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Chemokines are small molecules that play a crucial role as chemoattractants for several 
cell types, and their components are associated with host immune responses and repair 
mechanisms. Chemokines selectively recruit monocytes, neutrophils, and lymphocytes 
and induce chemotaxis through the activation of G protein-coupled receptors. Two 
well-described chemokine families (CXC and CC) are known to regulate the localization 
and trafficking of immune cells in cases of injury, infection, and tumors. Monocyte 
chemoattractant protein 1 (MCP-1/CCL2) is one of the important chemokines from 
the CC family that controls migration and infiltration of monocytes/macrophages 
during inflammation. CCL2 is profoundly expressed in osteoporotic bone and prostate 
cancer-induced bone resorption. CCL2 also regulates physiological bone remodeling 
in response to hormonal and mechanical stimuli. Parathyroid hormone (PTH) has 
multifaceted effects on bone, depending on the mode of administration. Intermittent 
PTH increases bone in  vivo by increasing the number and activity of osteoblasts, 
whereas a continuous infusion of PTH decreases bone mass by stimulating a net 
increase in bone resorption. CCL2 is essential for both anabolic and catabolic effects of 
PTH. In this review, we will discuss the pharmacological role of PTH and involvement of 
CCL2 in the processes of PTH-mediated bone remodeling.

Keywords: chemokines, monocyte chemoattractant protein 1, osteoblast, osteoclast, parathyroid hormone and 
bone remodeling

iNTRODUCTiON

Bone remodeling is a complex process under the control of several local and systemic factors such 
as parathyroid hormone (PTH), vitamin D, estrogens, androgens, and inflammatory mediators. 
The recruitment and activation of leukocytes into the site of inflammation are necessary for 
inflammatory responses to infection and tissue damage. Despite the fact that leukocytes act against 
infection, these cells also have properties to act as growth regulators of osteoblast and osteoclast 
activity, suggesting their active involvement in bone metabolism. In particular, monocytes have 
been recognized as essential regulators of bone activity. Monocytes produce bone resorptive factors 
[interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-α)], which are crucial modulators of 
bone remodeling. Thus, leukocyte recruitment is likely to represent a notable event in both inflam-
mation and bone metabolism.

Chemokines are small (8–15 kDa), inducible proinflammatory cytokines, characterized by the 
homing activity of leukocytes to targeted inflammation sites (1). Recent research indicates that 
chemokines participate and play divergent roles in various phases of pathogenesis and immune 
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reactions. Chemokines have a role in the process of physi-
ological and pathological osteoclast formation and activation. 
Chemokines provoke inflammation and osteoclastogenesis in 
pathological conditions such as arthritis- and tumor-mediated 
bone loss.

Several studies suggest that certain members of the CC 
chemokine family, including monocyte chemoattractant protein 
1 (MCP-1/CCL2), macrophage inflammatory protein 1α (MIP-
1α/CCL3), regulated on activation normal T-cell expressed and 
secreted (RANTES/CCL5), and monocyte chemoattractant 
protein 3 (MCP-3/CCL7), might exert their effects on committed 
osteoclasts.

Parathyroid hormone is a hormone synthesized and secreted 
by the parathyroid glands, which regulates bone mass in a con-
ventional endocrine fashion. PTH differentially affects a number 
of cytokines and chemokines, such as RANKL, IL-6, CXCL1, and 
CCL2 (2). The expression and involvement of both CCL2 and 
its receptor CCR2 have been established in several pathological 
conditions, including rheumatoid arthritis (3), atherosclerosis 
(4), multiple sclerosis (5), cancer-induced bone loss (6), and bac-
terially induced bone loss (7). This review provides an overview 
of chemokines and their role in the process of physiological and 
pathological bone remodeling, focusing in particular on the role 
of CCL2 and its involvement in PTH’s actions on bone cells.

CC CHeMOKiNeS AND THeiR 
ReCePTORS

The primary functions of chemokines are to recruit monocytes, 
neutrophils, and lymphocytes, inducing chemotaxis by activating 
G-protein-coupled receptors. The chemokine family is mainly 
composed of four groups (CC, CXC, C, and CX3C) based on the 
relative position of cysteine residues. The C chemokine family has 
one cysteine, whereas the CC chemokine family has two adjacent 
cysteines near the amino terminus of the protein. The CXC and 
CX3C chemokine families have either one or three amino acids 
separating the two cysteines.

In particular, CC and CXC chemokines have a defined role 
in bone remodeling (8–13). The monocyte chemoattractant sub-
family is a member of the CC chemokine family, which includes 
CCL2 (MCP-1), CCL8 (MCP-2), CCL7 (MCP-3), CCL13 
(MCP-4), CCL12 (MCP-5), CCL5 (RANTES), CCL3 (MIP-1α), 
CCL20 (MIP-3α), and CCL4 (MIP-1β) (14–17). Among these 
chemokines, CCL2 is one of the most highly studied. Various cell 
types produce CCL2, including vascular endothelial, fibroblasts, 
epithelial, smooth muscle cells, astrocytic, monocytic, and 
microglial cells (18–21). However, principal sources of CCL2 are 
mononuclear leukocytes (22–24).

CCL2, originally known as JE, is a low-molecular-weight 
polypeptide whose primary function is to promote monocyte 
and macrophage migration to sites of inflammation (25). For 
example, CCL2 is associated with monocyte infiltration in 
inflammatory diseases such as rheumatoid arthritis and different 
tumors associated with inflammatory responses (3, 6, 7). The 
high-affinity CCL2 receptor, CCR2, is a member of the group of 
G protein-coupled receptors that contain seven transmembrane 
spanning domains (26). The genomic sequence of CCR2 is highly 

homologous and conserved through different species (27). Two 
alternatively spliced forms of the receptor have been identified, 
CCR2A and CCR2B, varying only in the C-terminal domain of the 
protein (28, 29). Although CCR2B is the predominant form, both 
forms of the receptor bind with high affinity to CCL2, but induce 
different biological responses (29). The CCR2 expression has 
been reported in numerous tissues, including bone, blood, brain, 
heart, kidney, liver, lung, ovary, pancreas, spinal cord, spleen, and 
thymus. It has been found that most chemokine receptors have 
the ability to bind several chemokines. Several reports revealed 
that the chemokine receptor, CCR2, could bind to five different 
CCL members such as CCL2, CCL7, CCL8, CCL12, and CCL13 
(30–32). However, CCL2 is the most potent inducer of the signal 
transduction pathways leading to monocyte transmigration (33). 
In addition, CCL2 also binds to the CCR4 receptor, which also 
has CCL5 and CCL20 as ligands (34).

CCL2/MCP-1 CHeMOKiNe AND BONe 
ReMODeLiNG

Bone remodeling is imperative for physiological bone homeosta-
sis. It comprises two phases: bone resorption by osteoclasts and 
bone formation by matrix-producing osteoblasts. The osteoblasts 
originate from mesenchymal stem cells in the bone marrow 
stroma. Osteoclasts are large, multinucleated cells formed 
from the fusion of mononuclear progenitors of the monocyte/
macrophage in the process of osteoclastogenesis. The precise 
balance between bone resorption and formation is critical for the 
maintenance of bone mass and systemic mineral homeostasis. 
Any disturbance of this balance causes various bone diseases, 
including osteoporosis, which is characteristically defined as low 
bone mass and microarchitectural deterioration and extremely 
susceptible to fracture risk. The physiological bone remodeling 
process is controlled by various local and systemic factors and 
their expression and release in a well-organized manner. These 
include calcitonin, PTH, vitamin D3 [1,25(OH)2 vitamin D3], 
and estrogen. In addition to systemic hormonal regulation, other 
growth factors such as IGFs, TGF-β, FGFs, EGF, BMPs, Wnt fam-
ily proteins, and chemokines also play a significant role in the 
regulation of physiological bone remodeling (35).

It has been reported that CXC and CC chemokines promote 
the migration of osteoclast precursor cells and facilitate the 
process of osteoclastogenesis and bone resorption. Study of 
a group of 650 patients by Eraltan et  al. suggested that CCL2 
and CCR2 gene variants were risk factors for osteoporosis and 
osteopenia (36). Graves et  al. first reported that temporal and 
spatial expression of CCL2 by osteoblastic cells is associated 
with the recruitment of monocytes during inflammation and 
developmentally regulated bone remodeling. They also found 
that exogenous CCL2 enhances the recruitment of monocytes 
in inflamed bone (9, 37).

An early report by Volejnikova et  al. showed that CCL2 is 
primarily expressed by bone-forming osteoblasts. They reported 
that the expression of CCL2 is developmentally regulated, and the 
recruitment of mononuclear cells in the occlusal area and basal 
area of the tooth is associated with bone resorption and bone for-
mation, respectively, suggesting a differential role of monocytes 
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in bone formation and bone resorption (38). Mechanical stresses 
including pressure induce chemokine (CXCL2 and CCL2) 
expression in osteoblasts resulting in inflammatory reactions and 
bone remodeling (39).

Several chemokines have been involved in different stages of 
osteoclastogenesis. The roles of CCL2 and its receptor CCR2 have 
been characterized in bone cells. The work of Rahimi et al. showed 
that mice with an inflammatory lesion in the mandible had 
elevated staining for CCL2, mainly by osteoblasts (12). RANKL 
stimulates the formation of osteoclasts in human peripheral blood 
monocyte cultures, in part, due to an increase in CCL2 produc-
tion, which was shown by using blocking antibodies to CCL2 
(40). CCL2-deficient mice have reduced osteoclast-specific genes 
(DC-STAMP, NFATc1, and cathepsin K), suggesting impaired 
osteoclast differentiation (41). Further, CCL2 deficiency resulted 
in increased bone mass and decreased bone resorption markers 
(CTX-1 and TRACP 5b), however, no changes in bone formation 
markers, suggesting that impaired osteoclastogenesis is respon-
sible for the bone phenotype observed in CCL2 null mice (42). 
Studies have shown that both CCL2 and CCR2 knockout mice 
exhibit inadequate monocyte recruitment in response to various 
inflammatory conditions (1, 43–46).

It has been reported that CCR2 null mice have high bone 
mass and decreased osteoclast number, size, and activity (8). In 
osteoclast progenitor cells, CCR2 activates downstream signaling 
through NF-kB and ERK1/2. This publication also reported that 
CCR2 knockout mice develop resistance to ovariectomy-induced 
bone loss, suggesting the involvement of the chemokine receptor 
CCR2 in estrogen’s effects on bone. However, recent work by 
Mader et al. showed that although CCR2 null mice have larger 
and stronger tibiae compared to wild-type mice, they concluded 
that this was due to greater body mass rather than reduced bone 
resorption (47). In addition, they did not observe protection 
against ovariectomy-induced bone loss. It is worth noting that 
Binder et al. (8) conducted their studies on younger female mice 
(10–13 weeks old), while Mader et al. used 20- to 28-week-old 
female mice, which may account for the different conclusions 
of the two studies. A third report showed that CCR2 knockout 
mice had increased cortical BMD but less trabecular bone in both 
spine and distal femur (48). Recently, it has been shown that topi-
cal treatment with the CCR2 antagonist (JNJ17166864) reduced 
alveolar bone loss from bacterial infection in mice supporting a 
role for CCR2 in bone loss (49).

ROLe OF CCL2 iN PTH ACTiON ON BONe

Parathyroid hormone is synthesized and secreted by parathyroid 
glands and exerts its functional role in bone mass regulation by 
an endocrine mode (50, 51). The PTH/parathyroid hormone-
related peptide (PTHrP) receptor, also known as PTH1R, is the 
common receptor for both PTH and PTHrP. PTH1R is mostly 
expressed in bone, cartilage, and kidney cells (52–54).

Parathyroid hormone can exert both catabolic and anabolic 
effects on bone. It is well established that daily injections of 
low doses of PTH increase bone mass in animals and humans 
(55, 56). Continuous administration of PTH or PTHrP induces 
bone resorption by activating osteoclasts indirectly through 

their actions on osteoblastic cells (57). Several effects of PTH 
on osteoclast formation are mediated by stimulation of RANKL 
and inhibition of OPG mRNA expression (58). PTH’s anabolic 
effect can now be explained by evidence that PTH increases the 
proliferation and differentiation of osteoblasts in vitro and in vivo 
(59–61), decreases osteoblast apoptosis (62, 63), and activation of 
bone lining cells (64, 65). PTH-mediated cAMP/protein kinase 
A signaling is required for Runx2 transactivation, which in turn 
upregulates the expression of osteoblast genes. In addition, inter-
mittent PTH also activates ERK1/2-mitogen-activated protein 
kinase and phosphatidylinositol phosphate signaling pathways, 
resulting in increased osteoblast proliferation (66, 67).

The PTH1R exists predominantly on osteoblasts, osteocytes, 
and preosteoblast-like cells. It has been well established that 
osteoblast-secreted factors play an essential role in PTH-mediated 
osteoclastic bone resorption. M-CSF and RANKL are two well-
known factors necessary for proliferation of osteoclast progeni-
tors and their differentiation into mature osteoclasts (68, 69). Kim 
et al. have shown that CCL2 promotes human osteoclast fusion 
(40, 70). These authors have also reported that co-treatment 
of peripheral blood mononuclear cells with CCL2 and M-CSF 
stimulates their differentiation toward osteoclast-like cells even in 
the absence of RANKL (70). By contrast, Li et al. (11) have shown 
that CCL2 alone does not have the ability to differentiate mouse 
BMMs to mature osteoclasts. But CCL2 accompanied by RANKL 
highly augments RANKL’s effect on osteoclastogenesis (11). Kim 
et al. used human peripheral blood mononuclear cells, whereas Li 
et al. used mouse bone marrow cells. Perhaps the use of these cells 
of different origins and different duration of culture are factors 
in the differences in findings. There is also the possibility that 
the human peripheral blood mononuclear cells have been already 
exposed to RANKL. Nevertheless, both studies suggest that CCL2 
has a role in the activation of bone resorption.

Intermittent PTH increases bone formation and promotes 
bone remodeling (71). We have shown that CCL2 is the most 
highly upregulated gene in rat femurs 1  h after the 14th daily 
hPTH(1–34) injection (2, 11), with nearly 200-fold stimulation of 
its mRNA expression. Osteoclasts and monocytes are likely to be 
the central targets for CCL2 in bone. PTH-induced osteoblastic 
expression of CCL2 facilitates osteoclast recruitment, differentia-
tion, and fusion of osteoclast precursors and finally provides a 
rationale for increased osteoclast activity in the anabolic effect 
of PTH (11). We reported a significant increase in serum CCL2 
levels 2 h after PTH injection compared with basal levels in rats 
treated daily with hPTH(1–34) (13). We also found a profound 
increase in CCL2 expression in osteoblasts in vivo by immunohis-
tochemistry and in vitro in UMR 106-01 and rat primary calvarial 
osteoblastic cells after PTH treatment (11). As well, CCL2 null 
mice were completely unable to increase trabecular BMD and 
bone volume compared to wild-type mice after daily injections 
of PTH. In addition, these mice did not show the increase in 
macrophage numbers, osteoclast surface, and osteoclast number 
observed in wild-type mice after PTH injections. We concluded 
that the reduction in PTH-mediated bone formation in CCL2 
null mice was due to the lack of osteoclast and macrophage activ-
ity and that osteoblast CCL2 expression is a key mediator for the 
anabolic effects of PTH on bone (13).
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FiGURe 1 | Role of CCL2 in PTH/PTHrP Action on Bone Cells. Osteoclasts are large, multinucleated cells formed from the fusion of mononuclear progenitors 
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monocytes and preosteoclasts to remodeling sites. At the same time, CCL2 also participates in the fusion of preosteoclasts to mature osteoclasts. The transient 
increase in CCL2 expression and resultant osteoclast activity is required for the anabolic effect of PTH on bone. Tumor cells produce parathyroid hormone-related 
peptide (PTHrP), which stimulates CCL2 expression from bone-forming osteoblasts. Osteoblastic CCL2 increases osteoclastogenesis and bone resorption to 
facilitate tumor growth in bone.
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It has been reported that inhibitors of bone resorption such 
as bisphosphonates can blunt the PTH-mediated osteoanabolic 
effect, signifying the role and requirement of active bone resorp-
tion for the anabolic actions of PTH (72, 73). Intermittent PTH 
causes transient upregulation of CCL2 and RANKL, which 
initiates bone resorption that ultimately increases net bone for-
mation. Collectively, PTH treatment activates the PKA pathway 
in osteoblasts, which increases the expression and secretion of 
CCL2 and expression of RANKL by osteoblasts. CCL2 facilitates 
the recruitment of osteoclasts and its precursor monocytes for 
bone remodeling (Figure 1). Simultaneously, CCL2 also assists 
the fusion of the preosteoclast to form mature multinucleate 
osteoclasts (11).

By contrast, with continuous infusion of PTH in a catabolic 
protocol in rats, we found that both RANKL and CCL2 expression 
were moderately increased, and this was sustained throughout the 
period of PTH treatment. The constant elevated levels of CCL2 
may enhance RANKL-mediated osteoclastic bone resorption 
(11). This contrasts with the very transient but high upregulation 
of CCL2 by daily injections of PTH. It is very noticeable that there 
is a progressive and adaptive response to PTH in the anabolic 
protocol, and this may be a key difference distinguishing the role 
of CCL2 in catabolic versus anabolic effects of PTH. We think 
that the difference in the kinetics of gene expression, RANKL 

and CCL2, are responsible for the net increase in bone mass in 
the anabolic protocol compared with the net increase in bone 
resorption in the catabolic protocol.

Some recent clinical studies have shown a positive relationship 
between PTH and MCP-1 levels. Sukumar et al. found a positive 
association between serum levels of CCL2 and PTH in women 
with primary hyperparathyroidism (PHPT) (74). Elevated CCL2 
levels increase the risks of hypertension, hyperlipidemia, type 2 
diabetes mellitus, and coronary artery disease. A small clinical 
study by Patel et al. also showed that an immediate decline in high 
serum CCL2 concentrations after parathyroidectomy of PHPT 
patients further prove the positive association between MCP-1 
and PTH levels in patients with PHPT (75).

Parathyroid hormone-related peptide is a genetically related 
peptide that shares homology with PTH within its amino-
terminal domain, which is considered to contain the essential 
bioactivity of PTH and thus could mimic several functions of 
PTH (50). PTHrP is synthesized in bone and cartilage and exerts 
its functions in autocrine and paracrine modes. It has been shown 
that PTHrP augments bone metastasis in animal models of both 
prostate cancer and breast cancer (76, 77). Li et al. showed that 
synthetic PTHrP increased secretion of CCL2 from osteoblastic 
cells. Further, prostate cancer cell lines (PC-3 and VCaP) elevated 
bone marrow CCL2 levels in a mouse xenograft model. In line 
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with these findings, they found an increase in CCL2 levels from 
osteoblastic cells cultured with conditioned medium from the 
same high PTHrP-secreting prostate cancer cell lines. Treatment 
with a neutralizing antibody to CCL2 decreased tumor burden 
and bone resorption (6). In another study, the authors found 
that autocrine and paracrine functions of CCL2 are required for 
prostate cancer growth and invasion, and treatment with a CCR2 
antagonist reduced the CCL2-mediated prostate cancer growth 
and invasion (78). Taken together, PTHrP enhances CCL2 
expression in osteoblasts, signifying the role of prostate cancer 
cell-derived PTHrP in bone metastasis, likely via enhanced CCL2 
expression (6, 79, 80). These studies suggest that the CCL2/CCR2 
axis might be a potential therapeutic target for prostate cancer-
bone metastasis treatment.

Regulation of CCL2 has investigated its promoter region, 
which consists of two C/EBP binding sites, two NF-kB binding 
sites, and a GC box. The C/EBP binding sites, NF-kB binding 
sites, and GC box are important for the response to insulin activa-
tion, IL-1 and TNF-α activation, and SP1 binding, respectively. 
Very little is known of how PTH regulates the CCL2 promoter 
in osteoblastic cells, and it remains a mystery since this is a 
primary response gene regulated by the PKA pathway, yet there 
is no obvious CRE in the upstream region. It has been stated that 
PTHrP provokes CCL2 promoter activity in hFOB cells through 
NF-kB and C/EBP activation (80), but none has established 
how the PKA pathway can regulate these factors to stimulate 
CCL2 transcription.

CONCLUSiON

Bone remodeling is a complex process under the control of 
several factors, including hormones, growth factors, and other 
inflammatory mediators. Among them, chemokines and their 

particular receptors play a vital role as chemoattractant and 
growth factors for bone cell recruitment and regulation of osteo-
clastogenesis, respectively.

Chemokines recruit and activate leukocytes at the site of 
inflammation in response to infection or tissue damage. These 
leukocytes are primary cells responsible for inflammatory 
responses and bone metabolism, since they are capable of acting 
as growth regulators of both osteoblast and osteoclast activity. 
Growing evidence suggests that CCL2 and its receptor CCR2 
are involved in the physiological bone remodeling process. In 
vitro and in vivo models, together with both ligand and recep-
tor transgenic animals, have made a significant contribution to 
understanding the molecular mechanisms behind the role of 
CCL2 in PTH-mediated bone effects.

A more comprehensive understanding of the chemokines that 
regulate bone remodeling could reveal new possibilities for the 
development of novel and more successful drug therapies for the 
treatment of severe bone loss diseases, including osteoporosis, 
rheumatoid arthritis, or cancer-mediated bone metastasis. In 
conclusion, modulation of the CCL2/CCR2 axis may provide the 
potential mechanism to therapeutically limit the bone resorption 
and blunt bone loss.
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