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MECHAniCAL STRAin: THE pRiMARY DETERMinAnT OF BOnE 
MODELinG

Remodeling-based bone resorption and formation are coupled on the same surface and contribute 
to calcium homeostasis, while modeling-based bone formation and resorption occur on different 
surfaces, such as during growth, to change skeletal shape; of importance, the aging skeleton can also 
include bone modeling (1, 2). The primary determinant of bone modeling is elastic deformation 
(strain) of the skeleton engendered by habitual physical activity, and accumulating evidence sug-
gests that bones respond to mechanical loading to maintain their resultant strain (3–5). Not only 
osteocytes inside bone tissue but also bone-forming osteoblasts and bone-resorpting osteoclasts on 
the surface are responsive to mechanical signals (6, 7), and the modeling-based actions of osteoblasts 
and osteoclasts are not coupled.

Skeletal fragility depends on bone quality and quantity (8). The latter would be normally under 
the mechanical strain-related feedback control (3–5); Wolff ’s law, established more than a century 
ago, confirms that mechanical environment plays a key role in controlling skeletal architecture 
(9), and the pattern of trabecular bone in the hip (Singh index) can be used for the evaluation of 
osteoporosis (10). In addition, this natural homeostatic system could work against mineral-related, 
but not collagen-related, impairment of bone material quality (11, 12).

Fragility fracture associated with osteoporosis is a common health problem during growth (13, 
14) and aging (15, 16). Here, we provide a novel evidence-based insight into osteoporosis therapy 
from the viewpoint of bone modeling/remodeling, apart from approaches targeting bone formation/
resorption and quality/quantity.

iMpROVinG SKELETAL FRAGiLiTY BY BOnE MODELinG

Normal bone growth is important not only for children but also for adults to prevent age-related fra-
gility fracture (17, 18). Appropriate weight-bearing physical activities and calcium/vitamin D intakes 
support good bone acquisition during growth, but the treatment of severe pediatric osteoporosis has 
been highly limited. For instance, spontaneous fracture in children with physical disability, such as 
cerebral palsy, is a long-standing problem that affects their quality of life (19); the latest clinical prac-
tice guideline does not recommend regular use of bisphosphonates because their long-term effects 
on the growing skeleton are unclear (20). Although reduced mechanical loading is the major cause 
of skeletal fragility in individuals with physical disability, static weight-bearing physical activities 
as well as calcium/vitamin D supplementation are unlikely to prevent their fragility fractures (20). 
Fundamental rules of mechanical strain-related stimulus include strain rate as a key determinant of 
the stimulus and bones respond to dynamic, but not static, mechanical loading (21).

In the management of osteoporosis in children, it is important to note that their skeleton is differ-
ent from the adult skeleton. Bone growth requires bone modeling that is predominantly influenced 
by mechanical environment and, therefore, cortical bone in lower limbs is very thin in children 
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TABLE 1 | Expected effects of anabolic osteoporosis agents on bone 
modeling.

Anabolic osteoporosis agents Bone modeling Clinical status

parathyroid hormone
Teriparatide

 Daily (20 μg/day)a + Approval

 Weekly (56.5 μg/week)a + Approvalb

parathyroid hormone-related protein

Abaloparatide (daily, 80 μg/day)a ++ Phase 3

Anti-sclerostin antibody

Romosozumab (monthly, 210 mg/month)a +++ Phase 3

aSubcutaneous injection.
bJapan and South Korea.

2

Sugiyama and Oda Toward a Cure for Osteoporosis

Frontiers in Endocrinology | www.frontiersin.org March 2017 | Volume 8 | Article 46

who cannot stand and walk. Consequently, an ideal method 
toward a cure for skeletal fragility during growth is pharmaco-
logically stimulating mechanical strain-related bone modeling. 
Furthermore, bone modeling would also be useful for adults. 
One unmet need in elderly patients at high risk for fracture is to 
improve their skeletal fragility more rapidly; in this regard, bone 
modeling is superior to bone remodeling as with building rein-
forcement rather than rebuilding generally performed against 
earthquakes in Japan.

OSTEOpOROSiS AGEnTS AnD BOnE 
MODELinG

Most osteoporosis drugs are generally linked to bone remodeling 
rather than bone modeling, but it appears that some of them could 
be associated with bone modeling directly or indirectly (22). As 
discussed recently, daily or weekly treatment with teriparatide 
would stimulate modeling-based bone formation (11, 23). Bone 
modeling also seems to be stimulated by daily treatment with 
abaloparatide, an investigational agent (Table  1). Interestingly, 
daily subcutaneous injections of teriparatide (20 μg/day) and aba-
loparatide (80 μg/day) resulted in different effects on circulating 
markers of bone formation and resorption; teriparatide caused 
a rapid and sustained increase in bone formation followed by a 
delayed increase in bone resorption, while abaloparatide induced 
a relatively transient increase in bone formation with a less 
prominent increase in bone resorption (24). Of note, the effects 
of abaloparatide are partially similar to those of weekly subcu-
taneous injection of teriparatide (56.5  μg/week) used in Japan 
(11); the rapid but relatively transient increase in bone formation 
without the similar increase in bone resorption implies that daily 
treatment with abaloparatide stimulates more modeling-based 
bone formation compared to daily treatment with teriparatide. 
This is compatible with binding of abaloparatide to a G protein-
dependent conformation of parathyroid hormone type 1 receptor 
with higher affinity but more transiently than teriparatide (25) 
and abaloparatide-induced increases in trabecular thickness and 
total area of cortical bone (26) and can reasonably explain greater 
increases in areal bone mineral density (BMD) at the femoral 
neck and total hip after daily treatment with abaloparatide versus 

teriparatide for 6  months (24). Accordingly, it is possible to 
speculate that, when teriparatide (20 μg/day) and abaloparatide 
(80 μg/day) are injected daily, the improvement of bone fragility 
could be faster by abaloparatide but better for longer duration 
by teriparatide (23), and abaloparatide rather than teriparatide 
might be more suitable for use in combination with denosumab 
(27). Nevertheless, both agents would not be used for children 
due to carcinogenicity in animals, though clinical experience 
with teriparatide has not presented such possibility in adults (28); 
to our knowledge, the use of teriparatide has been reported in a 
limited number of children with hypoparathyroidism (29), but 
not with osteoporosis.

In addition to teriparatide and abaloparatide, an increase in 
areal BMD over a prolonged period of time by treatment with 
osteoporosis drugs might partly result from bone modeling; 
examples could include denosumab (30, 31), strontium ranelate 
(32, 33), and investigational odanacatib (34–36). Although histo-
morphometric analysis of transiliac bone biopsies has not shown 
anabolic action of these agents, iliac bone is not a weight-bearing 
region as pointed out previously (33); their skeletal effects are 
site-specific and, therefore, iliac bone is unlikely to fully reflect 
each skeletal site (37).

STiMULATinG MECHAniCAL STRAin-
RELATED BOnE MODELinG

One promising therapeutic target for pharmacologically stimulat-
ing mechanical strain-related bone modeling is sclerostin (38–40), 
which is primarily secreted by osteocytes in the skeleton and 
inhibits the Wnt signaling pathway. On the basis of several lines 
of evidence, we have suggested that investigational anti-sclerostin 
antibodies, such as romosozumab (41, 42), possess the effect of 
mechanical strain-related stimulus that results in bone modeling 
(34, 43) (Table 1). This theory is supported by experimental find-
ings that osteocyte sclerostin production is increased by skeletal 
disuse and decreased by skeletal loading (44, 45) and clinical 
data that circulating levels of sclerostin are higher after decreased 
physical activity (46, 47) and lower after increased physical 
activity (48, 49). High bone mass in patients with sclerostin 
deficiency is present throughout the skeleton, including non-
weight-bearing regions, such as the face and skull (40), indicating 
that anti-sclerostin antibodies are not agents that decrease the 
mechanical strain threshold for bone modeling; treatment with 
an anti-sclerostin antibody is highly efficacious even under condi-
tions with impaired physical activity (50–54), whereas enhancing 
skeletal response to physical activity cannot effectively improve 
bone fragility caused by reduced skeletal loading. Accordingly, 
treatment with an anti-sclerostin antibody is likely to strengthen 
the skeleton, without any specific direction in contrast to exercise, 
to prevent fall-related fractures such as in the hip (55).

Consequently, although most physically disabled individuals 
or elderly persons with severe osteoporosis would not perform 
dynamic exercise that results in bone modeling, anti-sclerostin 
antibodies are theoretically expected to contribute to a rapid 
improvement of their skeletal fragility by stimulating bone mod-
eling. Sclerostin deficiency in humans leads to bone overgrowth 
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progressively (40), and pharmacologic inhibition of sclerostin 
results in dose-related increases in areal BMD (41, 56) while 
monthly subcutaneous injection of romosozumab at a dose of 
210 mg increased areal BMD at the lumbar spine and hip but not 
the radius in postmenopausal women (41), suggesting that the 
selected dose and interval are not enough for non-weight-bearing 
regions with higher levels of sclerostin expression and thus do not 
cause undesired bone overgrowth at the face or skull in adults. 
If the same treatment regimen is applied to different geographic 
regions, however, careful clinical practice might be needed in 
patients with very low body weight, such as in Asia. A higher 
dose and/or a shorter interval would be necessary for improving 
skeletal fragility in patients with physical disability, and clinical 
trials especially in children require careful investigation on their 
optimal doses and intervals; recent assessment did not find carci-
nogenicity risk of romosozumab (57).

COnCLUSiOn

The therapeutic target of osteoporosis during childhood should 
be bone modeling, rather than bone remodeling, that is essential 
for skeletal growth. Bone modeling can also contribute to rapidly 
improving skeletal fragility in older adults toward goal-directed 
treatment for osteoporosis (58), though bone modeling in younger 
adults might have concerns from bone remodeling point of view. 
Anti-sclerostin antibodies, such as romosozumab, are promising 
drug candidates for stimulating mechanical strain-related bone 
modeling during growth and aging.
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