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Mammalian studies have shaped our understanding of the endocrine control of appetite 
and body weight in vertebrates and provided the basic vertebrate model that involves 
central (brain) and peripheral signaling pathways as well as environmental cues. The 
hypothalamus has a crucial function in the control of food intake, but other parts of the 
brain are also involved. The description of a range of key neuropeptides and hormones as 
well as more details of their specific roles in appetite control continues to be in progress. 
Endocrine signals are based on hormones that can be divided into two groups: those that 
induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. 
Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tis-
sues and reach the hypothalamus through both endocrine and neuroendocrine actions. 
While many mammalian-like endocrine appetite-controlling networks and mechanisms 
have been described for some key model teleosts, mainly zebrafish and goldfish, very 
little knowledge exists on these systems in fishes as a group. Fishes represent over 
30,000 species, and there is a large variability in their ecological niches and habitats as 
well as life history adaptations, transitions between life stages and feeding behaviors. 
In the context of food intake and appetite control, common adaptations to extended 
periods of starvation or periods of abundant food availability are of particular interest. 
This review summarizes the recent findings on endocrine appetite-controlling systems 
in fish, highlights their impact on growth and survival, and discusses the perspectives in 
this research field to shed light on the intriguing adaptations that exist in fish and their 
underlying mechanisms.

Keywords: appetite control, feed intake, hormones, neuropeptides, teleosts, adaptations, fasting, voracious 
feeding

iNTRODUCTiON
Control of food intake and energy metabolism is vital for the development and survival of an organ-
ism. These processes ensure optimal allocation of energy resources to cover the basic maintenance 
of metabolism and immune system, the cost of foraging and other daily activities, somatic growth, 
reproductive investment, and sufficient energy stores to survive periods of low food availability (1). 

Terminology for gene names: GENE (All capitals), Mammalian protein; Gene (First letter capital), Fish Protein; Gene (First 
letter capital, italic), Mammalian gene; gene (small letters only and italic), Fish gene.
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FiGURe 1 | Key organs and signaling pathways believed to be involved in control of appetite in fish. Some of the central and peripheral endocrine factors 
explored so far are listed.
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Food intake is affected by external factors, such as temperature 
and photoperiod, stress, predators, and food availability, as well 
as by internal factors, such as genetics, life stage, gut filling, 
and stored energy. The hypothalamus is the hub that controls 
appetite and energy balance and integrates peripheral signals 
related to food intake and digestion, metabolism, and energy 
storage (Figure 1). These include not only endocrine signals (gut 
peptides, the focus of this review) but also other signals such 
as nutrient levels through central nutrient sensing systems and 
the presence/absence of food in the gastrointestinal (GI) tract 
through vagal afferents projecting to the brain.

Fishes represent over 30,000 species with an enormous 
variation in their ecological niches and habitats as well as life 
history adaptations, transitions between life stages and feeding 
behaviors. In the context of food intake and appetite control, 
common adaptations to extended periods of starvation or 
periods of abundant food availability are of particular interest. 
Also, the large variations in appetite between species and within 
a species (individual variation) are intriguing. A large fraction 
of fish species has indeterminate growth, i.e., these species 
continue to grow during their whole life span. This contrasts 
with growth in mammals and other model animals including 
zebrafish (Danio rerio), which reach a maximum length size as 
adults. Thus, while control of appetite and food intake is often 
viewed as a behavioral component of maintaining an energy 
balance (2), the general concept of energy homeostasis needs to 
be used with caution.

This review summarizes the recent findings on appetite-
controlling systems in fish with a focus on peptide hormones. A 
major goal is to discuss perspectives in this research field that can 
reveal how fish adapt to their specific ecological requirements.

CeNTRAL CONTROL

The physiological mechanisms that control appetite are relatively 
well conserved among vertebrates, and many of the neuropep-
tides and hormones involved in the central appetite regulation 
in mammals are also found in fish (3–7). However, differences 
in appetite-controlling systems can be found as a response to 
the large diversity in feeding habits of teleost species (8), yet the 
mechanisms for many of these adaptations remain unexplored.

Central signals arising in the hypothalamus are crucial for 
the control of food intake, and this brain area produces both 
orexigenic (appetite-stimulating) and anorexigenic (appetite-
inhibiting) factors. The main hormones and neuropeptides so far 
described in teleosts and their possible involvement in the central 
control of appetite are presented in Figure 1 and described below.

NPY
Neuropeptide Y (NPY) is one of the strongest orexigenic signals in 
mammals, and the NPY/agouti-related peptide (AgRP) neurons  
in the arcuate nucleus (ARC) are the principal inducer of feeding 
(9, 10). The relative importance of NPY in feeding regulation seems 
to vary among teleosts. In goldfish (Carassius auratus) (11, 12),  
carp (Cyprinus carpio) (13), channel catfish (Ictalurus punctatus) 
(14), zebrafish (15), rainbow trout (Oncorhynchus mykiss) (16), 
and Nile (17) and red (18) tilapias (Oreochromis sp.), NPY injec-
tions increase feeding. Food deprivation increases brain npy 
expression in several species, including goldfish (19), chinook 
and Coho salmon (Oncorhynchus tshawytscha; Oncorhynchus 
kisutch) (20), zebrafish (15, 21), winter skate (Leucoraja ocel-
lata) (22), tiger puffer (Takifugu rubripes) (23), and winter (24) 
and Brazilian (25) flounder (Pseudopleuronectes americanus; 
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Paralichthys brasiliensis), suggesting an orexigenic role. In some 
species, such as Atlantic cod (Gadus morhua) (26), tiger puffer 
(23), snakeskin gourami (Trichogaster pectoralis) (27), Brazilian 
flounder (25), channel catfish (28), and cobia (Rachycentron 
canadum) (29), npy brain expression levels are high around feed-
ing time and decrease post-feeding, further suggesting a role of 
Npy as a short-term appetite stimulator in fish. Npy treatments 
have also been shown to stimulate fish growth/growth hormone 
(GH) secretion both in vitro [goldfish (30)] and in vivo [tilapia 
(Oreochromis mossambicus) (17, 31); orange-spotted grouper 
(Epinephelus coioides) (32)].

However, in Atlantic cod, fasting does not affect npy brain 
expression (26), in cunner (Tautogolabrus adspersus), short-
term fasting decreases npy brain expression (33), and in both 
Atlantic salmon (Salmo salar) (34) and larval Atlantic halibut 
(Hippoglossus hippoglossus) (35), npy expression increases after 
feeding, suggesting that Npy might have a minor role as a feed-
ing stimulator in these species. GH transgenesis, which results 
in increased feeding rates, does not affect brain npy levels in 
Coho salmon (36) and carp (37) but decreases npy levels in 
zebrafish (38).

In goldfish (39), Senegalese sole (Solea senegalensis) larvae 
(40), rainbow trout (41), and both Atlantic cod larvae (42) and 
adults (43), npy brain expression is modulated by diet, which is 
consistent with the role of NPY containing neurons in sensing 
the metabolic status (e.g., glucose levels) as reported for mam-
mals (10) and fish [e.g., tilapia (44)]. However, in cobia (29), 
npy expression does not appear to correlate with diet-induced 
changes in food intake.

CART
The peptide cocaine-amphetamine-related transcript (CART) 
was originally isolated from rat brain as a transcript regulated 
by acute administration of cocaine or amphetamine (45, 46). In 
goldfish, cart brain expression also increases following treatment 
with amphetamine (47). CART is a potent anorexigenic peptide 
in mammals (48–50) and birds (51), and CART injections inhibit 
food intake in goldfish (52).

Several cart genes have been identified in some fish species 
[e.g., two in goldfish (53), four in zebrafish (54), six in medaka 
(Oryzias latipes) (55), and seven in Senegalese sole (56)] whereas 
only one cart has been reported for others [e.g., Atlantic salmon 
(57), Atlantic cod (26), Atlantic halibut (35), and channel catfish 
(28)]. Post-feeding increases in cart brain expression have been 
reported for several fish species such as catfish (28), Atlantic 
salmon (34) and goldfish (53) suggesting that Cart acts as a short-
term satiety factor in fish. Fasting has been shown to decrease 
cart brain expression in several fish species, and these changes 
are sometimes gene-specific. In goldfish, although the expression 
of both cart genes decreases after fasting, cart1 appears more 
affected than cart2 (53). In both zebrafish (58) and medaka (55), 
only one cart is affected by fasting, and in Senegalese sole, three 
out of seven cart genes are affected (56). However, fasting does 
not affect cart expression in other species such as winter flounder 
(24) or Atlantic halibut larvae (35), perhaps since only one gene 
has been identified in these species to date. Cart is also involved 
in sensing metabolic status, as hypothalamic cart mRNA levels 

change in response to changes in the levels of glucose in rainbow 
trout (41) or fatty acids in rainbow trout (59) and Senegalese 
sole (60).

Orexin
Orexins (OXs) A and B (or hypocretin 1 and 2) are neuropeptide 
products of a single gene precursor, prepro-orexin (pOX), through 
proteolytic cleavage. Two orexin receptors have been identified, 
OXR1 and OXR2. OX-A binds to both receptors with similar 
potencies whereas OX-B binds preferentially to OXR2 receptors 
(61). In mammals, orexins have been implicated in the regulation 
of many physiological functions, including feeding, sleep–wake 
cycles, reproduction, and cardiovascular function (62–65). 
Orexins and/or orexin receptors have been identified in several 
fish species, including goldfish (66), cavefish (Astyanax fasciatus 
mexicanus) (67), zebrafish (68), barfin flounder (Verasper moseri) 
(69), orange-spotted grouper (70), Atlantic cod (71), winter 
flounder (72), and dourado (Salminus brasiliensis) (73). Orexins 
have been shown to increase feeding and locomotor behavior in 
both mammals (74) and fish (75–81). Consistent with its role as 
an orexigenic peptide, ox brain mRNA expression increases fol-
lowing fasting [e.g., cavefish (67), goldfish (77, 82), zebrafish (68), 
winter flounder (72), Atlantic cod (71), and dourado (73)] and 
around feeding time [e.g., cavefish (67), orange-spotted grouper 
(70), and goldfish (83)].

Galanin
Galanin (GAL) is a 29–30 amino acid peptide first identified in 
mammals (84) and shown to have actions in brain and peripheral 
tissues to increase appetite and regulate metabolism (85, 86). Gal 
has been isolated in several fish species [reviewed in Ref. (87)] 
and appears to act as an orexigenic peptide. Injections of GAL 
stimulate food intake in goldfish (88) and tench (Tinca tinca) 
(89). Although long-term food deprivation does not affect brain 
gal mRNA expression in goldfish, the expression levels of gal 
decrease after the scheduled feeding time in fed fish, suggesting 
that Gal is a short-term regulator of appetite (90). Related to its 
role in metabolism, high gal mRNA expression has been linked 
to increased locomotion in zebrafish (91).

MCH
Melanin-concentrating hormone (Mch) was first isolated from 
the salmon pituitary as a skin-paling factor (92, 93) and later 
isolated and identified as an orexigenic factor in mammals (94). 
In fish, the role of Mch in food intake regulation is still unclear. 
In goldfish, central injections of MCH inhibit appetite, and fast-
ing induce a decrease in brain Mch-immunoreactive (ir) cells 
(95–97), suggesting an anorexigenic role. However, in other 
teleost species, such as winter flounder (98), barfin flounder (99), 
zebrafish (100), and Atlantic cod (101), fasting-induced increases 
mch mRNA levels and -ir cells, pointing to an orexigenic role.

CRH
The corticotropin-releasing hormone (CRH) family includes 
CRH [or corticotropin-releasing factor (CRF)], urocortin (Ucn), 
urocortin 2, and urocortin 3. Members of the CRF family of neu-
ropeptides have been shown to decrease feed intake in mammals 
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(102). In goldfish, Crf and urotensin I (UI, the homolog of UCN 
in mammals) stimulate the hypothalamic–pituitary–interrenal 
axis (the fish homolog to the hypothalamic–pituitary–adrenal 
axis) to induce secretion of glucocorticoids (e.g., cortisol) and 
act as anorexigenic factors (6, 103). Central injections of CRF 
(104–106) or UI inhibit food intake in goldfish. Similar effects 
have been shown in rainbow trout (106). In Ya fish (Schizothorax 
prenanti), fasting decreases crf brain expression levels (107), con-
sistent with the anorexigenic role of Crf-related peptides in fish.

Melanocortin System
The vertebrate melanocortin system is phylogenetically well 
conserved, and it has been identified in fish, amphibians, and 
mammals (108–110). It consists of (1) melanocortin peptides, 
which includes melanocyte-stimulating hormones (α-, β-, and 
γ-MSH) and adrenocorticotropic hormone, all derived from the 
gene pro-opiomelancortin (Pomc), (2) five G protein-coupled 
melanocortin receptors (MCRs), and (3) endogenous melanocor-
tin antagonists, agouti and AgRP (111). In vertebrates, compo-
nents of the melanocortin system are involved in a diverse range 
of physiological functions, including regulation of food intake, 
appetite, and anticipatory behavior (112).

The melanocortins are posttranslational products of the 
POMC prohormone, which also gives rise to the opiate peptide 
β-endorphin. Posttranslational processing of the POMC pro-
hormone is tissue-specific, which results in the production of 
different POMC peptides by different cell types and, therefore, 
multiple physiological functions. Pomc is a single copy gene in 
mammals and birds, but in most teleosts, there are two to three 
different pomc transcripts [e.g., zebrafish (113), carp (114), 
barfin flounder (115), gilthead sea bream (Sparus aurata) (116), 
and sockeye salmon (Oncorhynchus nerka) (117)], proposed to 
result from the whole or partial genome duplication (118). In 
salmonids, Atlantic salmon and rainbow trout, three copies of 
pomc gene and one splice variant have been described, i.e., pomc 
(-a1, -a2, -a2s, and -b) (119, 120). However, the functions of the 
fish pomc subtypes remain largely unexplored. In rainbow trout, 
fasting induces increased expression levels of both hypothalamic 
pomca1 and pomcb (121), whereas in olive flounder (Paralichthys 
olivaceus), pomc2 but not pomc1 and pomc3 mRNA levels increase 
with fasting (122), suggesting a form-specific response of pomc in 
some species.

The repertoire of MCRs (MC1R to MC5R) found at the target 
cells has undergone significant diversification and specialization. 
Therefore, MCRs differ in their affinity for the different melano-
cortins, agouti, and AgRP. Of importance to energy homeostasis 
are MC3R and MC4R that are expressed throughout the central 
nervous system (CNS). Fish Mcr and ligands are expressed in a 
highly conserved pattern relative to mammals (123, 124). This 
conservation is also seen in the melanocortin neural circuits 
involved in hypothalamic control of energy homeostasis, under-
lining that the melanocortin functions originated early in evolu-
tion (125). The presence of Mc4r in teleosts has been reported 
in several species [e.g., goldfish (126), zebrafish (127), spotted 
scat (Scatophagus argus) (128), snakeskin gourami (129), fugu 
(109), common carp (130), and Ya fish (131)]. In Atlantic salmon, 
several paralogs of Mcr have been described, mc1r (-p1 and -p2), 

mc2r, mc4r (-a-p1, -a-p2, -b-p1, and b-p2), mc5r, mrap2 (-p1 and 
-p2) (Lars Ebbesson, Uni Environment, Bergen, Norway, personal 
communication). Mc3r seems to have been lost early in teleost 
evolution and is not present in salmonids, as observed for puffer-
fishes, tiger puffer and tetraodon (Tetraodon nigroviridis) (132). 
The only known mc3r in teleosts is the zebrafish mc3r; however, 
mc3r has also been identified in the spiny dogfish (Squalus acan-
thias) (133). In snakeskin gourami, the mc4r mRNA expression 
varies during daily feeding and fasting period, and its correlation 
with npy expression indicates a role in feed intake control (27, 
129). However, in barfin flounder and sea bass (Dicentrarchus lab-
rax), progressive fasting did not modify the hypothalamic mc4r 
mRNA expression (134, 135). Intracerebroventricular injections 
of MCR agonist decrease food intake in juvenile rainbow trout 
(136) and in goldfish (126, 137) in a dose-dependent manner, 
whereas the injection of MCR antagonists increases food intake 
in rainbow trout and in goldfish (137). The importance of Mc4r 
in the regulation of fish growth is also emphasized by naturally 
occurring mutations of the Mc4r in swordtails (Xiphophorus 
nigrensis and Xiphophorus multilineatus), which dramatically 
affects growth (138, 139).

An interesting fact is the existence of two endogenous 
antagonists in the melanocortin system, agouti and AgRP. These 
proteins are paracrine-signaling molecules and act as subtype-
selective endogenous antagonists. AgRP exerts its major physi-
ological function in the hypothalamus, where it acts as a potent 
orexigenic factor (140) due to its ability to antagonize the MC3R 
and MC4R (141). agrp genes have been identified in several fish 
species (57, 124, 126, 130, 131, 142–144). Hypothalamic agrp 
expression in goldfish (137), sea bass (agrp1, not agrp2) (144), 
and zebrafish (124) dramatically increased during fasting. In 
addition, GH-transgenic common carp has higher feed intake 
and higher hypothalamic agrp1 mRNA expression levels than 
non-transgenic fish (37). agrp mRNA abundance in the hypo-
thalamus of rainbow trout (59) and Senegalese sole (60) also 
responds to changes in the levels of specific fatty acids. Altogether, 
it is suggested that the role of AgRP in energy homeostasis and 
its relation to the melanocortin system is conserved across ver-
tebrates (51, 145).

ANATOMiCAL LOCATiONS OF CeNTRAL 
APPeTiTe CONTROL SYSTeMS

Control of appetite is an evolutionarily conserved process 
resulting from a close interplay between multiple neuronal and 
peripheral signals, which are integrated in the hypothalamus 
and processed in a specific spatial and temporal order to regulate 
hunger and satiety (4, 146). The mammalian hypothalamus con-
sists of numerous interconnecting nuclei organized into complex 
neuronal networks where ARC nucleus, ventromedial nucleus 
(VMN), dorsomedial nucleus (DMN), paraventricular nucleus 
(PVN), and lateral hypothalamus (LH) play crucial roles in food 
intake control and energy expenditure [reviewed in Ref. (146)]. 
The ARC contains two distinct neuronal populations referred 
to as “first order” neurons, releasing appetite stimulators NPY/
AgRP and appetite suppressors POMC/CART (1, 147). Neuronal 
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projections from the first order neurons connect to other 
hypothalamic nuclei (PVN, DMN, VMN, and LH) (148). These 
“second order” nuclei express potent orexigenic factors such as 
orexins and MCH in the LH, and anorexigenic neuropeptides 
such as CRH and thyrotropin-releasing hormone (TRH) in the 
PVN. Lesioning studies in these nuclei have long recognized 
their functional significance in generating satiety and hunger 
responses [reviewed in Ref. (149)].

The existence of a functional (and to lesser extent anatomical) 
equivalence of appetite-controlling brain regions in fish has been 
demonstrated, based on electrical stimulation and brain lesion 
studies [reviewed in Ref. (4)]. The teleostean hypothalamic 
neurons are organized in a similar fashion as their mammalian 
counterparts and are distributed in conserved clusters within the 
ventral diencephalon (150–153). Yet, very little is known about 
the fish anatomical homologs to mammalian hypothalamic 
VMN, DMN, PVN, and LH nuclei, owing to the lack of specific 
neuronal molecular markers for distinct neuronal classes. In 
addition, expression domains of fish appetite control genes do 
not appear anatomically confined to their putative hypothalamic 
homologous areas.

The lateral tuberal nucleus (NLT; also known as ventral 
periventricular hypothalamus Hv) might be a feeding center and 
the teleostean homolog of the mammalian ARC [reviewed in Ref. 
(153)]. pomc, agrp, and leptin receptor transcripts are found in 
neurons within the NLT of goldfish (126, 137) and zebrafish (154), 
and ir and/or gene expression studies have identified Npy in the 
NLT of several teleosts (155, 156), as well as sturgeon [Acipenser 
transmontanus (157) and elasmobranch fish (158)]. npy and cart 
transcripts are also present in the NLT of juvenile Atlantic cod 
(159). In addition, Msh-α and Agrp-ir-cells are found in discrete 
populations in the NLT of zebrafish (125).

A recent study shows high homology between the zebrafish 
neurosecretory preoptic area (POA) and the mammalian PVN 
(153, 160). This homology is consistent with the presence of 
fish trh and crh ortholog genes in the POA, although their 
expression is not exclusive to the POA (161–164). The mam-
malian PVN is an important site of NPY synthesis and release 
(146, 165), and recent evidence indicates that Npy-ir cells and 
npy mRNAs are also present in the POA of fish (159, 166), 
further supporting functional homology between PVN and 
POA structures.

Functional and to some extent anatomical homologies could 
also exist between the mammalian and fish LH. In mammals, LH 
is an important site of orexins and MCH expression and believed 
to act as a “feeding center” (146). The LH is the site of transit 
for neuronal fibers interconnecting hypothalamic nuclei and 
forebrain to midbrain structures. A similar neuronal pattern has 
been observed in the LH of zebrafish, where pOx-expressing neu-
rons send projections to the midbrain and the spinal cord (167, 
168). In addition to the LH, the POA and the rostral NLT are also 
important sites of pOx expression in fish, as recently observed by 
double-fluorescence in situ hybridization in Atlantic cod larvae, 
in which the caudal domain of pOx-expressing neurons in the 
POA overlaps with the rostral-most cart cell population in the 
NLT (159). pOx mRNA expression in the POA has also been 
reported in zebrafish (169).

Furthermore, the strong expression of cart mRNAs and the 
absence of orexigenic modulators such as npy or pOx in the dif-
fuse nucleus of the inferior hypothalamic lobe of Atlantic cod has 
recently led to the hypothesis that this nucleus may be the VMN 
homolog and that may serve as “satiety center” in fish (159) as in 
mammals (149, 167).

mRNAs of several appetite signals have been detected in the 
brain of different fish in extra-hypothalamic areas analogous to 
those characterized in mammals, suggesting a functional rela-
tionship between them (26, 41, 58, 159, 170, 171). It is, however, 
important to underline that canonical appetite genes (e.g., Npy 
and Cart) in mammals are modulated by many factors and their 
wide brain distribution may reflect various physiological roles 
and responses to changing environmental conditions (45, 172). 
All these mechanisms are still largely unknown in fish.

PeRiPHeRAL SiGNALS

The Gi-Tract
The GI-tract is the largest endocrine organ in vertebrates and 
produces around 30 different neuropeptides and hormones. 
These peptides act on several tissues, including the GI-tract itself, 
exocrine glands, and the CNS (173, 174). Most of the GI peptides 
are sensitive to the gut nutrient content, and some of them are 
important in the control of appetite and meal size (174, 175). GI 
peptides may act on the CNS via an endocrine action by traveling 
in the blood, which requires that they pass the blood–brain bar-
rier, and/or by stimulating afferent vagal nerve fibers (174, 176, 
177). Studies on rainbow trout show that appetite returns when 
80–90% of the stomach content has been emptied (178), indicating 
that gut filling, feed digestion, and transit rates may affect appetite 
control with both hunger and satiety signals. Indeed, most of the 
gut-derived appetite-regulating factors are also involved in diges-
tion, thus coordinating these two processes (179).

GHRL
Ghrelin (GHRL) is mainly produced in the stomach of fish and 
mammals, or in the intestine of some stomachless species (180). 
Ghrl has been shown to have an orexigenic function in several 
fish species, including goldfish (177, 181), tilapia (182), brown 
trout (Salmo trutta) (183), and grass carp (Ctenopharyngodon 
idellus) (184), which is consistent with its role in mammals (185, 
186). However, in rainbow trout, opposite effects of Ghrl on feed 
intake have been reported from two independent studies: one 
showed that central injection of Ghrl increased feed intake after 
24 h (187) whereas the other study showed that short-term (1 h) 
central and long-term (weeks) peripheral administration of Ghrl 
suppressed appetite (174). The different time scales may, at least 
partly, explain the contradictory results. Recently, an anorexigenic 
response was also reported in channel catfish after Ghrl admin-
istration (188). In goldfish, appetite-regulating neuropeptides in 
the CNS, such as Npy and Ox, seem to mediate Ghrl-induced 
feeding (181, 189), but interactions between Ghrl and central 
appetite regulators are inconsistent in other examined fish spe-
cies. For example, Ghrl increased (in tilapia and rainbow trout) 
(182, 187), decreased (in rainbow trout) (190), or did not affect 
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(in brown trout and channel catfish) (183, 188) hypothalamic npy 
expression. Moreover, Ghrl decreased (in rainbow trout) (187) 
or had no effect (in channel catfish) (188) on pomc expression. 
A CRH receptor antagonist (α-helical CRF 9–41) abolished 
Ghrl-induced feeding (191) whereas Ghrl administration did not 
affect central crh expression in rainbow trout (187). In goldfish, it 
appears that peripheral Ghrl may stimulate feeding by acting on 
gastric vagal afferents that transmit information to brain appetite 
centers (177). Indirect effects on food intake, through stimulatory 
actions on digestion, could subsequently affect onset of feeding. 
For instance, rat GHRL evoked intestinal contraction in zebrafish 
(192, 193), but homologous Ghrl did not affect GI-tract contrac-
tility in goldfish and rainbow trout (194). The presence of GH 
secretagogue receptor in the fish pituitary and brain (particularly 
hypothalamus and telencephalon) also suggests a direct action of 
octanoylated Ghrl in these tissues (195, 196).

CCK
Cholecystokinin (CCK) is secreted by the proximal intestine 
and mainly acts as a short-term satiety factor at the same time 
as it promotes digestion through its many actions on the diges-
tive system of vertebrates (174, 197). CCK is characterized 
by an evolutionary conserved biologically active C-terminal 
octapeptide (CCK-8) among vertebrates (198, 199), and Cck-ir 
cells have been observed in the intestine of most fish groups 
(174). Central or peripheral administration of sulfated CCK-8 
suppresses food intake in goldfish (200) and channel catfish (14). 
Oral CCK administration inhibits feed intake in sea bass (201), 
while oral treatment with CCK antagonists increases food intake 
in rainbow trout (202). A single cck gene has been cloned in sev-
eral teleost species, including yellowtail (Seriola quinqueradiata) 
(203), Atlantic herring (Clupea harengus) (204), and pirapitinga 
(Piaractus brachypomus) (205). However, two different cck 
sequences were identified in Japanese flounder (Paralichthys 
olivaceus), tetraodon (206), Atlantic salmon (207), and white sea 
bream (Diplodus sargus) (208), and three distinct cck genes exists 
in rainbow trout (209). All the identified cck genes in teleosts are 
predominantly expressed in the GI-tract and brain, including 
hypothalamus, telencephalon, and optic tectum.

Both circulating levels of Cck and cck gene expression are 
influenced by macronutrients, although these effects appear to 
be species-specific. For example, rainbow trout fed a high fat 
diet had higher plasma Cck levels compared with fish fed a high 
protein diet (210) and oral administration of single bolus of fat 
(oleic acid) or protein (casein), but not carbohydrate (starch), 
increased cck expression in yellowtail gut (211). In addition, cck 
expression levels increased following a meal in yellowtail pyloric 
caeca (212) and circulating Cck levels increase postprandially in 
rainbow trout (213). Fasting decreases gene expression or protein 
levels of Cck in the gut of yellowtail and white sea bream (203, 
208). These results support the anorexigenic function of Cck and 
the conservation of this function in the teleost lineage. Some 
studies, however, show opposite effects; in Coho salmon, cck gene 
expression in the gut increased during winter fasting (214). In 
Atlantic salmon, on the other hand, intestinal cck mRNA expres-
sion was unchanged after 6 days of fasting (207). Furthermore, 
there are variations in the distribution pattern of Cck-producing 

cells within the intestinal segments among species (204, 215, 216) 
as well as in the fasting response among cck isoforms (207–209) 
suggesting diverging roles among species and cck isoforms. The 
action of CCK is initiated by its binding to two subtypes of cog-
nate receptors (CCK-1R and CCK-2R), which results in satiety 
(197). Cck receptor genes have been isolated in yellowtail (cck-
1r) (217), Atlantic salmon (cck-1r, cck-2r1, and cck-2r2) (218), 
and goldfish (cck-1r and cck-2r) (219). The primary structure of 
fish Cck receptors as well as their tissue distribution patterns is 
highly conserved; cck-1r is widely distributed within the GI-tract, 
while cck-2r is mainly expressed in the brain. Furthermore, cck-
1r expression levels increased after feeding in yellowtail pyloric 
caeca (217), suggesting that Cck-1r mediates the effects of Cck on 
appetite, as in mammals (220). Further studies on Cck receptors 
are required to elucidate the detailed mechanisms underlying the 
anorexigenic function of Cck in fish.

PYY
Peptide YY (PYY) is a member of the NPY family. But, while 
NPY is well known to have a strong orexigenic function in the 
CNS (1), peripheral PYY mainly produced in the distal intestine 
(221) inhibits food intake in mammals (222). PYY consists of two 
forms: 36 (PYY1–36) or 34 (PYY3–36) amino acids (223). Two 
isoforms of the gene pyy, pyya, and pyyb (previously named py) 
(224) have been identified in teleost species, including sea bass 
(155), Atlantic salmon (207), and piranha (Pygocentrus nattereri) 
(225). To date, the pyy gene expression patterns are similar among 
the studied fish species, being predominantly expressed in the 
brain and GI-tract (203, 226). On the other hand, controversial 
results have been reported when analyzing intestinal segments 
from fed versus fasted fish. Fasting decreased (in piranha) (225), 
increased (in yellowtail) (203), or did not affect (in Atlantic 
salmon) (207) pyy expression. After feeding, GI-tract pyy mRNA 
expression increased in grass carp (227), while it decreased in 
yellowtail (212). These observations suggest that pyy response 
to fasting/feeding might be species-specific (225). Central and 
peripheral Pyy1–36 injection reduced food intake in goldfish 
(228), while administration of the truncated form Pyy3–36 had 
no effect on food intake in channel catfish (188) or goldfish (228). 
These results suggest that Pyy3–36 is not a major endogenous 
form of Pyy in fish (228, 229). The current mammalian model 
indicates that PYY suppresses appetite through the inhibition of 
NPY and subsequent activation of POMC neurons (230); how-
ever, the effects of GI-tract-derived Pyy on CNS are still uncertain 
in fish. PYY inhibits GI motility and pancreatic exocrine activity 
in mammals (175), and a similar digestive function has also been 
suggested for Pyy in teleosts (207, 211).

GRP
Gastrin-releasing peptide (GRP) is a homolog of the amphibian 
bombesin (Bbs) and is released from the GI-tract. In mammals, 
GRP decreases feed intake (231) and stimulates gastric acid secre-
tion and motility (232). Bbs/Grp also appears to stimulate gastric 
secretion and motility in teleosts (233–235). In teleost species, Bbs/
Grp-like peptides have been detected in the GI-tract of rainbow 
trout (236) and chub (Squalius cephalus) (237), and bbs/grp cDNA 
sequences have been published for goldfish (238), zebrafish (239), 
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and Atlantic cod (240). Restricted feeding decreased grp expression 
in the gut of Atlantic cod (240) and zebrafish, but the grp decreas-
ing pattern was reversed in the latter after refeeding (239). Central 
or peripheral injections of Bbs suppress feed intake in goldfish 
(200), which might be attributed to Bbs-induced reduction in ghrl 
gut expression (241). In addition, peripheral injections of Bbs/
Grp decrease feeding in channel catfish (188) and Coho salmon 
(242). On the other hand, feeding status or diet composition does 
not seem to influence plasma Grp levels in rainbow trout (210). 
These observations indicate that teleost peripheral (gut) Grp may 
have an anorexigenic function and its signaling pathway is not 
endocrine but via neuronal circuits or local paracrine action, as 
proposed for the mammalian model (231).

The Evolution of Leptin Teleost Genes
The leptin gene (Ob) was first identified in double mutant (Ob/
Ob) mice (243) and presented an obese phenotype associated 
with impaired metabolic functions. Since obesity is linked to 
several comorbidities in humans, including type II diabetes and 
cardiovascular disease (244, 245), leptin has been extensively 
investigated in both humans and murine models. The first fish 
leptin was identified in 2005 (246). Leptin orthologs and several 
duplicated paralogs, originating from the whole-genome dupli-
cation (WGD) events, have recently been identified in teleost 
species (247, 248). These include 3R-leptin duplicated paralogs 
(A and B) in zebrafish (249), medaka (250), orange-spotted 
grouper (251), tilapia (252), chub mackerel [Scomber japonicas 
(253)], and European and Japanese eel [Anguilla anguilla and 
Anguilla japonica (254)], as well as two conserved leptin paralogs 
[lepAI/lepAII and lepA1/lepA2 (255, 256)]; in common carp and 
goldfish, as a result of the ancestral lepA doubling at the basal 
root of cyprinids (256, 257) about 8 million years ago (258). In 
salmonids, additional “recent” 4R-leptin duplicates have been 
identified consistently with the (pseudo) tetraploid state of their 
genome (259–261).

Leptin functions are mediated via class-I helical cytokine 
receptors (long-form LEPR) through intracellular JAK/STAT 
signal transduction pathways (262, 263), in an evolutionarily 
conserved manner as suggested by transfection assay studies for 
carp (264), rainbow trout (265), and tilapia (252) receptors. In 
humans, alternative splicing of the LEPR gene leads to expression 
of long (LEPRb) and short (LEPRa, -Rc, -Rd) isoforms (266).

Single leptin receptors have been identified in most fishes 
(154, 250, 251, 267, 268), but two 3R-duplicated lepR genes are 
present in the ancestral teleost eel. This suggests that a loss of the 
second lepR (lepRB) may have occurred after the clupeocephals/
elopomorphs split during teleost radiation (254). At the root of 
extant salmonids, the lepRA was then further duplicated by the 
4R-WGD as deduced by the recently cloned lepRA2 in Atlantic 
salmon (269). Like mammals, LepR isoforms that arise from 
alternative splicing of the C-terminal exon have been identified 
in fish (260, 264, 270, 271). LepR splice variants encode for 
circulating soluble binding proteins (LepBPs) that may function 
in leptin modulation, transport, and clearance (265, 271, 272). 
The characterization of the leptin-lepR system in the context 
of WGD(s) in teleost genomes and overall evaluation of their 

functional significance are instrumental to understand to which 
extent leptin duplicates have contributed to species-specific feed-
ing adaptations.

Leptin Signaling—The Liver and Adipose Tissue
In mammals, leptin is an anorexigenic hormone released into the 
blood stream mainly by adipocytes. It acts as a lipostatic factor 
in a negative feedback loop between fat tissue and hypothalamic 
brain regions so that the organism can maintain energy balance 
and adequate fat mass reservoirs (273–276). Leptin signaling in 
the CNS is exerted on different hypothalamic neurons to inhibit 
the expression of the orexigenic NPY and AgRP and stimulate 
anorexigenic POMC and CART (120, 277–280). In fish, liver is 
the main secretory source of LepA (249, 250, 260, 270, 281–283), 
although some studies reported moderate mRNA expression 
and secretion from the adipose tissue (260, 270, 281, 284, 285). 
Central and peripheral administration of recombinant leptin, 
using homologous or heterologous leptin, produces anorectic 
effects in several fish species, suggesting that the regulatory role 
of leptin on appetite is well conserved in vertebrates (120, 279, 
282, 286–289).

Leptin variations in response to feeding status (postprandial, 
short- and long-term fasting/food restriction) have been reported 
at the level of gene expression and protein among fish orthologs 
as well as among paralogs. For instance, postprandial increases 
in hepatic lepA and lepB expression are observed within 9 h in 
common carp (255), and hepatic lepA in orange-spotted grouper 
(251) and mandarin fish [Siniperca chuatsi (289)], suggesting 
that leptins may act as a satiety signal. In longer-term fasting 
(after 7 days and after 3 weeks), a significant increase in hepatic 
lepA expression was observed in orange-spotted grouper, but 
not in carp (289). Prolonged feed restriction induced hepatic 
upregulation of lepA expression in salmonids (290–292) and 
chub mackerel (253). In contrast, liver lepA expression decreases 
during catabolic states in striped bass (Morone saxatilis) (282), 
and hepatic mRNA expression of lep1, lep2, lepRa, and lepRb does 
not correlate to feeding status in eels (254).

lepB expression is low or absent in the liver of several teleosts 
and is mostly found in the CNS (253, 261, 289). The brain expres-
sion profiling of lepA-B paralogs in relation to feeding status 
shows species-specific variations among orthologs, paralogs, and 
time exposure to catabolic states. For instance, short-term fasting 
induces a downregulation of both lepA and lepB in the brain of 
mandarin fish (289), whereas it has no effect on leptin(s)/lepR in 
orange-spotted grouper (251). Long-term fasting has no effect on 
either lepA or lepB in Nile tilapia, Oreochromis niloticus (252), 
and eel (254), while in salmon, it induces upregulation of lepA1 
and leprA1 expression and downregulation of lepB1–2 genes in 
the brain (269). The increases in lepA1 and leprA1 mRNA upon 
fasting are in line with most studies on plasma leptin in salmonids 
(291–293). Also, in Mozambique tilapia (Oreochromis mossam-
bicus), hepatic lepA mRNA as well as circulating LepA is higher in 
fasted than fed fish (294), as is seen with salmonids. Rising leptin 
plasma levels could be adaptive during catabolic states inducing 
anorexigenic effects at the level of the CNS, and a consequent 
reduction of energy-demanding foraging behavior during peri-
ods of limited food availability (291, 295). Interestingly, in burbot 
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(Lota lota), plasma leptin levels decrease following fasting at 2°C 
but not at 10°C, implying that metabolic rate may influence leptin 
in catabolic conditions (296).

Given the lipostatic role of leptin in mammals, putative similar 
roles have been investigated in teleosts. The lepB gene has been 
proposed to be involved in lipid metabolism in chub mackerel 
(253) and mandarin fish (289). However, plasma levels do not 
correlate with body adiposity in salmonids (293, 297). Leptin 
patterns in adipose tissue vary widely among species and between 
duplicates; in salmon, only lepA1–2 are found with lepA1 type 
being higher expressed (260, 261). Low lepAI–II expression has 
been reported in visceral adipose tissue of common carp (298). 
The differential leptin expression in adipose tissue between fish 
species and mammals may be a result of the divergent fat alloca-
tion patterns observed for the various species but also related to 
differences between endotherm and ectotherms.

In vivo recombinant LepA treatments suggest anti-adipogenic 
effects and stimulatory actions on fat metabolism in several 
teleosts (287, 299, 300). Consistently, LepA treatment in  vitro 
stimulates lipolysis in rainbow trout adipocytes (284). In addi-
tion, lepr-deficient medaka exhibit increased visceral fat depots 
compared to wild types, which is consistent with the body com-
position of the leptin receptor-deficient db/db mice and Zucker 
obese rats (243, 301).

While these findings suggest that leptin is involved in mobiliza-
tion of lipid stores in fish, emerging literature suggests that rather 
than a canonic “lipostat” signaling for adipostasis (as in mam-
mals), leptin might be important in other metabolic processes. 
Recent fish studies suggest roles of leptin in glucose homeostasis 
(302–304) and in the coordination of energy metabolism and 
somatic growth (305). Leptin receptor-deficient zebrafish do not 
exhibit increased appetite or adiposity but display β-cell hyperpla-
sia and increased levels of insulin mRNA and alterations in glucose 
homeostasis, suggesting that leptin might act as a glucostat rather 
than a lipostat in fish. In both rainbow trout (303) and tilapia 
(304), either peripheral or central treatment of homologous LepA 
induces hyperglycemia and glycogenolysis. In tilapia, lipase gene 
expression was not altered, suggesting the hormone is important 
in mobilizing glucose. Thus, the contradictory leptin data attained 
so far on gene expression, in vivo and in vitro recombinant leptin 
administrations or leptin plasma levels in response to different 
feeding status, suggest an independent evolution of leptin func-
tions among teleosts. Species-specific responses among orthologs 
may reflect defined metabolic adaptations to the widely diverse 
fish life histories. Similarly, leptin duplicates may be under differ-
ent selective processes and respond to modulation of nutritional 
status in a spatiotemporal specific manner.

Other Tissues
In mammalian species, there is a range of other peripheral tissues 
that produce and release factors (peptides/cytokines) that affect 
appetite, such as the thyroid and pancreatic hormones.

Thyroid
The thyroid axis consists of hypothalamic TRH, pituitary 
thyrotropin (TSH), and thyroid hormones [thyroxin (T4) and 

tri-iodothyronine (T3)]. In mammals, the thyroid axis plays 
a significant role in energy expenditure, as it increase basal 
metabolic rate, control appetite, and food intake and regulate 
body weight (306, 307). The few studies that have targeted the 
role of the thyroid axis on fish feeding suggest a stimulatory 
effect. For instance, in goldfish, injections of either TRH or T4 
increase feeding and locomotion (82, 308), and treatment with 
the antifouling agent tributyltin increases weight gain and food 
intake, as well as serum thyroid hormone levels (309). In Amur 
sturgeon (Acipenser schrenckii), low feeding rates result in low 
thyroid hormones serum levels (310). In both winter flounder 
(72) and goldfish (82), fasting induces increases in hypothalamic 
trh mRNA expression, further suggesting an orexigenic role.

Pancreas
The pancreas secretes mainly insulin and glucagon-related pep-
tides, which have been shown to affect metabolism in fish (311). 
Plasma insulin and glucagon levels increase after feeding in fish; 
however, their specific role in the food intake regulation is largely 
unknown.

Complete isletectomy in the goby (Gillichthys mirabilis) results 
in hyperphagia (312), and in rainbow trout, intraperitoneal 
injections of insulin decrease food intake (313), suggesting an 
anorexigenic role for insulin in fish.

The vertebrate proglucagon (Pg) gene encodes three peptide 
hormones, namely, glucagon, glucagon-like peptide 1 (GLP-1), 
and glucagon-like peptide 2 (GLP-2) (314). In mammals, GLP-1 
and GLP-2 are satiety signals, mainly produced by the GI-tract 
(315, 316). In fishes, the pancreas synthesizes glucagon and Glp-
1, and the intestine releases glucagon, Glp-1, and Glp-2 (317). To 
date, the pg gene has also been isolated in several teleost species 
(314), and duplicate pg genes have been identified in all teleost 
species for which the genomic sequencing has been completed 
(318). Although, to our knowledge, there is no information on 
glucagon and Glp2, Glp-1 appears to act as an anorexigenic factor 
in fish. In channel catfish, central administration of GLP-1 has a 
potent inhibitory effect on feed intake, but peripheral injection 
showed only a weak or no effect on appetite (188, 319). On the 
other hand, peripheral GLP-1 injection strongly decreased feed 
intake in Coho salmon (242), suggesting that the peripheral 
(GI-tract) anorexigenic Glp-1 effects might be species-specific 
in fish. In rainbow trout, peripheral injections of Glp-1 increase 
plasma glucose levels, decrease hindbrain npy and pomc mRNA 
levels and increase hindbrain cart expression levels, suggest-
ing that Glp-1 regulates not only food intake but also glucose 
homeostasis (320). Although mammalian GLP-1 inhibits gastric 
emptying (321), the function of Glp-1 on digestion (speed) is still 
unclear in fish.

SeLeCTeD FiSH ADAPTATiONS iN THe 
eNDOCRiNe ReGULATiON OF FeeDiNG

Owing to their large diversity, fishes display a wide range of 
interesting adaptations in the feeding biology and appetite to dif-
ferent environmental conditions and food availability. Research 
on these comparative aspects both with regards to evolution 
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and function is still largely unexplored and only a few species, 
mainly with commercial interest, have been studied. Below, we 
provide some examples and discuss other adaptions that could 
be explored further.

Long-term Seasonal Fasting (The Arctic 
Charr)
The anadromous (sea-migrating) life-strategy of Arctic charr 
(Salvelinus alpinus) is characterized by substantial seasonal 
changes in food intake, growth, and adiposity. In the wild, most 
of the annual growth and energy accumulation occurs because 
of an intense appetite burst during the short seawater residence 
in summer, whereas overwintering in freshwater is characterized 
by anorexia and depletion of energy reserves (322–325). The sea-
sonal cycle in food intake and growth in this species seems to be 
a strictly genetically programmed process as captive offspring of 
Arctic charr exhibit pronounced seasonal changes in food intake 
and growth when held at constant temperature and given food in 
excess (326, 327). Because of the physiologically regulated sea-
sonal feeding cycles, Arctic charr represent an interesting model 
for investigation of adaptive mechanisms underlying long-term 
regulation of appetite and energy homeostasis (328).

It has been suggested that the seasonal feeding cycle is regu-
lated by a lipostatic mechanism (297, 328–330). Leptin, the prin-
cipal regulator of the lipostatic mechanism in mammals (331), 
does not appear to be involved in signaling the large variations 
of adiposity in the Arctic charr (297). However, hepatic leptin 
production increases at the end of the winter fasting period (297), 
when fat mobilization and increased plasma glucose occurs (325). 
It is possible that leptin has a role in depressing metabolism dur-
ing long-term seasonal fasting, when fat stores are depleted by the 
suppression of liver lipolytic pathways (292, 297). It is also pos-
sible that leptin is more important as a glucostat than an adipostat 
in Arctic charr, as suggested in zebrafish (302).

The role of Ghrl in controlling the seasonal variation in 
appetite of charr has also been explored. Stomach ghrl mRNA 
expression seems to be negatively correlated with feed intake and 
growth (332), supporting that Ghrl acts as an anorexigenic factor, 
as suggested in one study on rainbow trout (191). The expression 
levels of a range of putative central appetite-controlling genes in 
Arctic charr such as pomc, cart, mc4r, agrp, and npy were not 
correlated to its annual feeding cycle (333). Further studies are 
needed to understand how anadromous Arctic charr can main-
tain an anorexic state when overwintering despite the massive 
loss of fat reserves.

Long-term Fasting Related with 
Reproduction (The Mouthbrooder)
Mouthbrooder fish hold their eggs in their mouth until their young 
are free-swimming. Several fish are classified as mouthbrooders, 
some being paternal (male holds eggs) and others maternal 
(most common). Eggs can be fertilized in the environment or 
in the female’s mouth (in the case of maternal brooding). Teleost 
mouthbrooder fish include cichlids (e.g., mbuna Astatotilapia 
burtoni) and tilapias such as Oreochromis mossambicus and 
Oreochromis niloticus, sea catfish (e.g., Ariopsis felis), cardinalfish 

(e.g., Pterapogon kauderni), and gouramis (e.g., dwarf gourami 
Colisa lalia). While guarding eggs, most mouthbrooders do not 
eat or feed less, often resulting in a weight decrease (334–338).

Very little is known about the endocrine mechanisms 
responsible for brooding-induced fasting. Fed mbuna females 
with large ovarian eggs (pre-spawning or spawning) have larger 
gonadotropin-releasing hormone (Gnrh1) neurons (339), 
which has also been observed in convict cichlid, Amatitlania 
nigrofasciatus (340) and higher mRNA expression levels of whole 
brain gnrh1 (major Gnrh form involved in reproduction), than 
mouthbrooding females carrying eggs, which is reflected by 
higher gonadosomatic indexes and higher circulating levels of 
sex steroids (341). However, no significant differences are seen 
in gnrh2, in contrast with fasting-induced changes reported for 
other fish species [e.g., winter flounder (342) and Ya fish (343)]. 
Similarly, no differences are seen in npy, pomc or mch whole-brain 
expression, between mbuna holding eggs in their mouths and 
pre-spawning females (341). However, orexin increases in fasting 
mbuna females, which is consistent with its stimulatory role on 
feeding and inhibitory actions on spawning (66). The increase in 
cck is more surprising, as Cck is a satiety factor that is normally 
secreted when the GI-tract is full. This increase in cck might be 
a response to long-term fasting to attenuate hunger and prevent 
feeding by counteracting increases in orexigenic peptides such 
as orexin.

Interestingly, when comparing fed and fasted mouthbrooding 
females from which eggs/fry have been removed, no differences 
in brain expressions of appetite regulators (npy, cck, orexin, pomc, 
and mch) were seen (341), possibly because of changes in physi-
ology and metabolism. However, as no information is available 
about the effects of fasting on appetite regulators for pre-spawning 
females or immature fish, it is difficult to draw definitive conclu-
sions on the changes that lead to brooding-induced fasting.

Long-term Fasting in Aquaculture  
(Trout and Salmon)
Like the above-mentioned Arctic charr, many other fish spe-
cies, including rainbow trout and Atlantic salmon, tolerate long 
fasting periods. Rather than a genetically driven seasonal halt in 
feed intake as in charr, they adapt to long periods with low food 
availability in the wild. To better understand the potential role 
of various peptides in this process, plasma protein and/or gene 
expression levels of candidate appetite-regulating hormones and 
neuropeptides have been analyzed during variable periods of 
food deprivation in salmon and trout.

Leptin
The picture of leptin endocrinology dynamics in fish during 
fasting is not clear-cut, even within species, e.g., rainbow trout. 
Recent data on two lines of rainbow trout bred for either high (fat 
line) or low (lean line) muscle lipid content indicate that leptin 
response to fasting may be plastic and dependent on selective 
breeding, environmental factors and/or energy status and body 
composition (344). The two lines of trout differ in the fat deposi-
tion pattern: the fat line has higher total energy reserves, higher 
muscle adiposity, and lower visceral adiposity than the lean line. 
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A 4-week fasting period decreased plasma Lep in the lean line 
while Lep levels and hepatic lep expression remained unchanged 
in the fat line (344). This contrasts previous results in rainbow 
trout, where leptin levels increase or remain unchanged during 
fasting, despite a decrease in condition factor (293, 345).

Tissue lep gene expression was also unaltered in long-term 
fasted fish except for an increased expression in fat rich muscle 
tissue (346). In the same study, the fasted fish displayed hyper-
phagia when they could refeed, eating as much as up to 8.4% of 
their body weight (346). Hence, even though the fasted fish were 
clearly in a catabolic state, hungry and mobilizing energy stores, 
leptin production and plasma levels remained unchanged.

Unlike the observation mentioned above (346), appetite does 
not always return immediately when food becomes available for 
anorectic/food-deprived salmonids (345, 347). During a 72-h 
refeeding period for long-term fasted rainbow trout, there was 
a large variability in the time to start feeding between individu-
als, and some did not feed at all in the beginning. This response 
may have been caused by high leptin levels in these individuals 
(345). Leptin generally did not start to decrease until some food 
had been ingested, raising the question of which mechanism is 
responsible for triggering the onset of appetite. In fine flounder 
(Paralichthys adspersus), leptin also decreases after, but not before 
refeeding (291). This fast leptin response indicates that there is a 
short-term meal-related regulation of leptin release (291, 345).

Available data on the relation between leptin and energy status 
in Atlantic salmon are still limited to those from food restriction 
studies or experiments using diets with different energy content 
(260, 290, 348, 349). Plasma leptin levels were not different 
between fish that were fed full or restricted (60%) rations for 
10 months, although hepatic lepA2 expression was higher in the 
fed than in the fasted salmon (260). In a shorter trial (7 weeks), 
feed-restricted fish had higher plasma leptin levels and elevated 
hepatic lep expression levels than controls fed to satiation (290), 
which is consistent with some of the previous studies on rain-
bow trout (293, 345). Restricted feeding during several months 
(April–September) in Atlantic salmon parr undergoing sexual 
maturation showed that fish with the highest fat stores had the 
lowest leptin levels (349). Similarly, fish on a high-energy diet 
had lower leptin levels than fish on a low energy diet with less 
adipose stores (348). Taken together, these studies lend further 
support to the notion that leptin is not a long-term adiposity 
signal in salmonids. The results obtained from fish species are 
also interesting in the context of studies on wild mammals with 
seasonal changes in adiposity and feeding behavior, showing a 
large variability in the link between plasma leptin levels, fasting, 
and adiposity (350–353).

Ghrelin
The response of plasma Ghrl and ghrl mRNA expression to fast-
ing in fish is highly variable between studies and fasting duration 
(354). There are few studies investigating the response of Ghrl 
to long-term fasting in Atlantic salmon and rainbow trout. In 
rainbow trout, plasma Ghrl levels decreased after 1–3  weeks 
of fasting (213). In Atlantic salmon, 2  days of fasting led to 
elevated plasma Ghrl levels, indicating an effect of short-term 
feeding status on Ghrl release, a response consistent with this 

“hunger hormone.” However, after 14 days of food-deprivation, 
Ghrl levels were unchanged in fasted salmon compared to 
fully fed controls (355). Whether these differences are a result 
of true species differences in Ghrl function (see section above 
about ghrelin), domestication processes or experimental design 
remains unclear.

Fasting-Induced Changes in Central Appetite 
Regulatory Neuropeptides
The recent study by Jørgensen et al. (346) is one of few that have 
investigated potential changes in the expression of hypothalamic 
appetite-regulating peptides during fasting in a salmonid species. 
Rainbow trout was fasted for 4 months, and among the peptides 
that were measured in the hypothalamus (lepa1, cart, agrp, 
pomca1, pomca2, pomcb, npy, mc4r, and crf), few fasting-induced 
effects were observed. There was an increased gene expression 
of pomca1 and pomcb, suggesting that increased pomc transcript 
levels may be a potential mechanism for a reduced appetite and 
foraging activity in catabolic conditions.

Peripherally injected Lep seems to increase the expression of 
pomc-a1 and -a2 with a concurrent transient reduction in npy 
gene expression (279). In rainbow trout, the leptin receptor is 
localized in mediobasal hypothalamic appetite centers, and it 
seems that Pomc and Cart mediate leptin’s acute anorexigenic 
effect in this species (295). It may be speculated that during 
long-term fasting in salmonids, increased circulating leptin levels 
stimulate hypothalamic Pomc neurons, suppressing appetite. 
Brain sensitivity (amount of receptor levels) to, e.g., leptin and 
Ghrl will also influence appetite. At the termination of a 7-week 
feeding/fasting experiment, fed Atlantic salmon parr showed an 
increase in lepr gene expression in the brain, while the lepr gene 
expression in food-deprived fish was unaltered despite increased 
plasma Lep levels. This was interpreted by the authors as the 
possible result of a negative feedback of Lep on its receptor (290).

Life-Stage Transition (First Feeding Larvae 
to Juveniles)
Most fish species spawn eggs, in which the developing embryo 
relies on yolk nutrients until it is sufficiently developed to capture, 
ingest, and digest feed. After onset of exogenous feeding, the 
larvae continue to grow and develop into juveniles—a transi-
tion triggered by environmental cues that induce a coordinated 
program to remodel the organism. The transition involves a wide 
range of changes in behavior, habitat, and physiology, and many 
fish larvae change food sources as they become adults; therefore, 
it has major consequences for feeding behavior and most likely in 
the control of appetite (356).

Several studies have aimed to understand the various aspects 
of the feeding biology and nutritional requirements of develop-
ing fish larvae to improve their performance in aquaculture. 
However, very few have focused on the mechanisms that control 
appetite and food intake (42, 357). This may be partly explained 
by biological and technical challenges when working with fish 
larvae, such as the accurate determination of food intake, the use 
of individual larva (instead of pools), or the handling of individual 
variability in growth and development.
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There are several described cases where fish larvae continue 
to eat, despite having an apparently full GI-tract. For instance, 
Atlantic halibut larvae continue to ingest prey despite a full gut 
and with gut transit rates so high that the prey is eliminated (def-
ecated) undigested and sometimes even alive (358). Apparently, 
the feedback systems and satiety signals originating in the GI-tract 
are not functional in these early stages. It has been argued that fish 
larvae have adapted to low concentrations and availability of prey 
in the wild. Consequently, satiety signals may not be required to 
prevent overfeeding. In aquaculture conditions, however, larvae 
are reared with constant and abundant food availability and 
continuous light, and therefore appetite-controlling mechanisms 
become crucial to avoid continuous ingestion of prey, short gut 
transit times of ingested food, reduced time for digestion, low 
digestive efficiency, and nutrient absorption (359). This is of 
particularly interest for altricial-gastric species, which lack a 
fully developed and functional stomach prior to metamorphosis 
(360–364).

Some studies have started to explore the ontogeny expres-
sion of several appetite regulators (71, 240, 365, 366), and their 
detailed spatial and differential distribution in fish larvae (159). 
Key factors in appetite control are present very early in fish 
development, such as npy at zygote stage in blunt snout bream 
(Megalobrama amblycephala) (367) and at blastula stages in 
orange-spotted grouper (170), ghrl (240) and ox (71) at cleav-
age stage, and gastrin (240) at blastula stage in Atlantic cod. In 
Atlantic halibut, only ghrl and cart mRNA expression levels were 
significantly modified throughout development, while ontogeny 
did not affect npy, pyy, and pomc-c expressions levels in the brain 
of the developing larvae (35). Ghrl was widely distributed in the 
GI-tract and present in the anterior GI-tract before the gastric 
glands and pepsinogen production appeared in newly Atlantic 
halibut hatched yolk-sac larvae (368). Notably, increased levels 
of ghrl in the GI-tract during metamorphosis were correlated 
with stomach development (360, 369). cart mRNA expression 
levels decreased at the initiation of halibut metamorphosis, while 
cart levels in whole larvae of Atlantic cod increased during the 
corresponding developmental phase (365). In Atlantic cod, cck, 
npy, and ox show a similar pattern of a moderate but consistent 
decrease from 3 days post-hatching (dph) until 60 dph (42, 365). 
The differences in cart expression between Atlantic halibut and 
Atlantic cod larvae are intriguing and may be a result of different 
factors, including the use of whole cod larvae versus halibut head 
and differences in developmental rate (370, 371).

Many of the neuropeptides involved in appetite control in 
higher vertebrates and adult teleost are present in the brain of fish 
larvae, suggesting a role of these genes in appetite control also in 
the early stages (35, 159, 168, 372–374). In the recent study of Le 
et al. (159), the development expression patterns of npy, cart, and 
ox genes were analyzed in brain regions of Atlantic cod, from start 
of exogenous feeding until juvenile stage. Both spatial and tem-
poral expression patterns of orexigenic and anorexigenic factors 
during larval ontogeny indicated a progressive development of 
the brain regulatory networks that control appetite. In addition, 
the wide distribution and co-expression of npy, cart, and ox in 
hypothalamus, led the authors to propose that this is the main 
area for appetite control in fish larvae, comparable to mammals 

and adult fish (6, 374–376). However, it remains unclear to what 
extent these appetite-regulating genes are functional at these early 
developmental stages.

Few have assessed the response of these factors in terms of 
feed intake (35, 40) or different diets (40, 42, 377). In Atlantic cod 
larvae, Kortner et al. (42) showed that the expression levels of cck 
and npy were diet-specifically modulated and followed the same 
expression profile as the genes coding for digestive enzymes, sug-
gesting a close connection between appetite control and digestion 
processes. Recently, two studies in Senegalese sole larvae have 
analyzed the effect of fatty acids ingestion in the control of food 
intake (378, 379). The administration of several fatty acids (leate, 
linoleate, α-linolenate, or eicosapentaenoate) in sole post-larvae 
enhanced the expression of the anorexigenic neuropeptides cart4 
and pomcb and decreased the orexigenic npy, with no major 
discrepancies between the different fatty acids tested (378). 
However, the transcriptional analysis of several anorexigenic: 
pyya, pyyb, glp1, cckl, cart1a, cart1b, cart2a, cart4, pomc-a, pomc-b,  
crf; and orexigenic: gal, npy, agrp2 factors showed a dissimilar 
response to feeding times and dietary fatty acid composition (cod 
liver oil, linseed oil, soybean oil, or olive oil) that was generally 
not in agreement with their putative function (40). For example, 
the changes observed for sole npy in developmental stages 16 
and 34 dph were not consistent. At 16 dph npy expression lev-
els increased before feeding, as expected, but then continue to 
increase up to 3  h after feeding (40), which is counterintuitive 
for an orexigenic factor (1, 12). At 34 dph, npy expression was 
only affected by the dietary fatty acid profile. This was similar 
to the results obtained by Kortner et al. (42), where cod npy was 
diet-specifically modulated in larvae at 16 dph, but no evident 
changes were found at 29 dph. Furthermore, in Atlantic halibut 
larvae, npy levels increased 5 h after refeeding (35). The differ-
ences observed between species may suggest that the Npy is 
still not fully functional in appetite regulation in larvae, pos-
sibly reflecting a yet underdeveloped appetite-regulating system. 
Furthermore, the response of npy, pyy, pomc-c, and cart to food 
deprivation and refeeding in Atlantic halibut larvae did not appear 
to be coordinated (35), lacking a consistent expression pattern to 
explain their contribution to appetite control in early larvae as it 
was for Senegalese sole larvae (40). In addition, the differences 
observed between both studies in Senegalese sole larvae may be 
explained by the different approaches used: use of complex diets 
fed through the whole larval and post-larval stage (379) versus a 
tube-fed single meal of pure fatty acids solution (378).

Altogether, these studies support the hypothesis that a 
feedback signaling system from the GI-tract to the CNS is still 
not fully established in the early larval stages. This, however, 
does not rule out that developing fish larvae may have their own 
specific system of appetite regulation adapted to their feeding 
ecology or that larvae possess a rudimentary, still developing, 
regulatory system. Fish larvae are often considered as “feeding 
machines” because they can ingest food at rates above their own 
weight daily (357, 380–382). This suggests that larvae are con-
stantly hungry and motivated to feed, although several studies 
have shown that some fish larvae exhibit a circadian prandial 
pattern and do not feed constantly (383–385). Given the com-
plexity of appetite-controlling mechanisms and how difficult 
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it is to interpret results due to the lack of specific information 
on the roles played by some of the potential anorexigenic and 
orexigenic factors in fish, it remains a challenge to elucidate the 
appetite-control system in fish larvae with different digestive 
tract morphologies and feeding strategies. A better understand-
ing will greatly increase our basic knowledge on larval physiol-
ogy and help to improve larval rearing regimes and feeding 
protocols in hatcheries.

The voracious Feeders
Several species have an aggressive and voracious feeding 
behavior, most of them usually being carnivorous top predators. 
Well-known examples include Perciformes such as bluefish 
(Pomatomus saltatrix), bluegill (Lepomis macrochirus), cobia, 
groupers, tilapia and African cichlids, salmonids (e.g., rainbow 
trout), pikes (e.g., Northern pike Esox lucius), some characids 
(e.g., dourado and piranhas), as well as elasmobranchs, i.e., sharks 
and rays (338).

Within the teleosts, several studies have examined the effects 
of fasting and feeding on the expression of a few appetite regulator 
genes. However, there are no data on how endocrine mechanisms 
might regulate the increased feed intake in these voracious fish, 
and no comparative study has been performed between voracious 
species and a “gentler” herbivore/omnivore species (e.g., cyprin-
ids, some flatfish species).

In response to fasting, it appears that most voracious fish 
display a similar trend to what occurs in non-aggressive species 
[e.g., the omnivorous goldfish and pacu (Piaractus mesopotami-
cus)], i.e., increases in expression of orexigenic factors [e.g., ox 
in dourado (73) and piranha (225), and ghrl in piranha (386)] 
and decreases in expression of anorexigenic factors [e.g., cart in 
piranha (225)]. However, few studies have examined peripran-
dial changes in voracious fish. Taking the example of orexin, its 
expression appears to increase around feeding time and decrease 
after feeding, similar to what is seen for other fish species, such as 
orange grouper (70) and tilapia (387). In dourado, ox expression 
is similar before, during, and after feeding, suggesting a constant 
state of feeding/searching behavior. In addition, ox expression 
levels in fasted fish increase at mealtime and dramatically at post-
feeding time, suggesting that dourado have a high motivation to 
search for food that persists after meal time (73). In contrast, 
pacu, a fish from the same order (Characiformes) as dourado, 
shows high ox levels at pre-feeding, and these tend to decrease 
at mealtime and post-feeding. Moreover, if pacu is not fed at the 
scheduled mealtime, ox levels increase at mealtime but return to 
basal levels within 1 h, suggesting that the fish have “given up” on 
searching food (388), which is reflected by their calm behavior 
(Volkoff, personal observation).

Voracious fish are often aggressive during feeding. Although 
aggression is often related to reproduction, in these species it also 
occurs outside the reproductive context (389). Interestingly, early 
studies in cichlid fish (Tilapia heudelotii macrocephala) and in 
bluegill have shown that electrical stimulation of the hypotha-
lamic region elicited both feeding and aggressive responses (390, 
391). The brain monoaminergic system, especially serotonin 
[5-hydroxytryptamine (5-HT)], plays a key role in controlling 
aggressive behavior (392). 5-HT has been reported to inhibit 

aggressive behavior in several voracious species, e.g., trout (393) 
and pikeperch (Sander lucioperca) (394). Interestingly, surface 
Mexican tetra (Astyanax mexicanus) species are aggressive preda-
tors, in particular during feeding episodes, whereas blind cave 
forms of this species exhibit reduced aggressiveness and have a 
tendency to continuously search for food. These differences in 
foraging and aggressive behaviors are related to 5-HT network 
modifications within hypothalamic neurons (395, 396). 5-HT also 
has anorexigenic actions in rainbow trout (397) and in mammals 
(387) and has been shown to interact with appetite regulators. For 
example, the behavioral effects produced by orexin administra-
tion, i.e., increased locomotion and feeding, are blocked by 5-HT 
antagonists (398). It would therefore be valuable to compare 
5-HT levels between voracious and non-voracious fish.

Intra-species differences (sometimes referred to as personality/ 
motivation) in basal locomotor and feeding activities are often 
observed between individuals. These differences might be due 
to different expression levels of appetite regulators or mono-
amines. For example, in tilapia, low serotonergic activity in the 
hypothalamus is correlated with a personality characterized 
by high feeding motivation (399). Similarly, in salmonid fish, 
subordinate individuals characteristically exhibit higher plasma 
cortisol levels than dominant ones (400). There are most likely 
different causes for voraciousness in fish, and more direct studies 
are needed to explain the underlying mechanisms of the appetite-
controlling networks that result in these large differences in 
feeding behaviors.

How important is vision? (The Blind 
Mexican Cavefish)
Although most fish rely in part on vision to feed (401), this 
sense is not essential for some species. The best example is that 
of fish living in cave environments, which are characterized by 
constant darkness and food scarcity (338, 402). Cavefish such 
as the Mexican tetra are often blind and have specialized ana-
tomical features to better locate food and maximize food intake 
(396, 403, 404). Such adaptations include well-developed olfac-
tory bulbs (405), taste buds (406), and lateral line neuromasts 
(407–409). In addition, these fish display behavioral adaptations 
for detecting prey and increasing feeding efficiency: they are 
opportunistic feeders, show increased swimming/explora-
tory and feeding behaviors (410), do not sleep (411), and do 
not exhibit schooling behavior (403, 412, 413). This enhanced 
food-finding efficiency is present not only in adults but also in 
young larvae when the yolk has been depleted (414). Overall, 
surface fish placed in the dark are less efficient at finding food 
than cavefish (415–417).

To cope with a particularly food-limited habitat compared to 
most surface fish, cavefish have developed behavioral (increased 
appetite, with ingestion of large amounts of food during feeding 
events) and metabolic adaptations. The latter include reduced 
basal metabolic rate, increased metabolic efficiency, starvation 
resistance (reduced weight loss during fasting), and increased 
body fat composition (403, 413, 418).

Peripheral injections of known orexigenic factors in cave-
fish, such as OX, GHRL, and apelin, increase not only food 
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consumption but also the whole brain mRNA expressions of 
orexigenic factors (e.g., GHRL injections induce an increase in ox 
brain expression), whereas injections of CCK reduce food intake 
and induce a decrease in the whole brain expression orexigenic 
factors (e.g., apelin) (67, 79). Peripheral injections of OX greatly 
increase locomotor activity and ox brain mRNA levels in cavefish. 
Basal ox mRNA levels in whole brain are higher in cave fish than 
in surface fish (Buenos Aires tetra, Hyphessobrycon anisitsi, 
a characid surface species closely related to Astyanax) (405), 
suggesting that the higher overall locomotor/feeding activity in 
cavefish compared to the surface forms might be mediated by 
an increase in ox levels (67, 79). Coding mutations in mc4r also 
contribute to the increased appetite and starvation resistance of 
cavefish compared with surface fish (419).

Cavefish are avid feeders and become very active around 
feeding time when appetite increases (420). Brain ox mRNA 
expression levels increase before and decrease after a scheduled 
mealtime (67), suggesting that orexin acts as a short-term hunger 
signal and is linked to food anticipatory activity. Conversely, the 
brain expression of the anorexigenic pyy increases after feeding 
(67), suggesting a role for Pyy as a short-term satiety factor. 
However, cck brain expression does not display periprandial 
variations in cavefish (67), which might contribute to a less rapid 
satiety and longer bouts of feeding.

Short-term food restriction increases ox brain mRNA tran-
scription levels in cavefish (67), indicating a role in the long-
term regulation of feeding in cavefish and perhaps triggering 
an increased motivation to seek food. However, as opposed to 
most surface fish examined to date, short-term fasting does 
not increase brain mRNA levels of pyy and cck, suggesting that 
the anorexigenic systems are inhibited during fasting, perhaps 
to slow down digestion/gastric emptying of food in the gut 
or to maintain a hunger state that would favor food-seeking 
behavior.

FUTURe

Many of the studies on appetite-controlling systems in teleosts 
are based on domesticated fish that have been bred in captivity 
for generations (e.g., salmon, carp, and cod). These fish, which 
are submitted to optimal habitat (e.g., no predators, constant 
optimal photoperiods and temperatures) and feeding (e.g., 
satiation, minimal food-seeking behavior) conditions might 
have present modifications in their feeding behavior and sys-
tems controlling appetite, as compared to wild fish exposed to 
suboptimal conditions. This phenomenon has been shown in 
domesticated rats that eat more than wild individuals (421). 
Comparisons between wild and captive populations might 
reveal important information on the effects of domestication on 
feeding behavior. Therefore, observations of feeding behavior 
and sampling of fish in their natural environment would be 
valuable.

Overall, within a few model species, only a few appetite-
regulating hormones (e.g., leptin, Npy, and Cck) have been 
studied more in detail. In addition, there are very few studies 

on the mechanisms of action of these hormones, including at 
the level of their target cells and their receptors. Many ques-
tions related to the concepts “set-point” in energy homeostasis 
and stimulus for synthesis/secretion of these hormones, i.e., 
whether it is direct nutrient sensing by the hormone-produc-
ing cells or stimulation of these cells by another hormone/
neurotransmitter or both, also remain to be answered. Also, 
many of these hormones are expressed both in the CNS and 
in peripheral tissues and the relative importance of each, as 
well as their interactions in controlling the appetite, are poorly 
understood.

One of the major limitations in the field of appetite endo-
crinology in fish is that the vast majority of studies have been 
constrained to the analyses of transcript levels. Although the 
existence of a proportional relationship between mRNA and 
protein expressions measured from a tissue have long been 
assumed, recent data show that this is not always the case (422). 
The development of fish-specific hormone assays and protein 
expression techniques is crucial for a better understanding 
of appetite-regulating mechanisms in fish. In addition, most 
studies analyze large portions of specific tissues (e.g., whole 
brain, whole hypothalamus, or whole intestine), which might 
also bias results, as, for example, specific regions (e.g., proximal 
versus distal intestine, or specific hypothalamic nuclei) might 
have different functions and respond differently to feeding 
conditions.

Although it is often observed that growth is directly related to 
food intake, many gaps exist on our understanding of how these 
two functions are connected in fish. The recent development of 
GH-transgenic fish is promising for the exploration of this field. 
Thus, the development of emerging techniques such as gene edit-
ing (CRISPR/Cas9 system) will be a great tool to study the role of 
appetite regulators in fish. Targeted mutagenesis using CRISPR/
Cas9 system has been successfully used in several species, includ-
ing zebrafish (423), salmon (424), and African cichlids (425), but 
so far only a few studies have used this technique to examine 
the role of appetite regulators on fish models, e.g., leptin receptor 
mutations in zebrafish (302).
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