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Although the brain is composed of numerous cell types, neurons have received the vast 
majority of attention in the attempt to understand how this organ functions. Neurons 
are indeed fundamental but, in order for them to function correctly, they rely on the 
surrounding “non-neuronal” cells. These different cell types, which include glia, epithelial 
cells, pericytes, and endothelia, supply essential substances to neurons, in addition to 
protecting them from dangerous substances and situations. Moreover, it is now clear 
that non-neuronal cells can also actively participate in determining neuronal signaling 
outcomes. Due to the increasing problem of obesity in industrialized countries, investiga-
tion of the central control of energy balance has greatly increased in attempts to identify 
new therapeutic targets. This has led to interesting advances in our understanding of 
how appetite and systemic metabolism are modulated by non-neuronal cells. For exam-
ple, not only are nutrients and hormones transported into the brain by non-neuronal 
cells, but these cells can also metabolize these metabolic factors, thus modifying the 
signals reaching the neurons. The hypothalamus is the main integrating center of incom-
ing metabolic and hormonal signals and interprets this information in order to control 
appetite and systemic metabolism. Hence, the factors transported and released from 
surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This 
review focuses on what is known to date regarding the involvement of different cell types 
in the transport and metabolism of nutrients and hormones in the hypothalamus. The 
possible involvement of non-neuronal cells, in particular glial cells, in physiopathological 
outcomes of poor dietary habits and excess weight gain are also discussed.
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iNTRODUCTiON

Our understanding of the neuronal circuits controlling metabolism has advanced in recent years and 
progress has been made in the development of potential treatments for obesity, particularly in spe-
cific monogenic forms of obesity (1). However, the brain is not composed of neurons alone; other cell 
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types actually outnumber these electrically excitable nerve cells 
and participate in and/or modulate all neuronal functions. In the 
hypothalamus, this includes the participation of non-neuronal 
cells in the modulation of neuronal circuits controlling appetite 
and metabolism.

Non-neuronal cells in the central nervous system (CNS), 
including glia, epithelial cells, pericytes, and endothelia, perform 
a wide spectrum of functions throughout the brain. Many of these 
functions are common in each brain area, although the specific 
outcomes are at least in part dependent on the neuronal circuits 
that are affected by their actions. Moreover, within each class of 
non-neuronal cell type there are generalized subclassifications 
that, although quite incomplete, indicate diverse functional 
states. There are also specialized cell types found only in specific 
areas of the brain. One important example that will be discussed 
in greater detail is tanycytes, specialized glial cells found lining 
the third ventricle and in close proximity to the neuroendocrine 
hypothalamus. The fact that there is wide heterogeneity within 
each non-neuronal cell type has become increasingly clear; how-
ever, we currently do not have the tools available to sufficiently 
distinguish between these subpopulations and this has clearly 
hindered advances in this field.

With the explosion in the prevalence of obesity that has 
occurred almost worldwide, investigation in the area of metabolic 
control has become a priority. This has led to an increase in our 
understanding of how non-neuronal cell types participate in the 
neuroendocrine control of appetite and energy expenditure, as 
well as in the response to increased weight gain and the develop-
ment of secondary complications. Here, we have briefly outlined 
the different types of non-neuronal brain cells and some of their 
functions, both in general and those that are specific to the hypo-
thalamus and metabolic circuits.

CLASSiFiCATiON OF NON-NeURONAL 
CeLLS iN THe BRAiN

Astroglial Cells
Astrocytes were the first class of glial cells to be described (2) 
and they are also the most studied. One example of this is that a 
search of the word “astrocyte” in the PubMed Central database 
obtains approximately 48,000 results; typing “microglia” or “oli-
godendrocyte” receives less than 30,000 returns in either case. 
Astroglia are also the most abundant cell type in the CNS and 
were first thought to only constitute the physical and metabolic 
support for neuronal function (2). We now know that they are 
much more than just “neuron helpers” (3). Astrocytes do indeed 
transport nutrients and metabolic factors across the blood–brain 
barrier (BBB) and release them to the extracellular fluid where 
they can be used by neurons and other glial cells (4, 5) (Figure 1). 
However, it is now clear that this supply of energy substrates 
to other cell types is regulated with astrocytes responding to 
metabolic changes in order to maintain brain homeostasis (6–9). 
Astrocytes are also the only glial cells known to store energy 
through glycogenesis (10). In the synaptic cleft, they reuptake 
neurotransmitters and also can release gliotransmitters, forming 
part of what is called the “tripartite synapse” (11, 12). At the 

level of the BBB, astrocytes are involved in the formation and 
maintenance of some of the barrier properties (13) and can 
regulate vasodilatation, thus controlling the flow of blood-borne 
substances (14, 15).

Astrocytes are connected by gap junctions in their plasma 
membranes, which enable direct transport of small molecules 
between cells. Initially, it was thought that these channels allowed 
passive diffusion of substances; however, the transport through 
gap junctions is tightly regulated (16, 17). One important function 
of these gap junctions is the rapid transmission of calcium waves 
within the glial network, resulting in a form of non-neuronal 
signal transmission (18).

When employing classical labeling methods, astrocytes 
appear to have a star-shaped morphology, although two dif-
ferent forms, protoplasmic and fibrous, can be distinguished. 
The first are mainly found close to synapses and blood vessels, 
whereas the latter are frequently found within the white matter 
(19–21). The morphology of these glial cells also changes in 
respect to their functional or activational state. The fact that 
astrocytes differentially express certain proteins (e.g., receptors, 
enzymes, channels, etc.) depending on the brain area and the 
physiological or pathophysiological conditions to which they 
are subjected raises questions regarding the current definition 
and classification of astroglial cells (22). Growing evidence 
indicates that astrocytes are vastly heterogeneous (23–28). 
For example, Matthias and colleagues reported that within the 
hippocampus subsets of GFAP expressing cells expressed either 
glutamate transporters or glutamate receptors (23). Moreover, 
astrocytes throughout the brain differentially express connexins 
(24) and GABA and glutamate receptors (26) and different 
astrocyte populations are reported to differentially support 
developmental functions and synapse formation (28, 29). Thus, 
our understanding of the functions of astrocytes is advancing, 
but much is yet to be learned. Indeed, we are only now begin-
ning to have the tools to understand the grand diversity of these 
glial cells.

Microglia
Microglial cells constitute the bulk of the immune system in the 
brain. There have been different systems suggested for the classi-
fication of microglia, with most engaging morphological features. 
The most general classification includes an amoeboid form, 
characteristic of early development, and a ramified form or “rest-
ing” microglia and reactive microglia (30–32). The phenotype of 
reactive microglia is defined by changes in morphology, to short 
and thick projections, and the release of factors like cytokines, 
nitric oxide, and reactive oxygen species (30, 31, 33, 34). This 
“activation” or change in phenotype can occur in response to 
brain damage, toxic substances, or injury due to harmful condi-
tions like obesity or a high fat diet (HFD) (35, 36) and when this 
state is sustained, it can lead to a pathological chronic state of 
reactive microgliosis (37). However, the division that separates 
resting and reactive microglia has become more diffuse as we 
learn more about these cells (38).

One of the main functions of microglia is to “clean” the CNS 
by phagocytosis of cellular debris, foreign matter, and other 
wastes (39). In this manner, they participate in development and 
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FigURe 1 | Schematic representation of the blood–brain barrier. Astrocytic endfeet surround the microvessels and take up the nutrients and metabolic factors 
coming from the bloodstream. Endothelial cells at this level express specific receptors and transporters and restrict the passage of small molecules to the brain due 
to the tight junctions between them. Depending on the metabolic state, nutrients and factors are processed by astrocytes to control their access to neurons and 
maintain brain homeostasis.
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synaptic plasticity (40–42). They can also release gliotransmitters 
and metabolic factors, contributing to maintain brain homeosta-
sis (38, 43). Importantly, as part of the immune system, microglial 
cells respond to injury and harmful factors, including fatty acids, 
by releasing cytokines and to infection by presenting antigens to 
T-cells (35, 39, 43).

Oligodendrocytes
Oligodendrocyte projections wrap neuronal axons, forming 
the myelin sheaths in the CNS. To date, no direct link between 
these cells and systemic metabolic function has been verified, 
although some studies connecting metabolic signals with changes 
in myelination or oligodendrocyte survival suggest at least an 
indirect relationship with metabolism (44–48). However, it has 
been recently shown that oligodendrocyte precursors (NG2 glia) 
in the median eminence are important for the function of leptin 
receptor-expressing neurons, whose dendritic processes they 
contact (49).

Tanycytes
These specialized ependymal-like glial cells lining the ventral 
and ventrolateral part of the third ventricle (Figure 2) are prov-
ing to be very interesting as we know more about them. From 
dorsal to ventral, they are classified as subtypes α1, α2, β1, and 
β2. They are polarized cells: on the ventricle-side they express 
numerous receptors and transporters in their membrane and 
can be ciliated (not β2 tanycytes); and on the opposite side 
they present a long process that projects into the hypothalamic 

parenchyma or the median eminence (50). The β2 tanycytes 
can be found close to the median eminence, a subhypothalamic 
circumventricular organ. Capillaries on the median eminence 
are fenestrated, making the BBB permeable to many substances 
(50–52). The long processes of β2-tanycytes project into these 
fenestrated vessels, forming a blood–CSF barrier (BCSFB). 
The tight junctions between them, in addition to the specific 
transporters that they express, allow them to control the entry 
of many substances into the hypothalamus (53). They can also 
regulate the permeability of this barrier at this level of the brain, 
by the release of vascular endothelial growth factor-A in response 
to metabolic changes (54) and possibly by other mechanisms 
(55). Although astrocytes are the major cells expressing gap 
junctions, tanycytes also express these structures and can also 
produce calcium wave signaling (56). Tanycytes also possess 
stem cell properties (57) and participate in glutamate recycling 
(58), nutrient sensing (59, 60), and the conversion of thyroid 
hormones (TH) (61).

Pericytes
Pericytes are contractile cells surrounding the blood vessels 
(62, 63). In addition to their ability to modify blood flow due 
to their contractibility, brain pericytes have multiple roles in 
the development and maintenance of the BBB (64, 65), includ-
ing macrophage-like functions and characteristics (66–68), 
angiogenic properties (69), and a role in neuroinflammation 
(70). Indeed, in response to brain injury, there is evidence that 
pericytes change to a microglia-like phenotype (68, 71), migrate 
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FigURe 2 | Schematic representation of tanycytes lining the third ventricle. Microvessels of the median eminence are fenestrated, so they allow water, ions, 
and small molecules to freely enter the brain. β2-tanycytes present tight junctions between them, forming a blood–CSF barrier. They take up nutrients and factors 
from the microvessels and control their access to the cerebrospinal fluid (CSF) and the rest of the brain. This is probably the main route for some hormones and 
nutrients to the hypothalamus. Also, tanycytes are communicated through gap junctions, so some molecules can be transported to lateral β1 and α-tanycytes and 
gain access to the arcuate nucleus and the ventromedial nucleus of the hypothalamus.
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to the brain parenchyma (72), and are involved in scar formation 
(73), antigen presentation (74), and the release of inflammatory 
factors (75, 76). Pericytes are also reported to be multipotential 

stem cells in the CNS (77). However, the identity of these stem 
cells is still a subject of controversy (78), due to the lack of reliable 
pericyte markers (79).
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endothelial Cells
Endothelial cells, along with pericytes, form the walls of the 
microvessels, taking part in the transport of metabolites through 
the BBB (80). The particularities of BBB endothelial cells, 
described below, allow for a strict control of the passage of sub-
stances from the blood into the CNS.

epithelial Cells/ependymocytes
In the CNS, epithelial cells can be found in the choroid plexus 
and lining the ventricles. They secrete the cerebrospinal fluid 
(CSF) that fills the ventricles and factors involved in neurogenesis 
and brain development (81–84). Epithelial cells of the CNS also 
express transporters for glucose, amino acids, and other molecules 
(85–87), as well as receptors for hormones such as sex steroids 
(88–90) and leptin (91). Moreover, they form a type of BCSFB 
due to the tight junctions between them (92). Ependymal cells are 
epithelial cells lining the ventricles. Their polarized organization 
and beating of numerous cilia are important for the movement of 
CSF (93, 94). They also possess precursor properties and, together 
with tanycytes, form the hypothalamic neurogenic niche (95).

FUNCTiONS OF NON-NeURONAL CeLLS

Transport of Metabolic Signals into and 
within the Hypothalamus
The transport of nutrients and other metabolic signals is one of 
the best studied functions of non-neuronal cells in the nervous 
system. At the physiological level, nutrients from the diet, hor-
mones, and other substances are delivered to all tissues through 
the bloodstream. However, due to its exceptional importance 
and vulnerability, the CNS protects its homeostasis by carefully 
controlling what can and cannot enter from the circulation. This 
function is carried out by the BBB, which is formed by special-
ized glia, pericytes, and endothelial cells expressing transporters, 
receptors, and sensors that allow them to select the information 
and nutrients accessing the nervous tissue (80) (Figure  1). As 
nutrients and metabolic signals are also found in the CSF, there is 
a BCSFB, formed by ependymal cells and tanycytes, in the third 
ventricle (50, 96, 97) (Figure 2). The distribution of tight junction 
proteins between tanycytes at this level is important in determin-
ing the permeability of the barrier, being lower at the median 
eminence, where there are fenestrated capillaries and higher next 
to the arcuate nucleus (98).

The first checkpoint for any substance to cross the BBB into 
the CNS is the endothelial cell, the bricks forming the capillary 
walls (Figure 1). Endothelial cells in the BBB are phenotypically 
different from those of peripheral vessels and restrict the access 
of blood-borne substances to the extracellular fluid of the CNS  
(80, 99). To achieve this, these endothelial cells have tight junc-
tions between them, reduced endocytosis, no fenestrations, and 
specific transporters and receptors, in addition to a large number 
of mitochondria (65). Thus, brain capillary endothelial cells 
broadly determine the barrier permeability. Surrounding these 
capillaries are the astrocytic endfeet, along with pericytes and 
microglia (Figure  1). These other cells also participate in the 

regulation of nutrient and hormone entry, and thus metabolic 
signaling, from the periphery (80, 99, 100). Astrocytes and other 
non-neuronal cells can detect changes in the concentrations of 
specific nutrients and the presence of other signals and react 
consequently to maintain brain homeostasis, as described below.

Glucose
Glucose, the main energy source of the CNS, enters the brain from 
the bloodstream crossing the BBB through specific transporters. 
As normal brain function depends on its glucose supply, this step 
is highly regulated. That is, the transport of glucose across the 
BBB adapts in response to cerebral energy demand in order to 
maintain glucose homeostasis in the brain. The facilitative glucose 
transporter (GLUT)-1 is largely responsible for glucose transport 
across the BBB. This protein is expressed in non-neuronal cells 
throughout the CNS, especially in astrocytes and endothelial 
cells of the BBB (101), as well as in tanycytes along the BCSFB 
(50). However, GLUT-1 in endothelial cells is highly glycosylated, 
having a higher molecular weight than the isoform expressed in 
astrocytes and other glial cells (101, 102). As indicated in a recent 
review, some authors suggest different functional characteristics 
between the two forms of GLUT-1, although there is no consen-
sus on this subject (103).

Changes in glucose concentration are rapidly detected in 
the hypothalamus, which adapts to such variations and emits 
a response to maintain glucose homeostasis not only in the 
brain, but also systemically as glucose-sensing neurons in the 
hypothalamus send signals to the autonomous nervous system, 
reaching peripheral organs such as the pancreas or the liver 
(104–107). There is more than one mechanism for central glucose 
sensing and different cell types are involved in this essential task 
(107–110). Two populations of glucose-sensing neurons have 
been identified: glucose-excited and glucose-inhibited neurons 
(GE and GI, respectively) (111) and glial cells also participate 
in these important glucose-sensing mechanisms. Astrocyte 
endfeet express GLUT-2 which, in addition to its transport 
functions, participates in glucose sensing (110, 112). This GLUT 
is highly expressed in tanycytes along the BCSFB (109), with 
these specialized glial cells also participating in glucose-sensing 
processes. In addition to expressing GLUT-2, astrocytes and 
tanycytes express sodium glucose transporter (SGLT)-1, glu-
cokinase (GCK), and KATP channels (110), proteins that are all 
known to be involved in glucose-sensing mechanisms. Indeed, 
the classical mechanism for glucose sensing in pancreatic β-cells 
requires glucose uptake through GLUT-2 in rodents or GLUT-1 
in humans, GCK, and activation of ATP-sensitive K+ channels  
(112, 113). This system shares some similarities with glucose-
sensing pathways in astrocytes and tanycytes.

One proposed model for glucose sensing in tanycytes involves 
glucose entering the cell through GLUT-2 and phosphorylation 
by GCK. Subsequently, glucose-6-phosphate undergoes gly-
colysis, producing pyruvate and, through the action of lactate 
dehydrogenase, lactate. Lactate is transported to the extracellular 
space by monocarboxylate transporter (MCT)-4 or MCT-1, and 
then taken up by neurons through MCT-2 (109). Depending on 
the kind of neuron, GE or GI, an excitatory or inhibitory signal 
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will be produced in the hypothalamus and sent to other brain 
areas and the autonomic nervous system (108). Tanycytes can 
also respond rapidly to glucose and other inputs by producing 
calcium waves, a process requiring ATP release and autocrine 
signaling through purinergic P2Y receptors (56, 59). The precise 
mechanisms involved in this tanycytic response are not yet fully 
elucidated, but it constitutes a possible model for tanycyte–neu-
ron interaction.

Glucose sensing in astrocytes involves a similar process. 
Indeed, according to the “astrocyte-neuron lactate shuttle” 
hypothesis proposed by Pellerin and Magistretti over two 
decades ago (4), lactate from glucose or glycogen metabolism 
released by astrocytes is not only used by neurons as an energy 
source but can also signal energy availability to glucose-sensing 
neurons. Glucose transport into astrocytes is facilitated by 
GLUT-2 or occurs through gap junctions in a passive manner 
(112, 114–116). This glucose can be metabolized or stored as gly-
cogen. However, it is still debated as to whether astrocytes secrete 
only lactate or also glucose to the extracellular fluid to act on 
glucose-sensing neurons and to be used as fuel (112). Moreover, 
astrocytes and tanycytes can respond to an increase in glucose 
or to other signals (i.e., some neurotransmitters) by secreting 
endozepines, anorexigenic peptides that act on hypothalamic 
neurons to maintain energy homeostasis (107, 117) and that also 
participate in unsaturated long-chain fatty acid metabolism in 
astrocytes (118).

The precise mechanisms of glucose transport and sensing 
in the hypothalamus are yet to be fully elucidated. For exam-
ple, SGLT, an active sodium co-transporter, is reported to be 
involved in glucose sensing in the ventromedial nucleus of the 
rodent hypothalamus (119), although it is not clear whether this 
sensing occurs in glucose responsive neurons or in astrocytes. 
By using genetically engineered mouse models, García-Cáceres 
and collaborators recently demonstrated that insulin signaling 
in astrocytes plays a role in the regulation of systemic glucose 
homeostasis. Specific ablation of the insulin receptor (IR) in 
astrocytes was shown to impair their uptake of glucose and the 
ability to correctly respond to changes in glycemia (120). Other 
studies suggest a role of leptin in increasing (121) or ghrelin 
in reducing (122) glucose uptake by astrocytes, which might 
also affect glucose sensing. It thus appears that the transport of 
glucose by astrocytes is highly regulated by diverse nutrient and 
hormonal signals.

Ketone Bodies
Monocarboxylates are molecules with one carboxylate group; 
some examples with metabolic functions include not only lactate, 
but also pyruvate and ketones, all of which can be used by neurons 
as an alternative energy source in addition to acting as metabolic 
signals (123–126). The brain expresses MCTs-1, -2, and -4, with 
MCT-1 being found in endothelial and ependymal cells, as well as 
in astrocyte endfeet at the BBB (127, 128). MCT-2 is expressed in 
endothelial cells, but not in astrocytes, whereas MCT-4 appears to 
be specific for astrocytes (58, 129–131). Ketone bodies and other 
monocarboxylates from the bloodstream cross the BBB through 
specific MCTs present in both the luminal and abluminal sides 

of the endothelial cells (132, 133). Astrocyte endfeet not only 
takes up monocarboxylates through MCT-1 (132–134), but 
these glial cells are also able to synthesize ketone bodies from 
fatty acid β-oxidation and secrete them as an energy source for 
neurons and other glial cells (Figure 1). Tanycytes have also been 
suggested to transport lactate through MCT-2 in a photoperiodic 
model of Siberian hamster (58). These authors found that MCT-2 
and the glutamate transporter GLAST were decreased during a 
short photoperiod, which could indicate a change in seasonal 
neurotransporter supply. In the rat brain, tanycytes were shown 
to express functional MCT-1 and MCT-4 in an anatomically 
specific manner (135), suggesting that these glial cells may also 
participate in lactate transport to neurons.

Regulation of the transport and production of ketone bodies 
in the brain is important in metabolic control as hypothalamic 
sensing of these monocarboxylates also participates in the regu-
lation of food intake (126, 136). Indeed, after the initial HFD-
induced hyperphagia, there is a reduction in food intake that is 
reported to be mediated, at least in part, by ketone body signaling 
to hypothalamic neurons. These ketone bodies are synthesized 
by hypothalamic astrocytes as products of fatty acid metabolism 
(136, 137).

Lipids
Lipid sensing in the hypothalamus is necessary for the correct 
regulation of energy balance (138). There are lipid sensing 
neurons that are excited or inhibited by fatty acids, depending 
on the type of neuron and also the metabolic state, i.e., fasting 
versus overfeeding (139). Although the role of glial cells in this 
process is not fully understood, astrocytes are the primary lipid 
metabolizers in the CNS. They also express proteins related to 
lipid sensing, such as transporter CD36 and peroxisome prolif-
erator-activated receptor gamma, an important lipid-activated 
nuclear receptor that regulates transcription of numerous 
genes, including some involved in lipid metabolism (140, 141). 
In addition, astrocytic production of ketone bodies from fatty 
acids and their release to neurons could be one way by which an 
excess of fatty acids is signaled to metabolic neuronal circuits. 
Recent evidence suggests an increase in fatty acid β-oxidation 
in hypothalamic astrocytes from obese mice fed a HFD, as well 
as a role for tanycytes in restricting the passage of saturated fatty 
acids into the hypothalamus (142).

Although the brain produces lipids, it also has mechanisms to 
transport them from the bloodstream, but how they go through 
the BBB is not yet fully understood. Short and medium chain 
fatty acids appear to enter the CNS by simple diffusion through 
the plasma membrane (143). In contrast, long chain fatty acids 
(>12 carbons) need transporters to cross the BBB (144), with 
several fatty acid transport proteins (FATP) and fatty acid bind-
ing proteins (FABP) having been identified (145). In vitro studies 
indicate that FATP-1, FATP-4, and FABP-5 are the major isoforms 
expressed in microvessel endothelial cells and the gray matter 
of the human brain (145, 146). When the fatty acid translocase 
(FAT) CD36 is knocked-out in mice (CD36−/−), the uptake of 
monounsaturated fatty acids is significantly decreased, with no 
effect on polyunsaturated fatty acid uptake (147). In the CNS, 
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CD36 is expressed in endothelial cells, microglial cells, astrocytes, 
and in ventromedial hypothalamic neurons (148–151). Although 
it is not the most highly expressed FATP, studies indicate that 
CD36 is responsible for fatty acid sensing in the hypothalamus 
and is thus important for the control of energy homeostasis  
(136, 137, 152).

In addition to the passage of free fatty acids through the BBB, 
lipids can also enter or exit the CNS as lipoproteins. This process 
is mediated by apolipoprotein E (ApoE) interacting with lipopro-
tein receptors (153). In the CNS, ApoE is expressed in astrocytes 
and tanycytes and its levels are upregulated by both leptin and TH 
(154, 155), with this process being involved in the regulation of 
food intake and energy balance (156).

Hormone Transport and Signaling
Leptin
Leptin is an anorexigenic hormone that exerts part of its effects 
by inhibiting orexigenic neurons and activating anorexigenic 
neurons in the hypothalamus (157–159). It also has a role in the 
regulation of systemic lipid and glucose metabolism (160, 161). 
The leptin (or obesity) receptor (ObR), which has six isoforms, 
is highly expressed in brain endothelial cells, astrocytes and 
tanycytes (162–165), and endothelial and astroglial cells have 
been studied in attempt to unravel the mechanisms of leptin 
transport into the brain (163, 166). However, González-Carter 
and colleagues have recently reported that, in a human in vitro 
BBB model, leptin–ObR interaction is not necessary for the 
transport of this hormone across the BBB. They propose that 
lipoprotein receptor-related protein-2, expressed in endothelial 
cells at the BBB, is responsible for the passage of leptin across the 
BBB (167). Increasing evidence points to the BCSFB as the main 
pathway for entry of leptin into, at least, the hypothalamus (165, 
168) (Figure 2).

The median eminence, a circumventricular organ close to the 
third ventricle, is the first site in the brain reached by blood-borne 
leptin (165). After an intraperitoneal leptin injection, there is a 
1–2 h lag between the activation of leptin signaling pathways in 
the ventral and dorsal nuclei of the hypothalamus. This time-lag 
disappears when leptin is administered intracerebroventricu-
larly, instead of intraperitoneally (169), suggesting that leptin 
transport from blood to the CSF is an important step in the 
action of this hormone in the brain and that it involves a delay in 
circulating changes reaching central target sites. Moreover, this 
process appears to be a finely regulated step in the control of 
energy balance as tanycytes act as “gatekeepers” for the passage 
of leptin into the mediobasal hypothalamus. Evidence suggests 
that leptin is first taken up by tanycyte processes in contact with 
the fenestrated capillaries at the median eminence (165) and 
that this uptake requires the activation of ObRb and the inter-
nalization of leptin by clathrin-coated vesicles (165). According 
to research carried out by Vincent Prevot and his team, this 
process involves signal transducer and activator of transcription 
(STAT)-3, protein kinase B (PKB)/Akt, and extracellular signal 
regulated kinase (ERK) phosphorylation, but is janus kinase-2 
independent (165). Leptin is then transported toward the tany-
cyte cell body and, finally, released to the CSF and hypothalamic 

parenchyma (Figure 2) employing an ERK-dependent pathway 
(165). By using STAT-3 phosphorylation as an indicator of leptin 
signaling (170–172), Balland and collaborators reported that 
neutralization of leptin in the CSF impairs leptin signaling in 
mediobasal hypothalamic neurons (165), supporting the idea of 
the blood–CSF–hypothalamic gateway for leptin entry into the 
brain.

Taking into account the above mentioned studies, it appears 
that both endothelial cells and tanycytes contribute to the 
transport of leptin through the BBB and between different brain 
regions (163, 166, 167). In contrast, there is no clear evidence of 
the involvement of astrocytes in leptin transport, but a number of 
studies demonstrate that leptin signaling in astrocytes is impor-
tant for energy homeostasis (173, 174).

Leptin transport into the brain is modulated by conditions 
including obesity and fasting, as well as metabolic factors. Obesity 
associated to HFD intake is reported to induce central leptin 
resistance. There are two main mechanisms or levels of leptin 
resistance suggested to occur: impairment of leptin transport into 
the brain (165) and reduction in the central response to leptin 
(175). Mice exposed long term to a HFD develop leptin resist-
ance only when high levels of plasma leptin are reached (176). 
This suggests that hyperleptinemia is at least one of the causes of 
diet-induced leptin resistance. In addition, hypothalamic inflam-
mation associated with diet-induced obesity could contribute to 
leptin resistance by altering the cellular networks and molecular 
pathways that control energy homeostasis (177). Nevertheless, 
recent studies suggest that leptin resistance does not imply a loss 
of responsiveness to endogenous leptin, but rather that there is 
a threshold above which exogenous leptin barely increases the 
response to leptin (178, 179). Glucose and insulin are reported 
to increase the transport of leptin across the BBB (180), while an 
increase in circulating triglycerides could impair leptin transport 
across the BBB (181). The latter suggests a possible mechanism 
for the reported reduction in leptin transport into the brain dur-
ing fasting (182).

Ghrelin
Ghrelin is an orexigenic hormone produced and secreted in the 
stomach (183). It has similar targets as leptin in the CNS and 
also plays an important, but opposite, role in energy balance 
(184). There are two forms of ghrelin, acylated and unacylated, 
depending on the post-translational acylation with octanoic or 
decanoic acid (183, 185). This modification occurs mainly in the 
stomach, but there is evidence that it can also take place in target 
tissues (186). The acylated form of ghrelin exerts the majority of 
the metabolic effects of this hormone in the CNS and it binds 
more efficiently to the ghrelin receptor than the unacylated form 
(187). This receptor, also called the growth hormone secretagogue 
receptor 1a, is widely expressed in the hypothalamus (188). The 
mechanism underlying the passage of ghrelin across the BBB is 
not yet fully understood, but recent studies indicate that ghre-
lin possibly uses a similar route as leptin into the brain (189), 
i.e., through tanycytes in contact with the median eminence 
(Figure 2). Other studies indicate that this process is carried out 
by saturable transporters, at least for the acylated form, whereas 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


8

Freire-Regatillo et al. Non-Neuronal Cells in Metabolism

Frontiers in Endocrinology | www.frontiersin.org March 2017 | Volume 8 | Article 51

transport of des-acyl ghrelin is not saturable (190). Entry of 
acylated ghrelin into the CNS is increased by serum triglycerides 
and fasting and is decreased in obese mice (191), in contrast with 
leptin transport. Diet-induced obesity is reported to impair the 
hypothalamic response to peripherally or centrally administered 
ghrelin (192). The role of unacylated ghrelin on metabolism is 
largely unknown, but an increasing number of studies reveal 
that des-acyl ghrelin has similar and opposite functions as the 
acylated form (193–196).

Insulin
Insulin is a pancreatic hormone directly involved in glucose 
metabolism and homeostasis. Within the brain, it acts to increase 
energy expenditure and reduce food intake and energy storage 
(197). Insulin binds to its receptor in the plasma membranes 
of endothelial cells at the BBB and is internalized following a 
saturable pathway (198, 199). Recent studies have shown that 
IRs in astrocytes are involved in the entry of this hormone into 
the CNS (120). Also, as mentioned above, insulin signaling in 
astrocytes is necessary for the regulation of systemic glucose 
levels (120). Insulin transport into the brain is enhanced by 
satiation hormones like cholecystokinin (200). Although 
estradiol is known to impair insulin’s actions in the brain, its 
effects appear to be unrelated to insulin transport (201). Some 
studies show that leptin increases insulin sensitivity in the 
hypothalamus at the molecular level (202), while others have 
found that leptin impairs insulin signaling in the brain (203). 
This discrepancy could be a matter of the experimental model 
employed, but further research is needed to understand the 
relationship between the effects of leptin and insulin at the 
level of the CNS. Leptin shares some signaling pathways with 
insulin, but the effects of these two hormones are not entirely 
parallel, as they exert opposite effects in some hypothalamic 
neurons (204). Saturated fatty acids induce insulin resistance 
in the hypothalamus (205), as has been previously described in 
peripheral tissues (206).

Sex Steroids
As hydrophobic molecules, estrogens, androgens, and proges-
terone can enter the brain by simple diffusion (207). Moreover, 
steroids are synthesized in the brain (208). These neurosteroids 
are produced in the CNS either from brain-borne cholesterol 
or from peripherally synthesized steroid precursors, like preg-
nenolone, deoxycorticosterone, and testosterone (209). The 
enzymes necessary for this synthesis are found in non-neuronal 
cells, including astrocytes, tanycytes, ependymal cells, and oligo-
dendrocytes (210, 211), and in some neurons (212). As steroid 
hormones are known to regulate neurosteroid metabolism in glial 
cells (213–217) and also the expression levels of steroid recep-
tors in the hypothalamus (218, 219), neurosteroids could have 
paracrine/autocrine functions within the brain.

Steroids and neurosteroids exert neuroprotective effects 
in the brain following brain injury, neurological disease, or 
inflammation (220–227). The expression of aromatase, the 
enzyme that catalyzes the conversion of testosterone into 
estradiol, is stimulated in reactive astrocytes after brain injury 

as a neuroprotective measure (228–230). Both microglial cells 
and astrocytes play an important role in the neuroprotective 
functions of steroids (231), as sex steroids diminish microglia 
reactivity (232–234) and astrocyte production of proinflamma-
tory molecules (235–238).

Sex steroids, but specially estrogens, modulate energy 
homeostasis at the hypothalamic level decreasing food intake 
(239–241), increasing energy expenditure (242), and modulat-
ing the sensitivity to other metabolic hormones (243, 244). 
Their effect differs depending on the neuronal population (245, 
246), but with an overall anorectic effect (247–249), although 
the underlying mechanisms are not yet fully understood. While 
nuclear estrogen receptors (ERs) are involved, especially ER α 
(247, 250–252), evidence indicates that estrogen responsive 
G-coupled membrane receptors can also regulate these effects 
(253, 254). The apparently contradictory results in the literature 
regarding the mechanism of action of estrogens on metabolism 
indicate a complex system for estrogens’ function in energy 
homeostasis, where the different ERs could be acting in com-
bination (255). Moreover, the mechanisms of action used by 
estrogens in metabolic control could be sexually dimorphic 
(256). The involvement of neurosteroids in energy homeostasis 
remains unknown.

Thyroid Hormones
The role of TH in increasing the metabolic rate has been known 
for more than a century (257). The involvement of these hormones 
in the control of energy homeostasis at the central level is a more 
recent discovery (258, 259). They promote lipogenesis at the level 
of the hypothalamus, which eventually leads to brown adipose 
tissue thermogenesis (259) and blockage of TH signaling in the 
hypothalamus reverts this process, leading to weight gain without 
an increase in feeding (259). Clinical studies and animal models 
with a pathological excess of TH synthesis and secretion (hyper-
thyroidism) have shed light on TH action in the hypothalamus 
and control of energy balance (260). Most hyperthyroid patients 
have an increased appetite and food intake and decreased body 
weight (261). Moreover, these same symptoms that are observed 
in animal models of hyperthyroidism are associated with the 
upregulation of orexigenic neuropeptides AgRP and NPY and 
downregulation of anorexigenic neuropeptides derived from 
POMC in the arcuate nucleus (259). There is evidence that TH 
are involved in brain inflammation, promoting survival, and pro-
cesses growth in microglial cells and also in astrocytes (262–264). 
TH are also involved in systemic glucose homeostasis and insulin 
sensing (265, 266).

The thyroid gland produces and secretes mainly tetraiodo-
l-thyronine or thyroxine (T4), which is generally transformed 
into triiodo-l-thyronine (T3) through deiodination at the level 
of peripheral tissues (267). Thus, deiodinase enzyme expression 
in peripheral tissues is important for the control of TH actions 
(268), as they catalyze the transformation of T4 into T3 and of 
both hormones into reverse T3 (rT3) and 3,5-diiodo-l-thyronine 
(T2), respectively (269). These two last forms are usually consid-
ered inactive, although in the last few years new roles have been 
proposed for them and other non-classical TH (270).

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


9

Freire-Regatillo et al. Non-Neuronal Cells in Metabolism

Frontiers in Endocrinology | www.frontiersin.org March 2017 | Volume 8 | Article 51

Thyroid hormones enter the hypothalamus mainly through 
MCT-8 (271) and organic anion transporting polypeptide-1C1 
(272) in rodents (273). These transporters are expressed in 
endothelial cells of the BBB and epithelial cells of the choroid 
plexus (274), besides neurons and glial cells of the hypothalamus 
(275–277). Tanycytes act as gatekeepers for TH at the BBB (61) 
(Figure  2). These cells express the enzyme deiodinase II (DII) 
(278–280), catalyzing the formation of hormone T3 from the 
prohormone T4. Tanycytes uptake T4 from the capillaries 
and release T3 to the extracellular space in the hypothalamus, 
where this hormone can exert its central actions (258, 259, 281) 
(Figure 2). Modulation of deiodinase expression is a key point 
in TH homeostasis. For example, DII expression in tanycytes is 
promoted in fasting conditions (282). DII-expressing tanycytes 
are in direct contact with AgRP/NPY-expressing neurons of 
the arcuate nucleus. Upregulation of DII results in an increased 
production of T3, which activates AgRP/NPY neurons and, 
therefore, feeding behavior (283, 284). Tanycytes also express 
deiodinase III (DIII), which deiodinates T4 into reverse T3 which 
is biologically inactive, and T3 into T2. TH is important in the 
adaptation to different photoperiods in seasonal animals were, for 
example, there is a decrease in food intake and body weight dur-
ing short photoperiods. The study of hypothalamic metabolism 
of TH during photoperiodic changes in seasonal mammals has 
shown that the there is an upregulation of DII during periods 
of long days, which would increase the levels of T3. In Siberian 
hamsters an upregulation of DIII in tanycytes has been shown to 
occur during short photoperiods, lowering active T3 levels (285). 
The retinoic acid pathway in tanycytes appears to be similarly 
regulated by photoperiodicity and also leads to modifications in 
energy expenditure (286, 287).

Thyroid hormone signaling usually occurs through nuclear 
thyroid receptors α and β (288) that function as transcription fac-
tors modulating gene expression (289). TH can also exert rapid 
non-genomic actions through membrane-associated receptors 
(290, 291). This signaling pathway could mediate TH effects 
on vasodilatation (292) and has been shown to be involved in 
neuronal excitability in the hippocampus (293, 294).

Centrally, THs control their own homeostasis in various ways, 
with non-neuronal cells having an important role, i.e., regula-
tion of deiodinase expression (278) and inactivation of thyroid 
releasing hormone (295). Other hormones involved in metabolic 
control can enhance the secretion, synthesis, or sensing of TH, 
including leptin (296–298) and sex steroids (299–301).

Metabolism of Nutrients
Glucose
Perivascular astrocytes take-up blood-borne glucose that then 
undergoes glycolysis or glycogenesis (112). Lactate produced 
from glucose or glycogen metabolism in these cells is released to 
the extracellular space and enters neurons to be used as energy, 
constituting their primary energy source as suggested by some 
studies (302, 303). However, the question about the identity of 
the main energy source for neurons—lactate or glucose—is still 
debated. Tanycytes can metabolize and sense glucose in a similar 
manner (109).

Glucose storage as glycogen in astrocytes provides a way to 
guarantee energy release to neurons when it is needed, i.e., when 
faced with a raise in neuronal activity (304), by production of 
lactate from glycogenolysis. Several factors can regulate glycogen 
production and utilization in astrocytes, with insulin, insulin-like 
growth factor (IGF)-1 (305, 306), and leptin (203, 307) increas-
ing their production of glycogen. More recently, ghrelin has been 
reported to possibly promote glycogenolysis in hypothalamic 
neurons (122).

Lipids and Ketone Bodies
It has been suggested that some fatty acids, like erucic acid (308, 
309), suffer metabolic changes as they cross the BBB, whereas 
others do not (310, 311). Studies indicate that lipoproteins are 
hydrolyzed as they cross the BBB by the enzyme lipoprotein lipase 
associated to the membrane of endothelial cells (312–316).

In the absence of glucose and when glycogen stores are 
exhausted, such as in fasting conditions, astrocytes increase their 
uptake and utilization of fatty acids (136, 317, 318), which enter 
the mitochondria through carnitine palmitoyltransferase-1 to 
undergo β-oxidation (319). In the mitochondria, the enzymes 
3-hydroxy-3-methylglutaryl-CoA synthase and lyase (320–322) 
transform fatty acids into β-hydroxybutyrate, a ketone body 
(323). Ketone bodies produced from this metabolic pathway are 
used by astrocytes themselves for fuel or secreted to be used by 
neurons and other glial cells (318).

Neurogenesis
Glial cells were first reported to participate in neurogenesis dur-
ing development (324–326), but it later became apparent that 
they are also involved in this process in adulthood (327). In the 
developing hypothalamus of the rat, the birth of metabolically 
important neurons occurs between embryonic days 10.5 and 18.5 
(328–330). Environmental changes during this period, including 
nutritional and hormonal disturbances, can modulate the normal 
process of hypothalamic neurogenesis and have an impact on later 
neuroendocrine function (330–332). For example, HFD intake by 
pregnant dams stimulates the proliferation, differentiation, and 
migration of orexigenic neuronal precursors and increases the 
density of orexigenic neurons at the level of the paraventricular 
nucleus in the offspring. This increase in the number and density 
of appetite-stimulating neurons and orexigenic neuropeptide 
expression leads to increased appetite, body weight, and propen-
sity to develop obesity later in life (331).

The clear demonstration, as well as its acceptance by the 
scientific community, of neurogenesis in the adult hypothalamus 
is relatively recent and there is still much to be learned. Tanycytes 
form part of the pool of neuroprogenitor cells in the hypothala-
mus and these precursors are capable of differentiating into not 
only neurons, but also astrocytes both during development and 
in the adult brain (333, 334). These specialized glial cells form 
an important neurogenic niche in the vicinity of the median 
eminence (333) and can proliferate and differentiate under basal 
conditions and when stimulated by growth factors such as IGF-1 
(57, 95), fibroblast growth factor (FGF)-2 (335), FGF-10 (336, 
337), or even vitamins, as tanycytes have been shown to express 
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receptors, transporters, and other components of the vitamin A 
and C pathways (286, 287, 334, 338). FGF-10 positive tanycytes 
are reported to be important neural progenitors for NPY neurons 
in the arcuate nucleus, a function that may continue even during 
adulthood (337, 339). In addition, other isoforms of FGF are 
known to play a role in glucose homeostasis, inhibition of food 
intake, and body weight (340–343), with a possible involvement 
of glial cells (344–347). Although the generation of newborn 
neurons in the postnatal hypothalamus takes place at lower rates 
than during the embryonic period, it is physiologically relevant 
and has been shown to be regulated by diverse factors, includ-
ing hormones and growth factors such as estradiol (332), FGF 
(335), and IGF-1 (348). Moreover, the nutritional status and 
dietary intake of an individual can modulate neurogenesis in 
hypothalamic metabolic circuits even in the adult animal (329, 
333, 349–351).

The neurons composing the hypothalamic metabolic circuits 
experience a turnover rate such that approximately half of these 
cells are reported to be replaced between 4 and 12 weeks of age 
in mice (329). Diet-induced obesity suppresses this remodeling, 
at least in part, due to a decrease in actively proliferating cells 
in the hypothalamus with caloric restriction reversing this 
effect (329). Voluntary exercise is also reported to induce 
hypothalamic neurogenesis (352, 353). The effect of nutrient 
intake on the adult hypothalamus may be anatomically specific, 
as diets rich in fat are reported to inhibit neurogenesis in the 
mediobasal hypothalamic parenchyma (333), but to promote 
it in the median eminence in female mice (333). The enhanced 
neurogenesis that occurs at the level of the median eminence 
is suggested to be involved in the restoration of neurons that 
are damaged as a consequence of HFD intake (333); hence, 
impedance of this process could amplify the derogatory effects 
of poor dietary habits. There is tantalizing data indicating that 
hypothalamic neurogenesis in response to HFD differs between 
males and females (332, 333, 354), but whether this is involved in 
the sexually dimorphic metabolic response to HFD and weight 
gain requires further investigation.

Astrocytes are involved in the regulation of neuronal differ-
entiation, proliferation, and synaptogenesis during development 
(3, 355). Microglia also actively participate in neurogenesis, 
both during development and adulthood, with most studies 
being performed in the hippocampus (356). Microglia not only 
phagocytize cells undergoing apoptosis in proliferative zones, 
but they also produce factors that can either inhibit or stimulate 
neuroprogenitor cells. The cross-talk between microglia and 
neuroprogenitor cells is an active area of investigation as this is a 
finely tuned process where these cells continuously interchange 
information (356). However, less is known regarding the role of 
astrocytes and microglia in neurogenesis in metabolic circuits of 
the adult animal.

Diet not only affects neurogenesis in the hypothalamus, 
but also in other brain areas such as the hippocampus, an area 
known to maintain active neurogenesis even in the adult (357). 
In the dentate gyrus of the hippocampus, HFD intake impairs 
neurogenesis (358) in addition to producing oxidative stress and 
lipid peroxidation (357). Palmitic acid (PA), a saturated fatty acid 

that is a major component of the majority of HFDs, was shown 
to reduce the proliferation of the neuroprogenitor cells (359) 
and the levels of brain-derived neurotrophic factor, indicating 
that PA-rich diets impair neurogenesis in the hippocampus. 
Caloric restriction and exercise increase neurogenesis in the hip-
pocampus (350, 360, 361) and this has been associated with the 
anti-depressive effects of exercise (360).

Synaptogenesis, Synaptic Plasticity, and 
Synaptic Transmission
Astrocytes, in addition to participating in neuronal proliferation 
and differentiation, also regulate synaptogenesis during devel-
opment (3, 355). In the hypothalamus, the neonatal and early 
prenatal hormonal and nutritional environments can affect the 
synaptic connectivity of metabolic circuits (189, 362). Astroglial 
coverage of neuronal cell surfaces has been shown to be inversely 
correlated with the number of synaptic inputs to their somas, with 
this astroglial ensheathment/synaptic input arrangement being 
physiologically relevant in the neuroendocrine hypothalamus 
(363–367). Thus, changes in astrocyte numbers or morphology 
in the hypothalamus might be expected to modify synaptic inputs 
both during development and in later life.

The generation and maturation of astrocytes is not fully com-
plete until the third postnatal week in rodents (368, 369), so vari-
ations in the physiological levels of specific metabolic hormones 
or signals during early life could affect the development of these 
cells. For example, neonatal overnutrition and modifications in 
leptin levels or signaling affect the number and morphology of 
astrocytes in the arcuate nucleus in adulthood (121, 173, 370). 
The leptin peak that takes place between postnatal days 5 and 
13 in rodents is essential not only for neuronal outgrowth and 
maturation, but also astrogenesis (368, 371, 372) and astrocyte 
development (373, 374). The timing and magnitude of this leptin 
surge can be modified by nutrition (371, 375, 376), as well as other 
conditions such as stress (377) and is one mechanism by which 
these early environmental influences can have long-term effects 
on metabolism.

Maternal dietary intake and body weight during gestation and 
lactation can also influence metabolic circuit formation in the 
offspring, including the astroglial ensheathment/synaptic input 
arrangement. For example, newborns from mothers fed a HFD 
during gestation and lactation have increased astroglial ensheath-
ment of POMC neurons that is associated with a decrease in the 
resting mini inhibitory post synaptic currents of these neurons 
(121). The response of these POMC neurons to changes in glu-
cose concentrations was also shown to be modified (121). Hence, 
alterations in the early nutritional environment could imply the 
modification of the appropriate development of neuron–glial 
interaction of metabolic circuits and therefore affect long-term 
metabolism.

Microglia are involved in synaptogenesis throughout the 
brain (378, 379); however, there is little information regard-
ing the specific effects of microglia on the development of the 
synaptic interactions of metabolic circuits. These glial cells have 
been shown to have an active role in the sexual differentiation of 
behavior and masculinization of the brain (380), suggesting that 
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they may indeed be important for the development of endocrine 
circuits and possibly the sexual differentiation of some of these 
systems.

Modifications in the synaptic connectivity of metabolic 
circuits occur in postnatal life in response to metabolic and 
hormonal signals (241, 381–384) and are most likely involved 
in the adaptation to changes in energy inputs/conditions in 
attempt to maintain metabolic homeostasis, with astroglia 
participating in these synaptic rearrangements. HFD induced-
obesity is associated with an increase in the glial coverage of 
both POMC and NPY cell bodies in the arcuate nucleus, which 
is coincident with a decrease in the number of synaptic inputs 
to the perikarya of these neurons (384). However, there is a 
decline in stimulatory inputs to NPY neurons and of inhibitory 
inputs to POMC neurons (384), which would result in an overall 
decline in orexigenic signaling. When first given a HFD, rodents 
experience a phase of hyperphagia that is normally followed by 
an attenuation of this rise in energy intake. The levels of poly-
sialic acid (PSA) are rapidly increased in the arcuate nucleus in 
response to HFD (385). This cell-surface glycogen can attach 
to cell membrane proteins to weaken cell–cell interactions and 
facilitate synaptic reorganization (386). If PSA is enzymatically 
removed from neural-cell adhesion molecule (NCAM) in the 
hypothalamus, HFD induced modifications in metabolic circuits 
can be blocked and the adaptation to HFD-induced hyperphagia 
attenuated (385). In addition, studies in photoperiodic models 
have shown that PSA and NCAM levels in tanycytes are reduced 
during short photoperiods in conjunction with vimentin levels, 
modulating the plasticity for tanycyte connections with arcuate 
neurons (387).

Diverse hormonal/metabolic signals could be involved in 
these structural modifications, including leptin. This hormone 
rapidly induces synaptic changes in metabolic circuits (381), with 
some of these effects being mediated through astrocytes. These 
glial cells express different isoforms of ObR (163, 164), with 
the expression of this receptor being increased in astrocytes of 
obese rodents (163). Leptin can modify astrocyte morphology, 
inducing changes in the length and number of primary astrocytic 
projections and astroglial coverage of hypothalamic neurons 
(173, 388). The lack of leptin signaling due to the knock-out of 
this receptor in astrocytes changes synaptic inputs to POMC and 
NPY neurons, resulting in modifications in the function of these 
metabolic neurons and rendering the animals less susceptible to 
the effects of leptin (173). However, it remains unclear as to the 
mechanisms involved in the changes in neuronal/glial interac-
tions, including identification of the initial step that triggers these 
morphological modifications.

Astrocytes modulate neuronal transmission by controlling 
glutamate concentrations in the synaptic cleft, which also plays 
an important role in preventing excitotoxicity (389). Leptin and 
ghrelin modulate glutamate uptake by these glial cells (121, 122) 
and could thus affect stimulatory signaling in metabolic circuits 
through this mechanism. Astrocytes also actively participate in 
synaptic transmission and plasticity by releasing gliotransmit-
ters, including adenosine, ATP, d-serine, glutamate, and tumor 
necrosis factor α that directly activate postsynaptic receptors and 

by altering neurotransmitter release from presynaptic neuronal 
elements to induce short-term plasticity and to modulate synaptic 
efficacy (12, 390–393). Adenosine release by astrocytes inhibits 
the firing rate of AgRP neurons and food intake, modifying the 
response to metabolic hormones such as ghrelin (394).

inflammatory Response
The inflammatory response to infection, foreign substances, 
mechanical damage, or any situation that could damage 
neurons is one of the best studied functions of glial cells 
(231, 395–398). However, the description of hypothalamic 
inflammation in obesity, as well as its association with the 
development of secondary complications, is more recent. In 
2005, the group of Licio Velloso reported that inflammatory 
pathways were activated in the hypothalamus in HFD-induced 
obese rats (399). This same group went on to demonstrate 
that this hypothalamic inflammation was involved in the 
disruption of systemic glucose homeostasis (35). Numerous 
studies have since reported the link between hypothalamic 
inflammation and obesity-related comorbidities (36, 400–404). 
Hypothalamic inflammation is reported to be associated with 
the development of insulin resistance and type 2 diabetes (405) 
and increased cell death in the hypothalamus (329). Most 
studies analyzing hypothalamic inflammation have employed 
HFD-induced obesity models and suggest that dietary factors 
are involved in at least part of the inflammatory response. 
Indeed, hypothalamic inflammation is reported to occur even 
before an increase in adiposity or systemic inflammation are 
detected (36) and central administration of saturated fatty 
acids directly activates inflammatory signaling mechanisms in 
the hypothalamus (35, 406). However, increased weight gain 
can occur in response to genetic, epigenetic, and excess energy 
intake that is not due to increased fat consumption and the 
hypothalamic inflammatory/gliosis response differs depending 
on the underlying cause of weight gain (121, 195, 407, 408). 
These differential responses are most likely the result of dietary 
signals and the changes in metabolic signals associated to 
weight gain acting on both microglia and astrocytes. Sex may 
also be a factor, as the hypothalamic inflammatory response to 
chronic HFD-intake is reported to differ between males and 
females, with males being more susceptible (409). This could 
result from the greater rise in PA levels in the CNS of male mice 
compared to females, even though there is no sex difference in 
circulating fatty acid levels (410).

Inhibition of hypothalamic inflammation is reported to blunt 
or block the development of obesity-associated complications 
(400, 403) and dietary restriction can reverse central inflamma-
tory processes (411–415). Exercise also protects against HFD-
induced hypothalamic inflammation (416).

Microglia in Hypothalamic Inflammation
Microglia, the innate immune cells of the CNS, are the first line 
of defense in response to foreign substances (417, 418) and are 
activated in response to saturated fat consumption (36, 403, 408, 
419). Indeed, these glial cells are suggested to dictate the inflam-
mation that occurs in response to saturated fats (419). Microglia 
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can also be activated when weight gain is due to excess intake of 
a normal diet and due to high fat intake, (402), indicating that 
not only dietary signals are involved. Leptin stimulates the release 
of inflammatory cytokines from microglia (420), suggesting that 
hyperleptinemia could be involved in microglial activation in 
obese subjects.

Astrocytes in Hypothalamic Inflammation
Astrocytes also respond to HFD intake (36, 384, 421) and can 
be directly activated in  vitro by fatty acids (408, 409, 422). 
Hyperleptinemia associated with weight gain may also partici-
pate in the activation of glia in situation of obesity (121, 173, 388, 
408, 423). Indeed, ob/ob mice, which are dramatically obese due 
to the genetic lack of leptin, do not exhibit astrogliosis and leptin-
induced weight loss actually increases astrocytic profiles in the 
hypothalamus of these animals (408). However, we have found 
that in some situations of increased weight gain, such as increased 

carbohydrate intake in the form of sucrose, astrocytic markers 
may actually be decreased (407).

The astrogliosis response to HFD differs between males and 
females, as does the in vitro response to PA (409). The protective 
effects of estrogens are exerted through ERα in astrocytes (424), 
with estrogens protecting against PA activation of astrocytes 
in  vitro (409). Morselli et  al  demonstrated that HFD-intake 
reduces hypothalamic ERα levels in males, but not in females, 
which may be involved in the decreased protection against diet-
induced obesity in males.

Astrocytes have also been implicated in determining the pref-
erence for a HFD, with this mechanism involving cannabinoid 
receptor 1 (CB1) (425, 426). The intake of a HFD induces the 
preference for this type of diet and this appears to involve the 
production of endocannabinoids in the hypothalamus (426). 
Leptin signaling in astrocytes is regulated by CB1, with disrup-
tion of CB1 in these glial cells resulting in the inability of leptin to 

FigURe 3 | Schematic representation of the main roles of hypothalamic non-neuronal cells in metabolism. Thin arrows represent the different 
connections between cells: fueling and sensing of nutrients (in blue); signaling through gliotransmitters, neurotransmitters, or other factors (in green); and recycling of 
molecules or cleaning of cellular debris (in purple). Hormones and nutrients from the bloodstream pass through one or more types of non-neuronal cells before 
reaching neurons, sometimes suffering metabolic changes during the process. In response to a metabolic imbalance (excess of saturated fatty acids, 
hyperleptinemia, etc), microglial cells change to an activated state, releasing inflammatory factors, such as cytokines, and activating astrocytes as a neuroprotective 
measure. If the insult continues, it can lead to gliosis, hypothalamic inflammation, and neuronal damage.
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