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Purpose: Heterotopic ossification (HO) occurs in the setting of persistent systemic 
inflammation. The identification of reliable biomarkers can serve as an early diagnostic 
tool for HO, especially given the current lack of effective treatment strategies. Although 
serum biomarkers have great utility, they can be inappropriate or ineffective in traumatic 
acute injuries and in patients with fibrodysplasia ossificans progressiva (FOP). Therefore, 
the goal of this study is to profile the cytokines associated with HO using a different 
non-invasive source of biomarkers.

Methods: Serum and saliva were collected from a model of trauma-induced HO 
(tHO) with hind limb Achilles’ tenotomy and dorsal burn injury at indicated time points 
(pre-injury, 48 h, 1 week, and 3 weeks post-injury) and a genetic non-trauma HO model 
(Nfatc1-Cre/caAcvr1fl/wt). Samples were analyzed for 27 cytokines using the Bio-Plex 
assay. Histologic evaluation was performed in Nfatc1-Cre/caAcvr1fl/wt mice and at 48 h 
and 1 week post-injury in burn tenotomy mice. The mRNA expression levels of these 
cytokines at the tenotomy site were also quantified with quantitative real-time PCR. 
Pearson correlation coefficient was assessed between saliva and serum.

results: Levels of TNF-α and IL-1β peaked at 48 h and 1 week post-injury in the burn/
tenotomy cohort, and these values were significantly higher when compared with both 
uninjured (p < 0.01, p < 0.03) and burn-only mice (p < 0.01, p < 0.01). Immunofluorescence 
staining confirmed enhanced expression of IL-1β, TNF-α, and MCP-1 at the tenotomy 
site 48  h after injury. Monocyte chemoattractant protein-1 (MCP-1) and VEGF was 
detected in saliva showing elevated levels at 1 week post-injury in our tHO model when 
compared with both uninjured (p < 0.001, p < 0.01) and burn-only mice (p < 0.005, 
p  <  0.01). The Pearson correlation between serum MCP-1 and salivary MCP-1 was 
statistically significant (r = 0.9686, p < 0.001) Similarly, the Pearson correlation between 
serum VEGF and salivary VEGF was statistically significant (r = 0.9709, p < 0.05).
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conclusion: In this preliminary study, we characterized the diagnostic potential of spe-
cific salivary cytokines that may serve as biomarkers for an early-stage diagnosis of HO. 
This study identified two candidate biomarkers for further study and suggests a novel 
method for diagnosis in the context of current difficult diagnosis and risks of current 
diagnostic methods in certain patients.

Keywords: biomarkers, inflammatory cytokines, heterotopic ossification, saliva, minimally invasive, fibrodysplasia 
ossificans progresiva

inTrODUcTiOn

Accurate diagnoses of progressively debilitating disease and 
sequelae of severe traumatic injury are imperative for early 
treatment and improved patient outcomes. Unfortunately, 
misdiagnoses and delayed diagnoses are made at an alarming 
rate with severe consequences, particularly with presentation 
of rare disease. The formation of heterotopic ossification (HO), 
endochondral bone within soft tissue structures (1), provides 
a unique pathology representative of this dilemma. Clinically, 
HO can result from multiple etiologies including severe burns, 
neurologic injury, major surgery, and genetic mutation (2). 
In the case of fibrodysplasia ossificans progressiva (FOP), an 
autosomal dominant disease in which patients develop accu-
mulating foci of HO in response to local and systemic insult, 
87% of patients were found to be incorrectly diagnosed at initial 
presentation (3). Of these, 49% of patients reported accelerated 
bone development from invasive and unnecessary diagnostic 
procedures. These patients will develop HO with even as minor 
an insult as a blood draw highlighting the need for accurate and 
non-invasive diagnostic tools (3). Even with a diagnosis of FOP, 
clinicians are still unable to definitively predict when a new HO 
lesion will develop.

Trauma-induced HO (tHO) patients represent an equally 
challenging diagnostic dilemma as they do not have a genetic 
mutation as seen in FOP. HO occurs in over 20% of primary hip 
replacements, extremity traumas, amputations, large total body 
surface area burns, traumatic brain injuries, spinal cord injuries, 
and pressure ulcers and over 65% of repeat hip replacements and 
blast injuries (4–6). Contemporary treatment protocols involve 
surgical extirpation; however, even after a technically successful 
operation, over 75% of patients have restricted range of motion 
and 30% of patients have recurrence (7, 8). Early detection and 
timed treatments are needed for patients at high risk for HO, 
given the sub-optimal outcomes under the standard treatment 
paradigm. Thus, alternative strategies are needed to predict which 
patients will develop HO. Therefore, the primary translational 
gap to prevent this complication of trauma is early diagnosis and 
access to a prophylactic agent that can be safely administered to 
appropriate candidates.

Anatomic HO sites elude radiographic detection prior to 
3 weeks post-injury by which point occupational therapy must be 
halted and joint contractures progress. Clinical detection is per-
formed with computed tomography (takes an average of 23 days 
after symptom development to show evidence of HO) (9); bone 
scans with 99mTc-MDP (low specificity, which leads to potential 
difficulties in discriminating HO from other inflammatory, 

traumatic, or degenerative processes of the skeleton) (10); ultra-
sound (relies on the expertise of the physician, the availability 
of ultrasound equipment) (11); and serum ALP measurement 
(sensitive, but not specific, with alterations dependent on hepatic 
and renal function) (12).

Recent studies in HO have detected matrix metalloprotein-
ase-9 as an early-stage biomarker in a mouse model of BMP-
induced HO (13). Other studies in human serum and wound 
effluent from patients following traumatic injury have dem-
onstrated the prognostic correlation of HO development with 
elevated concentrations of multiple cytokines and biomarkers 
including interleukin-6 (IL-6), interleukin-10 (IL-10), mono-
cyte chemoattractant protein-1 (MCP-1), interferon γ-induced 
protein 10, and macrophage inflammatory protein-1α (MIP-1α) 
(14, 15). These findings support the utility of using biomarkers in 
HO diagnosis utilizing sample collection from serum and wound 
effluent (15).

Serum biomarkers have great utility due to the fact that they 
are easily accessible and minimally invasive to patients. However, 
serum biomarkers have been described for wound healing in 
chronically malnourished elderly or chronically debilitated patients 
with modest success and have been found inappropriate or ineffec-
tive in traumatic acute injuries, as seen with combat casualties (16). 
For such patients with complex trauma, appropriate biomarkers of 
local (via wound effluent) wound healing are on the horizon (17). 
Blood collection is invasive, requires pre-processing, and entails 
higher risk of contracting infectious disease. Alternatively, saliva is 
a mirror of the body’s health as a wide spectrum of biomolecules 
is transported from the blood capillaries through the epithelium 
of salivary glands (18, 19). Saliva collection is non-invasive and 
less resource intensive. Also advantageous, saliva possesses lower 
protein content, which would be potentially confounding, and less 
variation in terms of composition when compared to serum (20). 
Saliva biomarkers have been used for assays of bone turnover bio-
markers (21) and also have been increasingly used in the diagnosis, 
prevention, and treatment of multiple diseases including certain 
cancers, cardiovascular disease, diabetes, and graft-versus-host 
disease (GVHD) (22). In particular, the cytokine interleukin-1β 
(IL-1β) was shown to be elevated in patients with oral cancer, while 
low to undetectable in serum at the same time points (23). Similarly, 
in patients with GVHD, IL-1β was detectable in saliva before the 
time of diagnosis and remained elevated for a significantly longer 
duration than serum levels (24). Here, we demonstrate the diag-
nostic utility of saliva biomarkers including MCP-1 and IL-1β for 
HO development using tHO and non-trauma genetic HO mouse 
models with clinical translatability to burn trauma patients who go 
on to develop HO.
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MaTerials anD MeThODs

animals
All animals were housed in standard conditions. Animal care was 
provided in accordance with the University of Michigan School 
of Medicine guidelines and policies for the use of laboratory 
animals. C57BL/6 male mice aged 6–8  weeks (Charles River, 
Wilmington, MA, USA) were used for all experiments describing 
burn or burn tenotomy. For our genetic model, mice carrying the 
floxed constitutively active allele of ACVR1 (ACVR1 carrying the 
Q207D mutation, ca-ACVR1fl/wt) and Nfatc1-Cre transgenic mice 
were used for breeding as previously described (25–28). Resulting 
pups carrying both transgenes (Nfatc1-Cre/caAcvr1fl/wt) were used 
as experimental mice. Littermates missing one or both transgenes 
were used as controls.

Trauma-induced hO
Mice in burn-only and burn/tenotomy groups received a 30% total 
body surface area partial thickness burn injury to their dorsum. 
Briefly, mice were anesthetized with 3–5% inhaled isoflurane, 
and the left dorsum hair was clipped. Preoperative analgesia was 
provided with subcutaneous buprenorphine. The shaved area 
was then exposed to a metal block for 18  s that was heated to 
60°C in a hot-water bath. Mice in the burn/tenotomy group then 
received a sharp dissection of the left Achilles tendon with sterile 
scissors immediately distal to the fuse point of the fibula and 
tibia. The tenotomy site was closed with a single 5-0 vicryl stitch 
placed through the skin only. After injury, all mice were allowed 
to recover and return to normal activity. Pain management was 
achieved with subcutaneous injections of buprenorphine every 
12 h for 3 days.

sample collection
Saliva, serum, and tendon tissue were collected (Figure S1 in 
Supplementary Material) at four time points (pre-injury, 48  h, 
1 week, and 3 weeks post-burn tenotomy) from a model of tHO with 
hind limb Achilles’ tenotomy and dorsal burn injury. Saliva and 
serum were also collected from a genetic non-trauma HO model 
(Nfatc1-Cre/caAcvr1fl/wt). Anesthesia was induced by intramuscu-
lar injection of 60 mg/ml ketamine and 8 mg/ml xylazine at a dose 
of 1 µl/kg body weight. Salivation was induced by subcutaneous  
injection of pilocarpine (0.05 mg pilocarpine/100 g body weight). 
Saliva was obtained from the oral cavity and immediately placed 
in pre-chilled 1.5-ml microcentrifuge tubes. The samples were 
stored in −80°C until analysis. After the mice were sacrificed, 
blood was collected in a Serum Gel Z/1.1 tube, and serum was 
extracted by centrifugation at 14,000 × g for 10 min. Tendon tis-
sue from the tenotomy site was removed from mice, snap-frozen 
in liquid, and stored in −80°C until analysis.

histological examination
Tissue from the tenotomy site was fixed with 10% buffered forma-
lin overnight at 4°C followed by paraffin embedding. The 5-µm 
sections were cut and mounted on Superfrost Plus Slides (Fisher 
Scientific, Hampton, NH, USA) and stored at room temperature. 
Immunostaining was performed on rehydrated wax sections with 
the following antibodies: anti-mouse TNF-α (sc-1350, Santa Cruz 

Biotechnology, Dallas, TX, USA), anti-mouse IL-1β (sc-7884, 
Santa Cruz Biotechnology), and anti-mouse MCP-1 (ab25124, 
Abcam, Cambridge, UK). Appropriate dilutions were determined 
before achieving final images. The appropriate fluorescent sec-
ondary antibody was applied and visualized using fluorescence 
microscopy. Secondary antibodies consisted of Alexa Fluor488 
anti-rabbit (A21206, Life Technologies, Carlsbad, CA, USA) and 
Alexa Fluor488 anti-goat (A11055, Life Technologies).

Microscopy
All fluorescently stained images were taken using an Olympus 
BX-51 upright light microscope equipped with standard DAPI, 
488 nm, and TRITC cubes attached to an Olympus DP-70 high-
resolution digital camera. Each site was imaged in all channels and 
overlaid in DPViewer before examination in Adobe Photoshop 
(Adobe Systems, San Jose, CA, USA).

rna extraction and Quantitative real-time 
Pcr (qPcr)
Tissue samples were submerged in TRIzol (Invitrogen, Carlsbad, 
CA, USA; 1  ml of TRIzol/50–100  mg of tissue). Tissues were 
homogenized in the TRIzol solution until no visible particles 
remained. Addition of chloroform (Sigma-Aldrich, St. Louis, MO, 
USA) and subsequent centrifugation at 14,000 × g separated the 
mixture into three phases (lower red phenol/chloroform phase, 
interphase, and upper aqueous phase). RNA was then extracted 
from the upper aqueous phase using the RNAeasy kit (Qiagen, 
Hilden, Germany) centrifuged at 7,500 × g, air dried, resuspended 
in RNase-free water, and analyzed. Reverse transcription was 
performed with 1 µg RNA using High Capacity cDNA Reverse 
Transcription kit (Applied Biosystems, Foster City, CA, USA). 
qPCR for four genes, Mcp-1, Tnf-α, Il-1β, and Il-6, normalized 
with the housekeeping gene (Tbp) was then carried out in tripli-
cate in reaction volumes of 20 µl using SYBR Green Master Mix 
(Applied Biosystems, Foster City, CA, USA) for 15 min at 95°C for 
initial denaturing, followed by 40 cycles of 95°C for 30 s and 60°C 
for 30 s in the ABI 7500HT Fast Real-Time PCR system. Specific 
primers for these genes were chosen based on their PrimerBank 
sequence (Figure S2 in Supplementary Material).

Multiplex cytokine analysis
Concentrations of 27 (IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, 
IL-9, IL-10, IL-12, IL-13, eotaxin, G-CSF, CxCl-1, TNF-α, MCP-
1, M-CSF, MIG, MIP-1α, MIP-1β, MIP-2, KC, IFN-γ, G-CSF, 
GM-CSF, RANTES, and VEGF) cytokines in serum and saliva 
were analyzed using a Luminex Bio-Plex 200 system (Bio-Rad, 
Hercules, CA, USA) according to the manufacturer’s protocol, 
as previously described (29). For cytokine analysis, mouse stock 
cytokines of known concentrations (provided with the kit) were 
used to generate standard curves. The threshold of each cytokine 
was routinely <5 pg/ml.

statistical analysis
Means and SDs were calculated from numerical data, as pre-
sented in the text, figures, and figure legends. In figures, bar 
graphs represent means and error bars represent 1 SD. Statistical 
analysis was performed using Student’s t-test to directly compare 
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two groups. Inequality of SDs was excluded by using the Levene’s 
test. Pearson correlation coefficient test was used to compare 
the correlation between saliva and serum. p Values <0.05 were 
regarded as statistically significant.

resUlTs

serum cytokines in Mouse Burn Tenotomy 
Model
Inflammatory cytokines are reliably upregulated in patients pre-
ceding formation of heterotopic bone. In our burn tenotomy model, 
HO formation occurs exclusively with concomitant transection  
and not with burn alone, despite systemic inflammation in both 
groups. In order to assess departures in cytokine profiles specific 
to bone formation, serum was collected in burn and burn/
tenotomy mice at four time points: pre-injury, 48 h, 1 week, and 
3 weeks post-injury. Cytokines and growth factors were assessed 
using the multiplex bead assay. Levels of TNF-α and IL-1β peaked 
at 48 h in the burn/tenotomy cohort, and these values were sig-
nificantly higher when compared with both uninjured (p < 0.01, 
p < 0.03) and burn-only mice (p < 0.01, p < 0.01). Similarly, IL-6 
increased at 1  week post-injury in the burn/tenotomy cohort, 
and this value was significantly higher when compared with both 
uninjured (p < 0.01) and burn-only mice (p < 0.04). MCP-1 levels 
in the serum were increased at 48 h and 1 week post-injury in the 
burn/tenotomy group, and these values were significantly higher 
when compared with both uninjured (p < 0.007, p < 0.02) and 
burn-only mice (p < 0.001, p < 0.005) (Figure 1).

salivary cytokines in Burn Tenotomy 
Model
Blood serum from venipuncture has been broadly used to 
determine cytokine levels in the bloodstream. However, serum 
extraction is an invasive procedure. Thus, we sought to determine 
the presence of these serum cytokines in saliva, a non-invasive 
diagnostic tool. MCP-1 was detected in saliva showing elevated 
levels at 1 week post-injury in our tHO model when compared 
with both uninjured (p < 0.001, p < 0.01) and burn-only mice 
(p < 0.005, p < 0.01) (Figure 1). However, saliva levels of MCP-1 
in burn-only mice were not significantly greater than correspond-
ing levels in uninjured mice. The Pearson correlation between 
serum MCP-1 and salivary MCP-1 was statistically significant 
(r =  0.9686, p <  0.001) similarly. However, TNF-α, IL-1β, and 
IL-6 levels were very low in saliva and barely detectable with the 
multiplex bead assay in both burn-only mice and burn/tenotomy 
mice (data not shown).

Tissue expression of cytokines
Given that inflammatory cytokines are involved in tHO for-
mation, we investigated the mRNA expression levels of these 
cytokines at the tenotomy site at the same time point to see if 
there was a correlation with salivary cytokine levels. We found 
increased expression levels of Tnf-α (p < 0.02), Il-1β (p < 0.01), 
Il-6 (p < 0.003), and Mcp-1 (p < 0.01) at 48 h post-injury in 
burn/tenotomy mice compared to the uninjured cohort, con-
cordant with levels of these cytokines in serum and/or saliva 
(Figure 2).
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FigUre 3 | Multiplex analysis of serum and saliva in genetic model of heterotopic ossification. Graphs depict concentration of indicated proteins in saliva 
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FigUre 2 | qrT-Pcr analysis of heterotopic ossification (hO) site tendon tissue. Graphs depict relative expression of indicated genes in tendon tissue from 
the HO site 48 h, 1 week, and 3 weeks post-injury compared to tendon tissue from non-injured (NI) mice. Data normalized to Gapdh expression (*p < 0.05).
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salivary and serum cytokines in genetic 
non-Traumatic Model of hO
Nfatc1-Cre/caAcvr1fl/wt mice have been shown to form HO spon-
taneously similar to that seen in genetic forms of HO or FOP (30). 
These mice allow greater assessment of cytokines without the dra-
matic effect of local trauma. Mutant mice demonstrated increased 
levels of MCP-1 (p < 0.01) in the serum and saliva. However, IL-1β 
was increased only in saliva (p < 0.002) (Figure 3). Conversely, 
TNF-α was detectable only in serum, with values significantly 

greater in the mutant than in control mice (p < 0.03). IL-6 showed 
no differences in serum between the mutant and the littermate 
controls and undetectable in the saliva for both groups.

immunostaining for inflammatory 
cytokines in hO
We next used immunostaining to assess localization of cytokine 
alterations. Immunofluorescence staining confirmed enhanced 
expression of MCP-1 (Figure 4) at the injury site 48 h after injury 
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FigUre 4 | immunostaining of cytokines in the heterotopic ossification (hO) site. (a) Images show immunofluorescence staining of indicated cytokines 
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genetic model NFAT-cre caACVR with corresponding DAPI overlays. Arrows indicate examples of positive staining. Scale bars indicate 50 µm.
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in burn/tenotomy mice compared to 1 week. This corresponds 
to the qPCR data showing increased expression of MCP-1 at the 
injury site specifically at 48 h, but not at 1 week. Furthermore, 
TNF-α, IL-1β, and MCP-1 were localized to the areas of cartilage 
formation within the HO anlagen of Nfatc1-Cre/caAcvr1fl/wt mice, 
a transgenic model in which ectopic bone forms progressively in 
both soft tissue and joint spaces. This supports the hypothesis that 
HO production in genetic HO-forming mutations is incited by 
microtrauma, which leads to inflammatory signaling.

DiscUssiOn

Heterotopic ossification leads to bone deposition in extraskeletal 
sites severely restricting range of motion and causing chronic 
pain and wounds. HO occurs in severe combat-injured/blast 
injury patients and in over 65% of repeat hip replacement patients 
and (4, 6, 31). Advances in critical care medicine have improved 
the survival of poly-trauma and large total body surface area burn 
patients, causing a concomitant rise in the number of patients at 
risk for HO. Therefore, there is a critical need to detect HO before 
it occurs, especially given the current lack of effective treatment. 
Assessing biomarkers in an overall diagnostic strategy may allow 
earlier diagnosis and HO prevention.

Molecular biomarkers have proven valuable in diagnosing and 
monitoring disease progression and response to therapies in vari-
ous disease states. The clinical course of trauma patients is heavily 
influenced by the systemic inflammatory response, in which the 
main pro-inflammatory cytokines IL-1β, IL-6, and TNF-α are 
involved (32, 33). Activation of inflammatory pathways through 
the innate immune system also appears to be an important trig-
ger for flare-ups of FOP (34, 35). Serum analysis in our tHO 
model and genetic non-trauma model (Nfatc1-Cre/caAcvr1fl/wt) 
demonstrated a pronounced inflammatory state with increased 
concentrations of TNF-α and IL-1β at 48 h and 1 week post-burn 
tenotomy compared to uninjured and burn-only mice. This was 
confirmed with mRNA levels in our study and is consistent with 
previous studies that have identified TNF-α and IL-1β as crucial 
inflammatory cytokines in bone healing and MSC osteogenic dif-
ferentiation (36–38). However, levels of IL-6 were not associated 

with the development of HO, as previously observed in human 
(14). Nonetheless, the results support the hypothesis that HO is 
associated with a hyper-inflammatory systemic and local response.

Recent studies have shown that saliva actually contains a 
variety of molecular analytes and that these salivary constituents 
may actually be effective indicators of both local and systemic 
disorders (39–42). Although elevated serum levels of TNF-α and 
IL-1β were associated with the development of HO, salivary levels 
of these cytokines did not demonstrate a significant correlation 
with ectopic bone formation. However, levels of MCP-1 were 
elevated in saliva at 1  week post-burn tenotomy compared to 
uninjured and burn-only mice. Interestingly, mRNA expression 
of MCP-1 at the injury site was elevated at 48 h post-injury, but 
not at 1 week. MCP-1, an inducible pro-inflammatory chemokine, 
stimulates the chemotaxis of monocytes and other inflammatory 
cells to sites of bone injury and remodeling (43). Once activated, 
mononuclear phagocytes enhance the proliferation of osteoblasts 
and express pro-osteogenic stimuli to neighboring cells (43, 44) 
The damage to mesenchymal tissue at the site of injury, including 
periosteum, tendon, and fat, may lead to elevated serum and 
saliva levels of MCP-1 (45). MCP-1 signaling may then recruit 
circulating inflammatory cells from the bone marrow and other 
reservoirs, and this interaction could be a major foundation for 
immunological involvement in HO formation.

Fibrodysplasia ossificans progressiva is a rare and disabling 
genetic condition characterized by progressive HO in specific 
anatomic patterns. Nearly 90% of FOP patients worldwide are 
initially misdiagnosed and 67% undergo dangerous and unnec-
essary diagnostic procedures that lead to permanent harm and 
lifelong disability as a consequence (46). Minor trauma, such as 
blood draw, can trigger painful new flare-ups of FOP leading to 
progressive HO. Therefore, in this subset of patients, a different 
source for biomarkers would be more appropriate. This study 
advances the concept of using a different source of biomarkers, 
such as saliva, in this subset of patients who require alternatives 
to the current standards of care. Furthermore, we have identified 
a number of biomarkers that could potentially be used to improve 
upon the current challenge of effectively diagnosing HO during a 
window in which it can be intervened upon.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


7

Sung Hsieh et al. Evaluation of Salivary Cytokines for Diagnosis of HO

Frontiers in Endocrinology | www.frontiersin.org April 2017 | Volume 8 | Article 74

The main limitation of this study is the relatively small sample 
size. However, this study showed unique local and systemic inflam-
matory profiles associated with formation of HO in a tHO model 
and genetic non-trauma model. Second, a majority of patients who 
develop HO typically sustain multiple injuries, which may influence 
the amount of detectable cytokines by generating and maintaining 
systemic inflammatory responses. Thus, the findings presented in 
this study may not be applicable to all patients who develop HO. 
In summary, a systemic inflammatory state, as evident by elevated 
levels of inflammatory cytokines and chemokines, is associated 
with the development of HO. This study identified two candidate 
biomarkers for further study and suggests a novel method for 
diagnosis in the context of current difficult diagnosis and risks of 
current diagnostic methods in certain patients. However, future 
efforts geared toward modeling these data must account for their 
complex, time-dependent, and non-linear nature.
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were analyzed for cytokines of interest.

FigUre s2 | gene primers for quantitative rT-Pcr.
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