1):1–25. doi:10.1677/joe.1.06591 

138. Gorissen M, Bernier NJ, Nabuurs SB, Flik G, Huising MO. Two divergent 
leptin paralogues in zebrafish (Danio rerio) that originate early in teleostean 
evolution. J Endocrinol (2009) 201(3):329–39. doi:10.1677/JOE-09-0034 

139. Rønnestad I, Nilsen TO, Murashita K, Angotzi AR, Moen A-GG, Stefansson 
SO, et  al. Leptin and leptin receptor genes in Atlantic salmon: cloning, 
phylogeny, tissue distribution and expression correlated to long-term feed-
ing status. Gen Comp Endocrinol (2010) 168(1):55–70. doi:10.1016/j.ygcen. 
2010.04.010 

140. Kurokawa T, Uji S, Suzuki T. Identification of cDNA coding for a homologue 
to mammalian leptin from pufferfish, Takifugu rubripes. Peptides (2005) 
26(5):745–50. doi:10.1016/j.peptides.2004.12.017 

141. Rajan A, Perrimon N. Drosophila cytokine unpaired 2 regulates physio-
logical homeostasis by remotely controlling insulin secretion. Cell (2012) 
151(1):123–37. doi:10.1016/j.cell.2012.08.019 

142. Volkoff H, Canosa L, Unniappan S, Cerda-Reverter J, Bernier NJ, Kelly S, et al. 
Neuropeptides and the control of food intake in fish. Gen Comp Endocrinol 
(2005) 142(1):3–19. doi:10.1016/j.ygcen.2004.11.001 

143. Gorissen MHAG, Flik G, Huising MO. Peptides and proteins regulat-
ing food intake: a comparative view. Anim Biol (2006) 56(4):447–73. 
doi:10.1163/157075606778967829 

144. Murashita K, Uji S, Yamamoto T, Rønnestad I, Kurokawa T. Production 
of recombinant leptin and its effects on food intake in rainbow trout 
(Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol (2008) 
150(4):377–84. doi:10.1016/j.cbpb.2008.04.007 

145. Kurokawa T, Murashita K. Genomic characterization of multiple leptin genes 
and a leptin receptor gene in the Japanese medaka, Oryzias latipes. Gen Comp 
Endocrinol (2009) 161(2):229–37. doi:10.1016/j.ygcen.2009.01.008 

146. Sheridan MA. Lipid dynamics in fish: aspects of absorption, transportation, 
deposition and mobilization. Comp Biochem Physiol B (1988) 90(4):679–90. 

147. Tocher DR. Metabolism and functions of lipids and fatty acids in teleost fish. 
Rev Fish Sci (2003) 11(2):107–84. doi:10.1080/713610925 

148. Young RA. Fat, energy and mammalian survival. Am Zool (1976) 16(4):699–
710. doi:10.1093/icb/16.4.699 

149. Volkoff H, Eykelbosh AJ, Peter RE. Role of leptin in the control of feeding of 
goldfish Carassius auratus: interactions with cholecystokinin, neuropeptide 
Y and orexin A, and modulation by fasting. Brain Res (2003) 972(1):90–109. 
doi:10.1016/S0006-8993(03)02507-1 

150. Aguilar AJ, Conde-Sieira M, Polakof S, Míguez JM, Soengas JL. Central leptin 
treatment modulates brain glucosensing function and peripheral energy 
metabolism of rainbow trout. Peptides (2010) 31(6):1044–54. doi:10.1016/ 
j.peptides.2010.02.026 

151. Boutilier R, Dobson G, Hoeger U, Randall D. Acute exposure to graded levels of 
hypoxia in rainbow trout (Salmo gairdneri): metabolic and respiratory adapta-
tions. Respir Physiol (1988) 71(1):69–82. doi:10.1016/0034-5687(88)90116-8 

152. Bernier NJ, Craig PM. CRF-related peptides contribute to stress response 
and regulation of appetite in hypoxic rainbow trout. Am J Physiol Regul Integr 
Comp Physiol (2005) 289(4):R982–90. doi:10.1152/ajpregu.00668.2004 

153. Quintero P, Milagro F, Campion J, Martinez J. Impact of oxygen avail-
ability on body weight management. Med Hypotheses (2010) 74(5):901–7. 
doi:10.1016/j.mehy.2009.10.022 

154. Ambrosini G, Nath AK, Sierra-Honigmann MR, Flores-Riveros 
J. Transcriptional activation of the human leptin gene in response to 
hypoxia involvement of hypoxia-inducible factor 1. J Biol Chem (2002) 
277(37):34601–9. doi:10.1074/jbc.M205172200 

155. Grosfeld A, André J, Hauguel-de Mouzon S, Berra E, Pouysségur J, Guerre-
Millo M. Hypoxia-inducible factor 1 transactivates the human leptin gene 
promoter. J Biol Chem (2002) 277(45):42953–7. doi:10.1074/jbc.M206775200 

156. Bernier NJ, Gorissen M, Flik G. Differential effects of chronic hypoxia and 
feed restriction on the expression of leptin and its receptor, food intake reg-
ulation and the endocrine stress response in common carp. J Exp Biol (2012) 
215(13):2273–82. doi:10.1242/jeb.066183 

157. Chabot D, Dutil JD. Reduced growth of Atlantic cod in non-lethal hypoxic 
conditions. J Fish Biol (1999) 55(3):472–91. doi:10.1111/j.1095-8649.1999.
tb00693.x 

158. Pichavant K, Person-Le-Ruyet J, Bayon NL, Severe A, Roux AL, Boeuf G. 
Comparative effects of long-term hypoxia on growth, feeding and oxygen 
consumption in juvenile turbot and European sea bass. J Fish Biol (2001) 
59(4):875–83. doi:10.1111/j.1095-8649.2001.tb00158.x 

159. Wang T, Lefevre S, Van Cong N, Bayley M. The effects of hypoxia on 
growth and digestion. Fish Physiol (2009) 27:361–96. doi:10.1016/
S1546-5098(08)00008-3 

160. Chu DLH, Li VWT, Yu RMK. Leptin: clue to poor appetite in oxygen-starved 
fish. Mol Cell Endocrinol (2010) 319(1):143–6. doi:10.1016/j.mce.2010.01.018 

161. Friedman J. Leptin at 20: an overview. J Endocrinol (2014) 223(1):T1–8. 
doi:10.1530/JOE-14-0405 

162. Bray GA. Obesity, a disorder of nutrient partitioning: the MONA LISA 
hypothesis. J Nutr (1991) 121(8):1146–62. 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1016/S1873-0140(06)
80005-6
https://doi.org/10.1023/B:FISH.0000032726.78074.04
https://doi.org/10.1016/j.ygcen.2007.01.015
https://doi.org/10.2331/suisan.47.761
https://doi.org/10.1007/BF00004479
https://doi.org/10.1007/BF00387514
https://doi.org/10.1007/BF00387514
https://doi.org/10.1016/0167-0115(95)00154-9
https://doi.org/10.1093/icb/40.2.296
https://doi.org/10.1007/s00359-004-0524-5
https://doi.org/10.1139/z89-309
https://doi.org/10.1242/jeb.048439
https://doi.org/10.1242/jeb.048439
https://doi.org/10.1007/BF00004592
https://doi.org/10.1007/s11745-010-3521-1
https://doi.org/10.1007/s11745-010-3521-1
https://doi.org/10.1016/S0300-9629(97)86801-6
https://doi.org/10.1210/en.2006-0824
https://doi.org/10.1677/joe.1.06591
https://doi.org/10.1677/JOE-09-0034
https://doi.org/10.1016/j.ygcen.
2010.04.010
https://doi.org/10.1016/j.ygcen.
2010.04.010
https://doi.org/10.1016/j.peptides.2004.12.017
https://doi.org/10.1016/j.cell.2012.08.019
https://doi.org/10.1016/j.ygcen.2004.11.001
https://doi.org/10.1163/157075606778967829
https://doi.org/10.1016/j.cbpb.2008.04.007
https://doi.org/10.1016/j.ygcen.2009.01.008
https://doi.org/10.1080/713610925
https://doi.org/10.1093/icb/16.4.699
https://doi.org/10.1016/S0006-8993(03)02507-1
https://doi.org/10.1016/
j.peptides.2010.02.026
https://doi.org/10.1016/
j.peptides.2010.02.026
https://doi.org/10.1016/0034-5687(88)90116-8
https://doi.org/10.1152/ajpregu.00668.2004
https://doi.org/10.1016/j.mehy.2009.10.022
https://doi.org/10.1074/jbc.M205172200
https://doi.org/10.1074/jbc.M206775200
https://doi.org/10.1242/jeb.066183
https://doi.org/10.1111/j.1095-8649.1999.tb00693.x
https://doi.org/10.1111/j.1095-8649.1999.tb00693.x
https://doi.org/10.1111/j.1095-8649.2001.tb00158.x
https://doi.org/10.1016/S1546-5098(08)00008-3
https://doi.org/10.1016/S1546-5098(08)00008-3
https://doi.org/10.1016/j.mce.2010.01.018
https://doi.org/10.1530/JOE-14-0405


17

van de Pol et al. Energy Homeostasis in Early Vertebrates

Frontiers in Endocrinology | www.frontiersin.org March 2017 | Volume 8 | Article 36

163. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin 
modulates the T-cell immune response and reverses starvation-induced 
immunosuppression. Nature (1998) 394(6696):897–901. doi:10.1038/ 
29795 

164. Friedman-Einat M, Cogburn LA, Yosefi S, Hen G, Shinder D, Shirak A, et al. 
Discovery and characterization of the first genuine avian leptin gene in the 
rock dove (Columba livia). Endocrinology (2014) 155:3376–84. doi:10.1210/
en.2014-1273 

165. Gorissen M, Flik G. Leptin in teleostean fish, towards the origins of 
leptin physiology. J Chem Neuroanat (2014) 61:200–6. doi:10.1016/ 
j.jchemneu.2014.06.005 

166. Londraville RL, Macotela Y, Duff RJ, Easterling MR, Liu Q, Crespi 
EJ. Comparative endocrinology of leptin: assessing function in a phylo-
genetic context. Gen Comp Endocrinol (2014) 203:146–57. doi:10.1016/ 
j.ygcen.2014.02.002 

167. Tang Y, Yu J, Li H, Xu P, Li J, Ren H. Molecular cloning, characterization 
and expression analysis of multiple leptin genes in Jian carp (Cyprinus carpio 
Var. Jian). Comp Biochem Physiol B (2013) 166(2):133–40. doi:10.1016/ 
j.cbpb.2013.07.009 

168. Hoegg S, Meyer A. Hox clusters as models for vertebrate genome evolution. 
Trends Genet (2005) 21(8):421–4. doi:10.1016/j.tig.2005.06.004 

169. Angotzi AR, Stefansson SO, Nilsen TO, Rathore RM, Rønnestad I. Molecular 
cloning and genomic characterization of novel leptin-like genes in salmonids 
provide new insight into the evolution of the leptin gene family. Gen Comp 
Endocrinol (2013) 187:48–59. doi:10.1016/j.ygcen.2013.03.022 

170. Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, et  al. 
Resolution of ray-finned fish phylogeny and timing of diversification.  
Proc Nat Acad Sci U S A (2012) 109(34):13698–703. doi:10.1073/pnas. 
1206625109 

171. Seroussi E, Cinnamon Y, Yosefi S, Genin O, Gage Smith J, Rafati N, et al. 
Identification of the long-sought leptin in chicken and duck: expression 
pattern of the highly GC-rich avian leptin fits an autocrine/paracrine rather 
than endocrine function. Endocrinology (2016) 157(2):737–51. doi:10.1210/
en.2015-1634 

172. Prokop JW, Duff RJ, Ball HC, Copeland DL, Londraville RL. Leptin and leptin 
receptor: analysis of a structure to function relationship in interaction and 
evolution from humans to fish. Peptides (2012) 38(2):326–36. doi:10.1016/ 
j.peptides.2012.10.002 

173. Gong N, Einarsdottir IE, Johansson M, Björnsson BT. Alternative splice 
variants of the rainbow trout leptin receptor encode multiple circulating 
leptin-binding proteins. Endocrinology (2013) 154(7):2331–40. doi:10.1210/
en.2012-2082 

174. Klaren PHM, van Dalen SC, Atsma W, Spanings FAT, Hendriks J, Flik G. 
Voluntary timing of food intake increases weight gain and reduces basal 
plasma cortisol levels in common carp (Cyprinus carpio L.). Physiol Behav 
(2013) 122:120–8. doi:10.1016/j.physbeh.2013.08.020 

175. Chisada S, Kurokawa T, Murashita K, Rønnestad I, Taniguchi Y, Toyoda 
A, et  al. Leptin receptor-deficient (knockout) medaka, Oryzias latipes, 
show chronical up-regulated levels of orexigenic neuropeptides, elevated 
food intake and stage specific effects on growth and fat allocation. 
Gen Comp Endocrinol (2014) 195:9–20. doi:10.1016/j.ygcen.2013. 
10.008 

176. MacDonald LE, Alderman SL, Kramer S, Woo PT, Bernier NJ. Hypoxemia-
induced leptin secretion: a mechanism for the control of food intake 
in diseased fish. J Endocrinol (2014) 221(3):441–55. doi:10.1530/JOE- 
13-0615 

177. Jørgensen EH, Bernier NJ, Maule AG, Vijayan MM. Effect of long-term 
fasting and a subsequent meal on mRNA abundances of hypothalamic 
appetite regulators, central and peripheral leptin expression and plasma 
leptin levels in rainbow trout. Peptides (2016) 86:162–70. doi:10.1016/ 
j.peptides.2015.08.010 

178. Trombley S, Mustafa A, Schmitz M. Regulation of the seasonal leptin 
and leptin receptor expression profile during early sexual maturation and 
feed restriction in male Atlantic salmon, Salmo salar L., parr. Gen Comp 
Endocrinol (2014) 204:60–70. doi:10.1016/j.ygcen.2014.04.033 

179. Dalman MR, Liu Q, King MD, Bagatto B, Londraville RL. Leptin expression 
affects metabolic rate in zebrafish embryos (D. rerio). Front Physiol (2013) 
4:160. doi:10.3389/fphys.2013.00160 

180. Renquist BJ, Zhang C, Williams SY, Cone RD. Development of an assay for 
high-throughput energy expenditure monitoring in the zebrafish. Zebrafish 
(2013) 10(3):343–52. doi:10.1089/zeb.2012.0841 

181. Baltzegar DA, Reading BJ, Douros JD, Borski RJ. Role for leptin in promoting 
glucose mobilization during acute hyperosmotic stress in teleost fishes. 
J Endocrinol (2014) 220(1):61–72. doi:10.1530/JOE-13-0292 

182. Douros JD, Baltzegar DA, Breves JP, Lerner DT, Seale AP, Grau EG, et al. 
Prolactin is a major inhibitor of hepatic leptin A synthesis and secretion: 
studies utilizing a homologous leptin A ELISA in the tilapia. Gen Comp 
Endocrinol (2014) 207:86–93. doi:10.1016/j.ygcen.2014.03.007 

183. Michel M, Page-McCaw PS, Chen W, Cone RD. Leptin signaling regulates 
glucose homeostasis, but not adipostasis, in the zebrafish. Proc Natl Acad Sci 
U S A (2016) 113(11):3084–9. doi:10.1073/pnas.1513212113 

184. Yu RM, Chu DL, Tan TF, Li VW, Chan AK, Giesy JP, et al. Leptin-mediated 
modulation of steroidogenic gene expression in hypoxic zebrafish embryos: 
implications for the disruption of sex steroids. Env Sci Tech (2012) 
46(16):9112–9. doi:10.1021/es301758c 

185. Won ET, Douros JD, Hurt DA, Borski RJ. Leptin stimulates hepatic growth 
hormone receptor and insulin-like growth factor gene expression in a tele-
ost fish, the hybrid striped bass. Gen Comp Endocrinol (2016) 229:84–91. 
doi:10.1016/j.ygcen.2016.02.003 

186. Levitas‐Djerbi T, Yelin‐Bekerman L, Lerer‐Goldshtein T, Appelbaum L. 
Hypothalamic leptin‐neurotensin‐hypocretin neuronal networks in zebraf-
ish. J Comp Neurol (2015) 523(5):831–48. 

187. Mariano G, Stilo R, Terrazzano G, Coccia E, Vito P, Varricchio E, et  al. 
Effects of recombinant trout leptin in superoxide production and NF-κB/
MAPK phosphorylation in blood leukocytes. Peptides (2013) 48:59–69.  
doi:10.1016/j.peptides.2013.07.026

188. Volkoff H. The neuroendocrine regulation of food intake in fish: a 
review of current knowledge. Front Neurosci (2016)10:540. doi:10.3389/
fnins.2016.00540 

189. Liu Q, Dalman M, Chen Y, Akhter M, Brahmandam S, Patel Y, et  al. 
Knockdown of leptin A expression dramatically alters zebrafish development. 
Gen Comp Endocrinol (2012) 178(3):562–72. doi:10.1016/j.ygcen.2012. 
07.011 

190. Solinas G, Summermatter S, Mainieri D, Gubler M, Pirola L, Wymann MP, 
et al. The direct effect of leptin on skeletal muscle thermogenesis is mediated 
by substrate cycling between de novo lipogenesis and lipid oxidation. FEBS 
Lett (2004) 577(3):539–44. doi:10.1016/j.febslet.2004.10.066 

191. Takei Y, Hwang PP. Homeostatic responses to osmotic stress. In:  Schreck 
CB,  Tort L,  Farrell AP,  Brauner CJ, editors. Fish Physiology Vol. 35: Biology 
of Stress in Fish. London: Academic Press (2016). p. 207–49.

192. Fiess JC, Kunkel-Patterson A, Mathias L, Riley LG, Yancey PH, Hirano T, 
et al. Effects of environmental salinity and temperature on osmoregulatory 
ability, organic osmolytes, and plasma hormone profiles in the Mozambique 
tilapia (Oreochromis mossambicus). Comp Biochem Physiol A: Mol Integr 
Physiol (2007) 146(2):252–64. doi:10.1016/j.cbpa.2006.10.027 

193. Aas-Hansen Ø, Vijayan MM, Johnsen HK, Cameron C, Jørgensen EH. 
Resmoltification in wild, anadromous Arctic char (Salvelinus alpinus): a sur-
vey of osmoregulatory, metabolic, and endocrine changes preceding annual 
seawater migration. Can J Fish Aquat Sci (2005) 62(1):195–204. doi:10.1139/
f04-186 

194. Flik G, Fenwick J, Kolar Z, Mayer-Gostan N, Bonga SW. Effects of ovine 
prolactin on calcium uptake and distribution in Oreochromis mossambicus. 
Am J Physiol Regul Integr Comp Physiol (1986) 250(2):R161–6. 

195. Yada T, Hirano T, Grau EG. Changes in plasma levels of the two prolactins 
and growth hormone during adaptation to different salinities in the eury-
haline tilapia, Oreochromis mossambicus. Gen Comp Endocrinol (1994) 
93(2):214–23. doi:10.1006/gcen.1994.1025 

196. Tipsmark CK, Strom CN, Bailey ST, Borski RJ. Leptin stimulates pituitary 
prolactin release through an extracellular signal-regulated kinase- dependent 
pathway. J Endocrinol (2008) 196(2):275–81. doi:10.1677/JOE-07-0540 

197. Flik G, Atsma W, Fenwick JC, Rentier-Delrue F, Smal J, Wendelaar Bonga SE. 
Homologous recombinant growth hormone and calcium metabolism in the 
tilapia, Oreochromis mossambicus, adapted to fresh-water. J Exp Biol (1993) 
185:107–19. 

198. Douros JD, Baltzegar DA, Mankiewicz J, Taylor J, Yamaguchi Y, Lerner DT, 
et  al. Control of leptin by metabolic state and its regulatory interactions 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1038/29795
https://doi.org/10.1038/29795
https://doi.org/10.1210/en.2014-1273
https://doi.org/10.1210/en.2014-1273
https://doi.org/10.1016/
j.jchemneu.2014.06.005
https://doi.org/10.1016/
j.jchemneu.2014.06.005
https://doi.org/10.1016/
j.ygcen.2014.02.002
https://doi.org/10.1016/
j.ygcen.2014.02.002
https://doi.org/10.1016/
j.cbpb.2013.07.009
https://doi.org/10.1016/
j.cbpb.2013.07.009
https://doi.org/10.1016/j.tig.2005.06.004
https://doi.org/10.1016/j.ygcen.2013.03.022
https://doi.org/10.1073/pnas.1206625109
https://doi.org/10.1073/pnas.1206625109
https://doi.org/10.1210/en.2015-1634
https://doi.org/10.1210/en.2015-1634
https://doi.org/10.1016/
j.peptides.2012.10.002
https://doi.org/10.1016/
j.peptides.2012.10.002
https://doi.org/10.1210/en.2012-2082
https://doi.org/10.1210/en.2012-2082
https://doi.org/10.1016/j.physbeh.2013.08.020
https://doi.org/10.1016/j.ygcen.2013.10.008
https://doi.org/10.1016/j.ygcen.2013.10.008
https://doi.org/10.1530/JOE-13-0615
https://doi.org/10.1530/JOE-13-0615
https://doi.org/10.1016/
j.peptides.2015.08.010
https://doi.org/10.1016/
j.peptides.2015.08.010
https://doi.org/10.1016/j.ygcen.2014.04.033
https://doi.org/10.3389/fphys.2013.00160
https://doi.org/10.1089/zeb.2012.0841
https://doi.org/10.1530/JOE-13-0292
https://doi.org/10.1016/j.ygcen.2014.03.007
https://doi.org/10.1073/pnas.1513212113
https://doi.org/10.1021/es301758c
https://doi.org/10.1016/j.ygcen.2016.02.003
https://doi.org/10.1016/j.peptides.2013.07.026
https://doi.org/10.3389/fnins.2016.00540
https://doi.org/10.3389/fnins.2016.00540
https://doi.org/10.1016/j.ygcen.2012.
07.011
https://doi.org/10.1016/j.ygcen.2012.
07.011
https://doi.org/10.1016/j.febslet.2004.10.066
https://doi.org/10.1016/j.cbpa.2006.10.027
https://doi.org/10.1139/f04-186
https://doi.org/10.1139/f04-186
https://doi.org/10.1006/gcen.1994.1025
https://doi.org/10.1677/JOE-
07-0540


18

van de Pol et al. Energy Homeostasis in Early Vertebrates

Frontiers in Endocrinology | www.frontiersin.org March 2017 | Volume 8 | Article 36

with pituitary growth hormone and hepatic growth hormone receptors and 
insulin like growth factors in the tilapia (Oreochromis mossambicus). Gen 
Comp Endocrinol (2017) 240:227–37. doi:10.1016/j.ygcen.2016.07.017 

199. Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutafton in the 
mouse. Science (1966) 153(3740):1127–8. doi:10.1126/science.153.3740.1127 

200. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, DePinho RA, et al. 
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic 
effects of metformin. Science (2005) 310(5754):1642–6. doi:10.1126/science. 
1120781 

201. Flik G, Klaren PHM, Van den Burg EH, Metz JR, Huising MO. CRF and 
stress in fish. Gen Comp Endocrinol (2006) 146(1):36–44. doi:10.1016/ 
j.ygcen.2005.11.005 

202. Gorissen M, Flik G. The endocrinology of the stress response in fish. In:  
Schreck CB,  Tort L,  Farrell AP,  Brauner CJ, editors. Fish Physiology Vol. 35: 
Biology of Stress in Fish. London: Academic Press (2016). p. 76–111.

203. McEwen BS. Stress, adaptation, and disease: allostasis and allostatic load. 
Ann N Y Acad Sci (1998) 840(1):33–44. doi:10.1111/j.1749-6632.1998. 
tb09546.x 

204. Sterling P, Eyer J. Allostasis: a new paradigm to explain arousal pathology. 
In:  Fisher S,  Reason J, editors. Handbook of Life Stress, Cognition and Health. 
New York: John Wiley & Sons (1988). p. 629–49.

205. McEwen BS, Wingfield JC. The concept of allostasis in biology and  
biomedicine. Horm Behav (2003) 43(1):2–15. doi:10.1016/S0018-506X(02) 
00024-7 

206. Copeland DL, Duff RJ, Liu Q, Prokop J, Londraville RL. Leptin in teleost 
fishes: an argument for comparative study. Front Physiol (2011) 2:26. 
doi:10.3389/fphys.2011.00026 

207. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG. Identification of 
targets of leptin action in rat hypothalamus. J Clin Invest (1996) 98(5):1101. 
doi:10.1172/JCI118891 

208. Uehara Y, Shimizu H, Ohtani K, Sato N, Mori M. Hypothalamic  
corticotropin-releasing hormone is a mediator of the anorexigenic effect of 
leptin. Diabetes (1998) 47(6):890. doi:10.2337/diabetes.47.6.890 

209. Roubos EW, Dahmen M, Kozicz T, Xu L. Leptin and the hypothalamo- 
pituitary-adrenal stress axis. Gen Comp Endocrinol (2012) 177(1):28–36. 
doi:10.1016/j.ygcen.2012.01.009 

210. Laugero KD. A new perspective on glucocorticoid feedback: relation to 
stress, carbohydrate feeding and feeling better. J Neuroendocrinol (2001) 
13(9):827–35. doi:10.1046/j.1365-2826.2001.00706.x 

211. Bornstein SR, Uhlmann K, Haidan A, Ehrhart-Bornstein M, Scherbaum 
WA. Evidence for a novel peripheral action of leptin as a metabolic signal 
to the adrenal gland: leptin inhibits cortisol release directly. Diabetes (1997) 
46(7):1235–8. doi:10.2337/diabetes.46.7.1235 

212. Gorissen M, Bernier NJ, Manuel R, de Gelder S, Metz JR, Huising MO, 
et al. Recombinant human leptin attenuates stress axis activity in common 
carp (Cyprinus carpio L.). Gen Comp Endocrinol (2012) 178(1):75–81. 
doi:10.1016/j.ygcen.2012.04.004 

213. DeVries AL, Eastman JT. Lipid sacs as a buoyancy adaptation in an Antarctic 
fish. Nature (1978) 271(5643):352–3. doi:10.1038/271352a0 

Conflict of Interest Statement: The authors declare that this review was written 
in the absence of commercial or financial relationships that could be interpreted as 
possible conflicts of interest.

Copyright © 2017 van de Pol, Flik and Gorissen. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1016/j.ygcen.
2016.07.017
https://doi.org/10.1126/science.153.3740.1127
https://doi.org/10.1126/science.1120781
https://doi.org/10.1126/science.1120781
https://doi.org/10.1016/
j.ygcen.2005.11.005
https://doi.org/10.1016/
j.ygcen.2005.11.005
https://doi.org/10.1111/j.1749-6632.1998.
tb09546.x
https://doi.org/10.1111/j.1749-6632.1998.
tb09546.x
https://doi.org/10.1016/S0018-506X(02)
00024-7
https://doi.org/10.1016/S0018-506X(02)
00024-7
https://doi.org/10.3389/fphys.2011.00026
https://doi.org/10.1172/JCI118891
https://doi.org/10.2337/diabetes.47.6.890
https://doi.org/10.1016/j.ygcen.2012.01.009
https://doi.org/10.1046/j.1365-2826.2001.00706.x
https://doi.org/10.2337/diabetes.46.7.1235
https://doi.org/10.1016/j.ygcen.2012.04.004
https://doi.org/10.1038/271352a0
http://creativecommons.org/licenses/by/4.0/

	Comparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool
	Introduction
	Living in an Aquatic Niche
	Physiology
	Metabolic Rates
	Ectothermy Meets Endothermy

	Endocrinology
	Regulation of Energy Balance
	Insulin and Leptin: Adiposity Signals in Mammals
	Insulin and Leptin: Adiposity Signals in Fish?

	Leptin: State of the Art
	Evolution of Leptin and Leptin Receptor Genes
	Recent Discoveries on Leptin Physiology
	Feeding and Appetite Regulation
	Sexual Maturation
	Energy Expenditure and Metabolic Rate
	SW Adaptation
	Glucose Homeostasis


	Leptin and Stress
	Synthesis and Perspectives
	Author Contributions
	Acknowledgments
	Funding
	Supplementary Material
	References


