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Circadian clocks are endogenous timekeeping systems that adapt in an anticipatory 
fashion the physiology and behavior of most living organisms. In mammals, the master 
pacemaker resides in the suprachiasmatic nucleus and entrains peripheral clocks using 
a wide range of signals that differentially schedule physiology and gene expression in 
a tissue-specific manner. The peripheral clocks, such as those found in the liver, are 
particularly sensitive to rhythmic external cues like feeding behavior, which modulate 
the phase and amplitude of rhythmic gene expression. Consequently, the liver clock 
temporally tunes the expression of many genes involved in metabolism and physiology. 
However, the circadian modulation of cellular functions also relies on multiple layers of 
posttranscriptional and posttranslational regulation. Strikingly, these additional regula-
tory events may happen independently of any transcriptional oscillations, showing that 
complex regulatory networks ultimately drive circadian output functions. These rhythmic 
events also integrate feeding-related cues and adapt various metabolic processes to 
food availability schedules. The importance of such temporal regulation of metabolism 
is illustrated by metabolic dysfunctions and diseases resulting from circadian clock dis-
ruption or inappropriate feeding patterns. Therefore, the study of circadian clocks and 
rhythmic feeding behavior should be of interest to further advance our understanding of 
the prevention and therapy of metabolic diseases.

Keywords: circadian rhythm, liver, metabolism, feeding behavior, genomics, proteomics

Most living organisms are subjected to daily environmental changes imposed by the 24-h rotation of 
the Earth around its own axis. To anticipate these environmental variations, organisms developed a 
self-sustained timekeeping system, called the circadian clock (from the Latin circa and diem mean-
ing “about a day”), which regulates behavior and physiology. The mammalian clock is organized 
in a hierarchical manner by a master pacemaker located in the suprachiasmatic nucleus (SCN) 
of the hypothalamus. This synchronizes subsidiary peripheral oscillators present in nearly every 
cell of the body (1). At the molecular level, circadian rhythms in gene expression are generated by 
interconnected transcriptional and translational feedback loops (TTFLs), in which multiple layers 
of control, including temporal transcriptional, posttranscriptional, and posttranslational regulation, 
play important roles (2, 3).
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The discovery of the prominent role of the SCN for circadian 
rhythmicity originates from extensive lesion studies reporting 
a region in the anterior hypothalamus necessary for rhythmic 
locomotor activities (4). Moreover, circadian rhythms were 
partially restored by transplantation of fetal SCN tissue in 
SCN-lesioned animals and also in genetically engineered 
clock-deficient animal models. In addition, SCN-lesioned hosts 
displayed altered locomotor activities following SCN transplan-
tation from arrhythmic mutant mice (5, 6). The SCN regulates 
the daily adaptation of the internal clock to environmental 
light–dark cycles. Mammals perceive light information through 
the retina, where photoreceptors [termed intrinsically photo-
sensitive retinal ganglion cells (ipRGCs)] express melanopsin, 
a photopigment that transmits the information directly to the 
SCN through the retinohypothalamic tract (7, 8). In addition, 
ipRGCs receive non-visual cues from rod and cone photorecep-
tors and transmit these to the SCN, showing their central role in 
photic input processing (9, 10).

As a master clock, the SCN provides robustness and plas-
ticity to the circadian system. Indeed, the SCN exhibits an 
adaptive response to photoperiod lengths, as shown by the 
opposite consequences of exposures to varying photoperiods 
upon SCN oscillations (11). This flexibility of daily resetting 
may reside in the intracellular coupling of greatly heterogene-
ous SCN neurons (12, 13). Indeed, the mammalian SCN is 
composed of ~20,000 neurons, which contain a circadian clock 
(14) but exhibit a broad range of phases and periods of neural 
firing when isolated in vivo or in cell culture experiments (15). 
Furthermore, SCN neuron explants and high density cultures 
of SCN neurons produced robust synchronized neuronal fir-
ing, even when the circadian clock had been genetically altered 
(12, 13). At the cellular level, photic cues entrain the circadian 
clock through several signaling pathways. Notably, light pulses 
triggered during the dark phase induce the expression of the 
circadian clock Period (Per) genes through the activation of the 
extracellular signal-regulated kinase (ERK) pathway (16, 17). 
Interestingly, this occurs exclusively when light is provided 
during the dark phase, suggesting that Per genes are involved 
in night–day transition.

THe MOLeCULAR CiRCADiAN CLOCK

As mentioned, the molecular clock has been conserved through-
out evolution and works through TTFL (18). The circadian clock 
is also targeted by multiple posttranslational modifications that 
increase the robustness of the oscillatory system by fine-tuning 
the localization and degradation of core oscillator proteins (2). 
Notably, proteasome-mediated degradation of core circadian 
proteins is necessary for the rhythmic expression of core clock 
genes (19).

In mammals, the Circadian Locomotor Output Cycles Kaput 
(CLOCK)  and Brain and Muscle ARNT Like protein 1 (BMAL1) 
proteins, two transcription factors belonging to the family of 
bHLH-PAS (basic helix-loop-helix; Per-Arnt-Sim domain) pro-
teins, enhance the positive limb of the TTFL. CLOCK and BMAL1 
heterodimerize and initiate transcription by binding to specific 
DNA elements like E-box-related motifs (5′-CACGT[G/T]) in 

the promoters of target genes, including the Per and Cryptochrome 
(Cry) paralogs. Subsequently, PER and CRY accumulate and 
dimerize in the cytoplasm and then translocate into the nucleus 
to inhibit the transcriptional activity of the CLOCK:BMAL1 het-
erodimer, resulting in the downregulation of their own expression 
(3). Another primordial loop operates to stabilize the molecular 
core oscillator by connecting it to metabolic effectors (20). This 
loop is composed of other targets of the CLOCK:BMAL1 heter-
odimer such as the nuclear receptors retinoic acid-related orphan 
receptor α (RORα) and reverse erythroblastosis virus α (REV-
ERBα or NR1D1), which respectively activate and repress Bmal1 
expression by binding response elements (RORE) present in the 
Bmal1 promoter (21, 22) (Figure 1). An additional feedback loop 
involving the bHLH proteins DEC1 (or BHLHE40) and DEC2 
(or BHLHE41) plays a role in rhythmic metabolism by regulating 
BMAL1 activity through competitive binding to its cognate sites 
(23, 24). In addition, the circadian clock controls the rhythmic 
expression of the PARbZip transcription factors DBP, HLF, and 
TEF and their repressive counterpart E4BP4 (or NFIL3). These 
factors are not directly involved in clock regulation but play an 
important role in the regulation of metabolism and physiology by 
the circadian clock (25).

SYNCHRONiZATiON OF PeRiPHeRAL 
CLOCKS BY THe SCN AND iTS 
DOwNSTReAM FeeDiNG RHYTHMS

Principally, SCN output signals are mediated by circadian 
variation of neuronal firing and transmitter release at SCN axons 
(13). Neuronal connection appeared as a major effector of the 
SCN control since surgical isolation of the SCN (which did not 
compromise SCN rhythms) resulted in the abolition of circadian 
rhythms in other brain regions (26). Peripheral organs also con-
tain endogenous sustain oscillators as shown by ex vivo cultures 
of liver, lung, and skeletal muscle tissues (27). These oscillations 
in peripheral organs progressively dampened and were desyn-
chronized after SCN lesion, suggesting that the SCN coordinates 
peripheral clocks to “tick” properly (28). However, local clocks 
are also necessary for circadian functions. Notably, the specific 
inactivation of the local oscillator in adipocytes, pancreatic 
islets, and the liver resulted in an alteration of lipid, insulin, and 
glucose homeostasis, respectively (29–31). Conversely, mice with 
a conditionally active liver clock lost daily variation of most liver 
transcripts following REV-ERBα overexpression and suppres-
sion of clock oscillation (32). However, several transcripts like 
Per2 still exhibited robust oscillations, suggesting that besides 
a functional hepatocyte clock, systemic cues can drive hepatic 
rhythms independently. Indeed, the SCN fashions peripheral 
clock rhythmicity through the modulation of systemic cues such 
as hormones, body temperature, and feeding behavior (33–36).

Interestingly, feeding behavior interacts with both tempera-
ture and humoral synchronization of peripheral clocks. In most 
mammals, feeding behavior exhibits a pronounced circadian 
rhythmicity characterized by major food consumption during 
the active phase. Nocturnal rodents consume 70%–80% of their 
total daily food intake during the active dark phase. Lesion of the 
SCN led rats to eat similar proportions of food during the light 
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phase and the dark phase, showing that a functional master clock 
is necessary for proper feeding behavior (37). Conversely, genetic 
alteration of the molecular clock impaired the rhythmic food 
consumption in various whole-body circadian mutant models  
(31, 38, 39). Daily feeding–fasting cycles were shown to be 
primordial Zeitgebers (for time givers) for peripheral oscilla-
tors by shifting mealtimes to the resting period. This inverted 
feeding regimen rapidly inverted peripheral clocks in wild-type 
(WT) mouse liver, kidney, heart, and pancreas but had little 
to no effect on the central oscillator (36, 40). The food induc-
tion of phase shifting occurs in both light–dark and constant 
darkness conditions, indicating that entrainment of peripheral 
clocks under restricted feeding conditions may occur indepen-
dently of the SCN. Indeed, the arrhythmic expression of Per1 

and Per2 genes in the liver of SCN-lesioned mice was restored 
when food was restricted to a 4-h time window during the light 
phase (41). In addition, food restriction can partially restore 
rhythmicity of hepatic gene expression in mouse models with a 
defective circadian clock (39). However, food-induced shifting 
of peripheral clocks occurs progressively, and 12-h inversions 
of liver oscillations need slightly more than 1 week to be effec-
tive (36). Recently, the investigation of in vivo Bmal1-luciferase 
expression showed similar results (42). In addition, the authors 
revealed that entrainment of the liver clock by inverted feed-
ing occurred rapidly in mice with ablated SCN. Therefore, the 
SCN may counteract peripheral clock uncoupling imposed by 
inverted food regimens, potentially through the rhythmic secre-
tion of glucocorticoids (43).
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Interestingly, the adrenal gland is connected by a polysynaptic 
pathway to the SCN, which controls the daily release of gluco-
corticoids (44). The SCN stimulates the daily release of corticos-
terone in a light-dependent manner, leading to a glucocorticoid 
surge during the light phase, which reaches maximum levels at 
the day–night transition, anticipating the active/feeding phase 
in nocturnal rodents (45). Glucocorticoids may be a way for the 
SCN to specify rhythms of peripheral clocks and to delay a phase 
shift under inverted feeding conditions. Indeed, adrenalecto-
mized animals harbored fast food-induced resetting of peripheral 
clocks, similarly to SCN-ablated mice (43). Glucocorticoids act 
on peripheral clocks through the interaction with glucocorticoid 
receptors, which bind glucocorticoid response elements in the 
promoters of target genes. These regulatory elements have been 
found in the promoter of core clock genes such as Bmal1, Cry1, 
Per1, and Per2 (46–48), showing the strong interconnection 
between the two systems (49). Conversely, glucocorticoids were 
shown to entrain peripheral clocks, as suggested by the ability of 
dexamethasone (a glucocorticoid analog) to trigger oscillations 
in rat fibroblasts (33).

In parallel, temperature modulation was proven to sustain 
and synchronize peripheral oscillators (34, 50, 51). Indeed, 
temperature fluctuations impact circadian periods in fibroblasts 
as shown in fibroblasts expressing Bmal1-luciferase reporters. 
Short periods were associated with higher temperatures, whereas 
an opposite effect was observed with lower temperatures (52). 
Interestingly, temperature compensation was dampened in Per1 
KO fibroblasts, which exhibited similar oscillations to control 
counterparts (52). In addition, the heat shock factor 1 is likely 
involved in temperature-mediated modulation of the liver clock 
(53). Conversely, in SCN-lesioned animals, food restriction 
induced both rhythmic locomotor activities and temperature 
rhythms (54, 55). Finally, temperature could also impact rhyth-
mic gene expression through the regulation of mRNA splicing 
efficiency, as recently demonstrated for cold-inducible RNA-
binding protein (56).

Restriction of feeding to a few hours during the resting phase 
enhances oscillation of metabolic factors including glucose, free 
fatty acids, and glucocorticoids (57). Similarly, this short supply 
of food during the day quickly alters daily behavioral rhythms 
such as locomotor activity to anticipate food availability (55, 58). 
This food-anticipatory activity (FAA) persists when mice are 
subsequently placed under food deprivation. Interestingly, most 
of the murine models with a defective circadian clock presented 
normal FAA (58–60). Entrainment to food can also occur in 
rodents with SCN lesions, indicating that the neuronal locations 
governing FAA are at least partially distinct from those who 
participate in light entrainment (54, 58).

Although the brain regions involved in FAA still need to be dis-
covered, several studies suggest that peripheral organs participate 
in FAA through humoral routes. Notably, Ghrelin-secreting cells of 
the stomach were shown to constitute potential food-entrainable 
oscillators. Ghrelin stimulates food intake during feeding restric-
tion, and Ghrelin receptor knockout animals show a reduction in 
FAA (61, 62). In addition, the gut-secreted oxyntomodulin is also 
involved in the synchronization of the circadian clock through 
feeding cues (63). In parallel, Per2 has recently been shown to 

mediate hepatic action upon FAA. Although Per2 mutation in 
the whole body is known to impair food anticipation in mice, 
the liver-specific Per2 mutation (L-Per2) is sufficient to disrupt 
this circadian behavior (64, 65). Under inverted feeding condi-
tions, PER2 modulates Cpt1a and Hmgcs2 expression, two rate-
limiting enzymes for β-hydroxybutyrate synthesis. Interestingly, 
β-hydroxybutyrate injection rescues FAA in L-Per2 mice, which 
provides a way for the liver to participate in adaptation of feeding 
behavior. Another example is given by the adipocyte clock, which 
is involved in daily leptin secretion (30). Leptin reduces appetite, 
and its signaling is blunted in circadian clock-mutant animals and 
under chronic jetlag (66). Adipocyte-specific deletion of Bmal1 
resulted in the impairment of leptin levels in plasma, as well as 
defective feeding behavior. The regulation of feeding behavior 
appears to integrate multiple layers of control involving not only 
the central clock but also clock-independent food-entrainable 
oscillators employing central and peripheral organs.

TRANSCRiPTiONAL CONTROL OF 
CiRCADiAN OUTPUT GeNeS

Recently, the transcriptional landscape of circadian core clock 
transcriptional regulators has been revealed by time-resolved 
Chip-seq experiments (67). The DNA-binding preference for 
circadian activators (BMAL1, CLOCK, and NPAS2) and repres-
sors (PER1, PER2, and CRY2) showed opposite phase specificity. 
DNA binding of circadian transcriptional regulators showed 
accompanying rhythms of histone modifications, indicating 
that rhythmic fluctuations of liver transcripts partially emerge 
as a result of transcriptional regulation (67, 68). Consequently, 
an important part of the liver transcriptome exhibits daily 
oscillations connected to genes encoding proteins involved in 
metabolic regulations (69–71). Conversely, several aspects of 
glucose and lipid metabolism are altered in circadian-deficient 
mice models (1).

As mentioned before, additional feedback loops connect the 
core loop to metabolic regulations. One connection is explained 
by the interaction of PER2 with nuclear receptors REV-ERBα, 
PPARα, and PPARγ involved in both glucose and lipid metabo-
lism regulation (72, 73). These interactions likely specify oscil-
lations of genes targeted by nuclear receptors. REV-ERBs have 
a dual role in stabilizing the core loop by binding RORE in their 
promoter and driving metabolic gene expression through their 
interaction with other transcription factors (74, 75). A secondary 
connection is the interaction of CRY proteins with glucocorticoid 
receptors, linking CRY to glucose metabolism (76). On the other 
hand, PPARα is activated by binding to fatty acids and regulates 
glucose and lipid metabolism. Importantly, PPARα activity is 
also indirectly controlled by the circadian effectors DBP, TEF, 
and HLF. Indeed, mice lacking these three PARbZip family 
members showed impaired hepatic fatty acid content, due to 
the loss of oscillations of rate-limiting enzymes involved in FA 
synthesis (77). Interestingly, PPARα activity could be rescued in 
PARbZip KO mice through the stimulation of de novo fatty acid 
synthesis induced by a fat-free diet. Another transcription factor, 
SREBP1, is controlled by the circadian clock and food inputs. 
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Indeed, SREBP1-mediated transcription is altered in Bmal1 and 
Rev-erbα KO mice (78, 79). Conversely, day time food-induced 
resetting of the clock in WT mice led to a 12-h phase shift of 
SREBP1 activation (80) and rescued its rhythmic activity in Cry1/
Cry2 KO mice (39).

Contradicting these numerous examples of circadian clock-
mediated transcriptional regulation, some studies suggested 
that a minor proportion of rhythmic transcripts were driven by 
transcriptional events (67, 81). In contrast, investigation of DNA-
binding dynamics of the DNA polymerase II revealed a higher 
importance of transcriptional regulation in guiding mRNA 
oscillations (82). Similarly, we observed that most of the cyclic 
mRNA accumulation originated from rhythmic transcriptional 
events (83). These discrepancies may originate from differences 
in the analysis (84) or nature of the data. Indeed, experimental 
conditions such as light–dark schedule or constant darkness, as 
well as ad libitum or night-restricted feeding, play an important 
role in the quantitative rhythmic transcriptome. This is suggested 
by the consolidation of mRNA rhythms in mice subjected to 
night or day feeding restrictions (39, 85). Still these studies univo-
cally demonstrate that posttranscriptional regulations are at least 
partially involved in circadian rhythmicity.

Indeed, transcriptional regulations are not necessarily 
reflected at the proteomic level. Early proteomic-based inves-
tigations showed that rhythmic variation of protein abundance 
is not fully explained by variation in mRNA levels (86). More 
recent studies with higher coverage of mouse liver and SCN also 
concluded that about half of the rhythmic proteins are encoded 
by non-rhythmic mRNA (87–89). Considering rhythmic protein 
contents in specific liver organelles such as nuclei and mitochon-
dria, correlation between protein and mRNA levels is even worse, 
which suggests that rhythmicity likely results from cell trafficking 
(90, 91). Although protein secretion has been suggested as a pos-
sible explanation for rhythmic liver protein contents (89), other 
processes like mRNA translation could be also involved.

THe iMPACT OF CiRCADiAN AND 
FeeDiNG RHYTHMS ON mRNA 
TRANSLATiON

The first evidence of a major role of mRNA translation in the 
generation of circadian rhythms came from the study of the 
rhythmic photosynthesis of the giant green algae Acetabularia. 
Acetabularia has a single nucleus located in the rhizoid, which 
allows the regeneration of the cell if its cap is completely removed. 
However, not only can the cell survive for several weeks without 
its nucleus, but the rhythmic photosynthesis of the plant contin-
ues under this condition (92). In addition, studies examining the 
reintroduction of an out-of-phase nucleus into the plant showed 
that the clock in the cytoplasm determines the phase of the rhyth-
mic photosynthesis. The cytoplasmic clock entrains the nuclear 
clock, which suggests that the latter has a minimal effect on this 
rhythm (93, 94). Further experiments show that the rhythmic 
synthesis of a subset of proteins is dependent on the translation 
machinery, demonstrating for the first time the circadian transla-
tion of mRNA (95).

Secondary evidence came from the study of the luminescent 
unicellular dinoflagellate Gonyaulax, which presents circadian 
photosynthesis, motility, cell division, and luminescence (96). 
The nocturnal luminescence of Gonyaulax is produced by a 
complex of three proteins, whose synthesis is controlled by the 
circadian clock at a posttranscriptional level (97, 98). Further 
experiments show that this translational regulation is controlled 
by the UG-repeat sequence binding protein CCTR, which 
rhythmically binds the 3′-untranslated region (UTR) in the 
RNA of this luminescent protein and represses its expression 
during the day (99). In addition to these historical discoveries 
in unicellular organisms, recent evidence suggests that circadian 
clock-regulated translation also occurs in mammals.

The first observation suggesting a rhythmic translation in 
mammals is the description of a rhythmic polysome profile in 
rat liver, with around 25% more polysomes present during the 
dark phase than during the light phase (100). This observation 
was later confirmed by electron microscopy experiments, which 
showed that the polysomal volume density is four times higher 
at dusk than at dawn (101). In agreement with these observa-
tions, we have recently demonstrated that the circadian clock 
can coordinate the temporal translation of a subset of mRNAs 
involved in ribosome biogenesis by controlling the transcription 
of translation initiation factors, as well as the rhythmic activation 
of signaling pathways involved in their regulation (102). Later 
experiments using ribosome profiling allowed us to show that 
two main classes of mRNA are indeed subjected to rhythmic 
translation: the 5′-terminal oligopyrimidine tract (5′-TOP) 
mRNAs, translated in a TORC1-dependent manner and involved 
in ribosome biogenesis (103), and the translation initiator of 
short 5′ UTR (TISU) motif harboring mRNA coding mostly for 
mitochondrial proteins (104). Although both circadian clock 
and feeding rhythms appeared to be involved in the translational 
regulation of the latter class, only feeding rhythms seem to regu-
late the translation of 5′-TOP mRNA (83).

However, additional regulations of rRNA synthesis and matu-
ration, as well as ribosome assembly, are subjected to rhythmic 
regulation potentially involving the circadian clock (91, 102). 
Because both size and organization of the nucleolus are directly 
related to ribosome production (105), it is notable that the size 
of the nucleolus in sympathetic neurons follows a diurnal pat-
tern with a maximum in the middle of the dark period (106), in 
synchrony with the observed accumulation of ribosomal proteins 
in the liver.

Another level of circadian translational regulation has been 
described. While it has already been shown that the size of the 
poly(A) tail of some mRNA is subject to circadian variation (107), 
Kojima et al. showed that around 2% of the mRNAs expressed 
in mouse liver exhibit a rhythmic size of their poly(A) tail, even 
though their steady-state mRNA levels are not rhythmic (108). 
The size of the poly(A) tail is under the control of rhythmic 
cytoplasmic polyadenylation, regulated in part through the 
rhythmic expression of cytoplasmic polyadenylation element-
binding proteins. Interestingly, they show that the rhythm of the 
length of the poly(A) tail of these mRNAs correlates with the 
rhythmic expression of the corresponding encoded proteins, with 
a several-hour delay between the time of longest poly(A) tail and 
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the highest protein levels. Importantly, this study demonstrates 
that the rhythmic polyadenylation status of mRNAs can result 
in rhythmic protein expression independent of the steady-state 
levels of the mRNA. This rhythmic poly(A) length could likely 
be under the regulation of the clock-controlled NOCTURNIN 
(NOC) deadenylase (109). Remarkably, a search for NOC-
regulated polyadenylated genes revealed that ribosome biogenesis 
and mitochondrial oxidative phosphorylation are the primary 
functions regulated by NOC, showing a convergent regulation 
of these pathways by the circadian clock (110). Therefore, it is 
not surprising that impaired mitochondrial activity is observed 
in several circadian clock-mutant mice (111–113).

CHARACTeRiZATiON OF THe CiRCADiAN 
PROTeOMeS AND POSTTRANSLATiONAL 
ReGULATiONS

During the previous decade and until recently, the literature 
in large-scale circadian expression studies relied on genomic 
approach technologies, and proteomics played a limited role due 
to technological limitations. Pioneer circadian proteomic studies 
relied on 2-dimensional gel electrophoresis (2D-GE) followed by 
mass spectrometry (MS). This approach allowed separation of 
complex protein mixtures and visualization of expression pattern 
changes in diverse conditions such as different times of the day. 
This technique was successfully applied to the study of circadian 
protein expression of organs such as the SCN (114), the rat pineal 
gland (115), and the mouse retina (116).

The first breakthrough came from the laboratory of M. 
Hastings where the liver circadian proteome was investigated. 
Their 2D-GE analyses detected 642 protein spots, of which 60 
showed significant rhythmicity. MS identified 39 rhythmic 
proteins originating from 29 unique genes (86). Using the same 
experimental design, an exploration of the mouse SCN proteome 
was conducted in the same laboratory and 34 proteins exhibit-
ing significant rhythmic patterns were identified. This rhythmic 
proteome was highly enriched with proteins implicated in vesicle 
trafficking and synaptic vesicle recycling. Moreover, both stud-
ies showed a small fraction of corresponding rhythmic mRNA, 
highlighting the importance of posttranscriptional regulation 
(86, 117). This work was published just after the study by Hatcher 
et  al. (118) and before the study by Lee et  al. (119), both of 
which characterized the circadian SCN peptides released by MS. 
Subsequently, an automated and integrated proteomics platform 
was designed to study the effect of light stimulation on the murine 
SCN proteome, and, from the 2,131 proteins identified, 387 were 
shown to be light regulated (120).

Recently, new quantitative proteomic techniques have 
been developed, from label-free (LF) proteomics to stable-
isotope labeling by amino acids in cell culture (SILAC) (121). 
Accordingly, these tools were used to decipher the rhythmic 
circadian proteome in both SCN and liver. LF proteomics was 
used to quantify circadian-related peptides from the SCN (122), 
and more recently, SILAC was applied to quantify the rhythmic 
SCN proteome (87). We have used in vivo SILAC in mice (123) 
to characterize the diurnal oscillations of the liver proteome.  

We identified 5,827 proteins in total protein liver extract, of 
which 6% were rhythmic and accumulated mostly in the morn-
ing and during the night. Half of the rhythmic proteome did not 
display corresponding rhythmic mRNAs, and the rhythmicity 
of this group, in which secreted proteins were overrepresented, 
appeared to be clock independent. This indicates that feeding 
behavior might determine the rhythm of circulating proteins in 
the blood (89). This discovery was in accordance with previous 
data from the study by Martino et  al. showing no association 
between the plasma proteome and the mouse liver transcriptome 
(124). A parallel study also using an in vivo SILAC approach but 
in constant darkness drew similar conclusions (88). This absence 
of rhythmicity at the mRNA level for nevertheless cyclic proteins 
suggests that the regulation of the rhythmic proteome results 
from posttranscriptional and even posttranslational modification 
events, since the circadian clock-regulated translation impacts 
only a limited subset of genes (83, 125, 126).

A caveat when working with total proteomes is their high 
level of complexity, which can result in difficulties detecting 
important proteins expressed at a low level such as the core clock 
proteins, transcription factors, or organelle-specific proteins. To 
bypass proteome complexity and enhance its resolution, initial 
organelle biochemical fractionations can be performed before 
applying quantitative proteomics. This strategy was applied to 
quantify the mitochondrial proteome using LF quantitative pro-
teomics. Thirty-eight percent of the mitochondrial proteins were 
cycling, the majority peaking during the early light phase, with 
low corresponding rhythmic mRNA. These data highlighted the 
role of posttranscriptional regulation orchestrated by the clock 
and feeding rhythms in the regulation of mitochondrial func-
tion such as fatty acid oxidation. The rhythmic mitochondrial 
proteome was also correlated with the expression of the TIM/
TOM complex, suggesting that protein entry in the mitochondria 
was temporally framed (90). Alternatively, mitochondrial fission 
fusion and autophagy, orchestrated by the circadian clock, might 
also influence the dynamics of the mitochondrial proteome (112).

By using in vivo SILAC, we recently produced unprecedented 
nuclear quantitative proteomic data. Indeed, among the 4,035 
nuclear proteins quantified, more than 500 were highly rhythmic, 
including all the core clock components along with the clock-
controlled transcription factors. These findings are in accordance 
with the absolute quantification of circadian clock proteins 
published in parallel (91, 127). The rhythmic nuclear proteins 
were mainly controlled at the posttranscriptional level and 
were members of complexes displaying robust diurnal nuclear 
accumulation. These complexes were involved in ribosome 
biogenesis and assembly (102), as well as DNA repair (128) and 
transcriptional regulation. In fact, we quantified the rhythmic 
temporal accumulation of around 100 transcription factors and 
transcriptional coregulators and provided new insights into the 
diurnal regulatory landscape in liver nuclei (91).

Reddy et al. already predicted that posttranslational modifica-
tions play a role in the regulation of the rhythmic proteome. They 
identified two different phosphorylated forms of peroxiredoxin 
6 displaying antiphasic levels of phosphorylation and the other 
one being in phase with the transcript (86). This observation led 
to the discovery that peroxiredoxins undergo circadian redox 
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cycles in association with oscillations in NADH and NADPH, 
independent of transcription (129, 130). This posttranslational 
clock is also conserved in all domains of life, probably as a 
sensor of rhythmic metabolism (131). NADPH, in eukaryotic 
cells, is provided by the pentose phosphate pathway, which 
was recently shown to regulate circadian redox oscillations and 
influence transcriptional oscillations (132). In response to daily 
changes in nutrient availability and physiological states, numer-
ous posttranslational modifications of the circadian clock have 
been identified, and modifications such as phosphorylation, 
ubiquitination, acetylation, O-GlcNacylation, and SUMOylation 
were shown to have a direct role in fine-tuning the timing of the 
molecular circadian clock and related metabolic pathways [for 
reviews, see Ref. (2, 133)].

Phosphorylation has already been described as the base of the 
circadian clock system in cyanobacteria (134) and is by far the 
mostly studied posttranslational modification. Moreover, among 
signaling pathways rhythmically activated by phosphorylation 
in mouse liver, AMPK and ERK pathways are activated during 
the day, corresponding to the fasting period (102, 135), whereas 
AKT and TORC1 pathways are activated during the night, corre-
sponding to the feeding period (102). These results were recently 
corroborated by total phosphoproteomics analysis, emphasizing 
the impact of the rhythmic activation of these pathways on the 
general regulation of metabolism and physiology (90). In parallel, 
nuclear phosphoproteomic analysis also underlined the align-
ment of the cell cycle and the circadian clock and its potential 
role in the regulation of hepatocyte ploidy (91). Both studies also 
identified rhythmic phosphorylation sites within the core clock 
proteins, such as the serine 446 and serine 440/441 of CLOCK 
implicated in regulating its transcriptional activity (136). We 
found that the serine 42 of BMAL1 is rhythmically phosphoryl-
ated in the nucleus (91). This phosphorylation event, under the 
control of the insulin-AKT-mTOR pathway, reduces the nuclear 
accumulation of BMAL1 and stabilizes the protein in the cytosol 
(136, 137). By finely tuning the clock, this mechanism could be 
one potential contributor to the beneficial effects of restricted 
feeding. Although the relative impact of feeding entrainable 
oscillators and circadian rhythms on these rhythmic pathway 
activations is still poorly described and understood, evidence 
suggested strong interactions between the circadian clock and 
metabolism might be key for rhythmic activation of the TORC1 
pathway (138, 139).

Beyond phosphorylation, acetylation oscillations have also 
been shown to play an important role in the rhythmic regulation 
of liver physiology. In the nucleus, the SIRT1 deacetylase plays 
a critical role in the organization of the circadian clock in both 
SCN and peripheral tissues (140–142). In parallel, both SIRT6 
and HDAC3 are more involved in the transcriptional regulation 
of rhythmic metabolism, in particular lipid metabolism (143, 
144). SIRT7, another nuclear located deacetylase, was also linked 
in  vivo to lipid metabolism, since its expression alleviates ER 
stress and prevents fatty liver development (145). Moreover, in 
mouse liver, it specifically locates the promoter of ribosomal pro-
teins for transcriptional silencing and its activity is potentiated by 
ribosomal RNAs (145, 146). We showed that SIRT7 accumulation 
is rhythmic in the nucleus, in phase with rRNAs and in opposite 

phase with translation (91, 102). Hence, in mammals, SIRT7 may 
be certainly an important contributor to the rhythmic regulation 
of ribosomal biogenesis and result in rhythmic protein transla-
tion. In the cytoplasm, SIRT2 regulates the pentose phosphate 
pathway by deacetylating glucose-6-phosphate dehydrogenase, 
which might be important for the regulation of circadian redox 
oscillations (132, 147). In accordance with our nuclear proteomic 
data, SIRT2 transiently peaks in the nucleus during mitosis where 
it has several functions such as the regulation of nuclear envelope 
reassembly (91, 148).

To date, one large-scale proteomic study looked at the circa-
dian acetylome, finding 306 acetylation sites within 179 proteins 
(highly enriched in mitochondrial proteins), of which a few sites 
showed disrupted rhythm in CLOCK-mutant animals (149). The 
circadian activity of Sirtuins is mainly the consequence of the cir-
cadian clock-dependent synthesis of its cofactor NAD+ through 
the NAD+ salvage pathway (150, 151). Therefore, this rhythmic 
NAD+ synthesis controls SIRT3 activity in the mitochondria and 
is involved in the rhythmic mitochondrial activity controlled 
by the circadian clock (111). Our recent characterization of the 
rhythmic acetylome identified around 100 rhythmic acetylation 
sites in mouse liver, mostly originating from mitochondrial pro-
teins. These rhythmic mitochondrial acetylations are correlated 
with a SIRT3-dependant deacetylation process (unpublished 
observation).

THe iNTeRACTiON BeTweeN HOST 
CiRCADiAN RHYTHMS AND GUT 
MiCROBiOTA

In addition to the regulation of transcription, translation and 
posttranslational modifications by the circadian clock, recent 
studies also point out the impact of circadian and feeding rhythms 
on host gut microbiota adding a new layer of complexity to this 
interplay. The gut microbiome is a complex assembly of more 
than a thousand microorganisms, mostly commensal bacteria. 
Gut microbiota play an important role in gut physiology and 
host metabolism (152). A decrease in microbiota diversity has 
been associated with metabolic diseases that include obesity and 
type 2 diabetes (153). Recent studies show that both the composi-
tion and the activity of the gut microbiome (154–157), as well 
as its adherence to the intestinal epithelium (158), are highly 
dynamic and exhibit a diurnal pattern. This rhythm appears to be 
dependent on a functional circadian clock in the host (154, 156). 
Indeed, the cyclic changes in composition and diversity of gut 
microbiota are absent in mouse models in which clock function 
is genetically compromised. However, these absent rhythms can 
be restored by a time-restricted feeding regimen, strongly sug-
gesting that the main driver of daily fluctuation of gut microbiota 
composition is feeding rhythm (154, 155, 158, 159). Conversely, 
gut microbiota has been reported to feedback on host clock gene 
expression. Germ-free or antibiotic-treated mice that are devoid 
of gut microbiota were shown to have perturbation of the liver 
and the intestinal circadian clock. However, the reported effects 
on peripheral clock gene expression are highly variable, ranging 
from disruption of clock gene expression in the ileum and colon 
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(160), to rather mild changes in phases and amplitude (157, 161) 
and virtually no alteration in mouse liver (158). Future studies will 
evaluate the impact of gut microbiota on host circadian rhythms 
in more detail to improve our understanding of the mechanism 
underlying this interaction. Moreover, gut microbiota has also 
been described as an important modulator of brain function and 
behavior, including feeding behavior and appetite control (162). 
It will be interesting to understand how this layer of bacteria–host 
communication feeds into interaction between the host’s circa-
dian clock and gut microbiota.

CONCLUSiON: iMPACT OF FeeDiNG 
RHYTHMS ON MeTABOLiC HeALTH

In this review, we summarized the impact of circadian and feed-
ing rhythms not only on rhythmic transcriptional regulations 
but also on rhythmic posttranscriptional events orchestrated by 
these tightly interconnected rhythms (Figure  2). Interestingly, 
imposed feeding rhythms have the capacity to synchronize or 

increase oscillations in models characterized by decreased 
amplitude of metabolic and feeding rhythms. For example, 
imposed day feeding is able to restore liver rhythmic gene 
expression in clock-deficient mice (39). In addition, deleterious 
metabolic effect of high-fat diet has been successfully counteract 
by imposed restricted feeding during the night, the active phase 
of the animals (85, 163–166). Indeed, limiting access to a high-
fat diet during the night increased the amplitude of metabolic 
rhythms and reduced the health consequences of a high-fat 
diet without changing the global quantity of ingested calories. 
This regimen also limits the deleterious impact of high-fat 
diet-induced obesity on gut microbiota (155, 159). Moreover, 
the same kind of observation is also true for humans (167) as 
imposed feeding patterns improved weight loss under calorie 
restriction (168). Therefore, these studies constitute the basis of 
chrononutrition, an approach that aims to improve metabolic 
health through the synchronization of the circadian clock with 
downstream feeding and sleeping cycles strongly impacted by 
living environment (169).

FiGURe 2 | The multisteps regulated by circadian and feeding rhythms involved in genes product expression: from mRNA transcription to 
posttranslational modifications and cell trafficking.
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