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The thyroid-stimulating hormone receptor (TSHR) is a member of the glycoprotein hor-
mone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs). TSHR 
and its endogenous ligand thyrotropin (TSH) are of essential importance for growth and 
function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for 
production and release of thyroid hormones. This receptor is also important with respect 
to pathophysiology, such as autoimmune (including ophthalmopathy) or non-autoimmune 
thyroid dysfunctions and cancer development. Pharmacological interventions directly 
targeting the TSHR should provide benefits to disease treatment compared to currently 
available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon 
TSHR activation, the molecular events conveying conformational changes from the 
extra- to the intracellular side of the cell across the membrane comprise reception, con-
version, and amplification of the signal. These steps are highly dependent on structural 
features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, 
small molecules, G-proteins, or arrestin. For better understanding of signal transduction, 
pathogenic mechanisms such as autoantibody action and mutational modifications 
or for developing new pharmacological strategies, it is essential to combine available 
structural data with functional information to generate homology models of the entire 
receptor. Although so far these insights are fragmental, in the past few decades essential 
contributions have been made to investigate in-depth the involved determinants, such 
as by structure determination via X-ray crystallography. This review summarizes available 
knowledge (as of December 2016) concerning the TSHR protein structure, associated 
functional aspects, and based on these insights we suggest several receptor complex 
models. Moreover, distinct TSHR properties will be highlighted in comparison to other 
class A GPCRs to understand the molecular activation mechanisms of this receptor 
comprehensively. Finally, limitations of current knowledge and lack of information are 
discussed highlighting the need for intensified efforts toward TSHR structure elucidation.

Keywords: thyroid-stimulating hormone receptor structure, signal transduction, homology models, glycoprotein 
hormone receptors, arrestin interaction, G-protein interaction, structure–function relationships, oligomers

Abbreviations: GPHR, glycoprotein hormone receptor; LHCGR, lutropin/choriogonadotropin receptor; FSHR, follicle-
stimulating hormone receptor; TSHR, thyroid-stimulating hormone receptor; TSH, thyroid-stimulating hormone; GPCR, 
G-protein-coupled receptor; TMH, transmembrane helix; ECL1/2/3, extracellular loops 1/2/3; ICLs 1/2/3, intracellular loops 
1/2/3; SD, serpentine domain; CAM, constitutively activating mutation; WT, wild type; ECD, ectodomain; IP, inositol phosphate.
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FiGuRe 1 | Scheme of the putative overall thyroid-stimulating hormone 
receptor (TSHR) protein structure. This scheme shows the overall structure 
and domain assembly of the TSHR. Significant features are highlighted, e.g., 
the sulfated tyrosine in the hinge region that is involved in hormone binding. 
The leucine-rich repeat domain (LRRD) together with the hinge region 
constituting the extracellular receptor part. The seven transmembrane helices 
and their connecting loops arrange the serpentine domain, which spans the 
membrane from the extra- to the intracellular side. A tethered ligand located 
between the extracellular loops has been proven and is composed of amino 
acids from both C-terminal ends of the LRRD and the hinge region.
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iNTRODuCTiON

The thyroid-stimulating hormone (TSH) or thyrotropin (1) 
receptor (TSHR) (2–6) is a member of the class A G-protein-
coupled receptors (GPCRs) (7). Evolutionary close relatives are 
the two receptors for the gonadotrophic hormones: follitropin 
(FSH) (8) and lutropin (LH)/choriogonadotropin (CG) (9). The 
follicle-stimulating hormone receptor (FSHR) and the LHCGR 
together with the TSHR constitute the sub-family of glycopro-
tein hormone receptors (GPHRs) (10). The TSHR is essential 
for thyroid growth and function (11–13) and activates different 
G-protein subtypes (14–17) and signaling pathways (18–20), 
whereby Gs- and Gq-induced signaling are probably of highest 
importance (13, 21–24). TSH and its receptor are required for 
thyroid hormone synthesis and release in the thyroid gland (25). 
Dysfunctions of the TSHR are the underlying cause of various 
gain- or loss-of-function phenotypes associated with thyroid 
malfunction [reviewed in Ref. (26)]. It has been suggested that 
the TSHR is involved in the development and mechanisms of 
ophthalmopathy (16, 27–31).

For decades, the TSHR and associated molecular mechanisms, 
such as ligand binding (32, 33), cell-surface expression, or 
induced signaling cascades, were studied with the purpose to not 
only understand the different steps in signal transduction, their 
regulation, and specificity but also to receive insights into the 
related physiological aspects (13, 20, 34–38) or to develop tools 
for pharmacological treatment (39, 40). Consequently, a huge 
amount of specific data and information from genetic approaches 
(site-directed modifications), pathogenic conditions, protein 
structure studies, biochemical and biophysical analyses are 
available [see also the information resource of Sequence Structure 
Function Analysis for GPHR at http://www.ssfa-gphr.de (41–44) 
which contains >1,500 pathogenic and site-directed mutations; 
comparison of functional data enabled due to normalization as 
percentage of wild type (WT)].

This raises the following questions, what do we currently know 
about the complex scenario of signal transduction by the TSHR 
and what is currently far from our understanding? To answer 
these questions, here we summarize and discuss the current 
knowledge about the TSHR with a specific emphasis on structural 
aspects of receptor activation. This comprises the TSHR structure 
itself, complexes between this receptor and interacting proteins, 
and also the transition between different conformations related 
to different functional processes. For these purposes, the avail-
able—albeit fragmental—structural information for the TSHR 
and its interacting proteins will first be described followed by an 
assembling of this knowledge into homology models of the entire 
receptor highlighting the structural and functional specificities  
in relation to the signal transduction processes.

For understanding of “signal transduction” and related details  
described in the following sections, it is essential to keep in 
mind that the 3-dimensional TSHR structure is constituted by  
interplaying domains (Figure  1) located in different cellular 
environments. This fact is due to the principal molecular function 
of GPCRs as hubs to transduce signals. The “signal” is induced by 
ligand binding at the extracellular site and transmitted via struc-
tural rearrangements in the transmembrane-spanning receptor 

region [serpentine domain (SD) comprised transmembrane 
helices including their connecting loops] toward intracellular 
effectors. A receptor like the TSHR therefore not only receives a 
signal but it is also a trigger, catalyzer, and regulator for specific 
physical or biophysical information. Moreover, the communica-
tion inside the protein is regulated by several specific amino 
acids or groups of amino acids at diverse structural parts that 
are responsible, for instance, for intermolecular contacts (e.g., for  

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
http://www.ssfa-gphr.de


3

Kleinau et al. Structural–Functional Features of TSHR

Frontiers in Endocrinology | www.frontiersin.org April 2017 | Volume 8 | Article 86

ligand binding) or intramolecular interactions (e.g., for main-
tenance of a specific conformation). In consequence, each part 
of the receptor has individual functional priorities that are 
interrelated with highly adapted structural features. The entire 
process of signal transduction is a sequence of concerted events 
that are disturbed under pathogenic conditions and must be 
circumvented by pharmacological interventions (45–52).

AvAiLABLe STRuCTuRAL iNFORMATiON

The extracellular Leucine-Rich Repeat 
Domain (LRRD) and the Hinge Region
The extracellular LRRD and hinge region of the TSHR constitute 
the N-terminal extracellular receptor part (Figure  1), which is 
remarkably large (around 400 amino acids) compared to other 
class A GPCRs (10, 53). TSH and antibodies (activating, neutral, 
and blocking antibodies) interact with the receptor in this region 
[e.g., Ref. (54–58)]. The LRRD and the hinge region contain 
six asparagine-linked glycosylation sites (N-Xaa-S/T) that were 
already investigated intensively (59–62), and it was suggested that 
glycosylation of at least four sites appears necessary for expres-
sion of the functional TSHR (59).

The LRRD comprises repeats of specific amino acid sequences 
between 20 and 30 residues in length [for a detailed description  
of GPHR LRRD repeats, see Ref. (63)] known from available 
TSHR and FSHR crystal structures (56, 57, 64, 65) (Figure 2). 
The LRRD has a scythe blade-like shape with a slight twist 
from the N- toward the C-terminus. Hydrophobic amino acid 
side chains stabilize the inner core of the LRRD and aromatic 
interactions specifically are of high importance to maintain the 
backbone of the assembled repeats (Figure 3). Although the so 
far solved TSHR LRRD crystal structures showed a maximum of 
nine repeats (56, 57), based on homology modeling combined 
with mutagenesis studies (53), it was suggested that this domain is 
actually composed of 11 repeats (r1–r11 in Figure 3)—which was 
confirmed afterward by the recently solved FSHR LRRD struc-
ture (65). Interestingly, in contrast to other LRRDs with a similar 
fold (66–68), only the last C-terminal repeat of the GPHR LRRD 
is characterized by a short helix motif. Located in this helix are 
two cysteines at positions 283 and 284 that are known to interact 
with two cysteines at the C-terminal hinge region (65, 69). These 
disulfide bridges are important for adjusting both extracellular 
parts to each other and simultaneously anchoring the entire 
extracellular region close to the SD (Figure 3B). Moreover, gain- 
of-function mutations at position serine 281 leading to constitu-
tive receptor activation were identified in patients (70, 71).  
This amino acid is also located in the helical part of the LRRD 
C-terminus and is crucial for activation (69, 70, 72, 73).

In the GPHR subfamily, the hinge region structurally links the 
LRRD with the SD (77). Unfortunately, little is known about the 
entire structure of the TSHR hinge region for several reasons. 
First of all, the TSHR hinge region is most likely not a self-folding 
domain (53). It might be that only parts of this region are spe-
cifically folded, or that interacting receptor fragments and/or 
the bound ligand are necessary to stabilize the hinge region in a 
specific conformation.

Related to this is the fact that the TSHR can be enzymatically 
cleaved at two sites in the hinge region (78, 79), which is also 
a prerequisite for shedding (78, 80–84) of the disulfide bridges 
located between the LRRD and the hinge region or inside the 
hinge region (Figures  1 and 3B). Shedding and cleavage in 
combination finally releases the so-called “receptor-subunit A” 
(constituted by the LRRD and parts of the hinge region) from 
the “receptor-subunit B” (C-terminal part of the N-terminus 
together with the SD) and cleavage plus shedding are unique 
to the TSHR in the group of GPHRs. This separation is likely 
related to the pathogenic occurrence of autoimmune antibodies 
against the TSHR (20, 34, 79, 85, 86). The cleaved peptide is 
termed “C-peptide” (approximately 50 amino acids in length), 
and it is still under debate how this process is related to physio-
logical functions, signaling regulation, or pathogenic conditions 
(79, 84, 87–89). In any case, it is completely unknown how the 
C-peptide is folded or contributes to inter- and intramolecular 
interactions. This question remains important for understand-
ing differences among the GPHRs.

From the crystal structure complex of FSHR ectodomain 
(ECD)/FSH only fragments of the hinge region are known, with 
a portion in the middle of the hinge region being unresolved 
(65). This missing part corresponds to TSHR residues 305–380. 
The entire TSHR hinge region is predicted to span positions 
289–409 (53). However, the solved FSHR ECD crystal structure 
and derived models for the ECD TSHR (90, 91) highlight that 
the N- and C-terminus of the hinge region are essential for 
receptor functions like TSH binding and signal transduction. In 
detail, a third extracellular disulfide bridge between Cys301 and 
Cys390 [which is not conserved in GPHRs in general, reviewed in  
Ref. (9)] constrains the close interplay between the N- and 
C-terminus of the hinge region (Figure  3B). Cysteine 398 is 
located in a small beta-strand that is arranged parallel to the 
last beta-strand of the LRRD. This feature stabilizes the LRRD/
hinge region complex, which may explain together with the two 
essential disulfide bridges Cys283/Cys398 and Cys284/Cys408 
why this part was also solved in the FSHR crystal structure (65).

Moreover, the FSHR ECD crystal structure bound with FSH 
provided for the first time details of the second hormone-binding 
site of GPHRs around a conserved sulfated tyrosine (sTyr) 
(functionally corresponds to sTyr385 in TSHR). This tyrosine 
binds into a pocket between the hormone subunits and strongly 
contributes to hormone-binding properties (76), although small 
differences among the GPHRs were observed (92, 93). Generally, 
the hinge region of GPHRs is the least conserved receptor part 
(10, 63) and is therefore responsible for several differences con-
cerning associated functions like hormone binding or induction 
of signaling pathways (94, 95).

The Membrane-Spanning SD
Currently, no structural information for the SD, comprising the 
seven membrane-spanning helices and respective connecting 
loops, has been experimentally determined yet for the TSHR or 
other GPHRs (Figure 2). This precludes detailed insights being 
made about amino acid interactions (at the atom level) and also 
the arrangement of the domains (SD, LRRD, and hinge region) 
or complexes to each other. However, it can be assumed that 
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FiGuRe 2 | Available structural information for glycoprotein hormone receptors (GPHRs) and GPHs. This scheme summarizes structural information that 
is available for the GPHRs and GPHs. Since 1994 starting with the first crystal structure of human choriogonadotropin, few further endogenous ligand structures 
(such as from follitropin or thyroid-stimulating hormone receptor autoantibodies—in complexes or unbound) were solved. Based on the high amino acid sequence 
similarity, each of these structures can also serve as structural templates for models of receptors and hormones where no structural information is available so far. 
Moreover, these structural data can be assembled into larger complexes (see Figures 6–8).
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the TSHR has the same general assembly of the transmembrane 
helices as observed for all class A GPCRs because they share a 
common structural organization (96–99). Thus, experimentally 
determined structures of other GPCRs can be used as a proxy to 
generate TSHR models by using homology modeling techniques 
(100–103). This has been done several times in the past for dif-
ferent purposes [e.g., Ref. (45, 90, 104–107)]. These models were 

helpful for elucidating mechanisms of pathogenic mutations  
(26, 108, 109), allosteric small-molecule binding (45, 48, 49, 110),  
or G-protein and arrestin coupling (111) and guided more 
rational experimental approaches by suggesting potential 
interactions or mechanisms, in advance of already available 
knowledge. These experiments, in turn, were useful for refining 
or proving model-based predictions.

http://www.frontiersin.org/Endocrinology/
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FiGuRe 3 | Continued
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How can a TSHR model based on already solved crystal 
structures of other GPCRs be generated? Initial attempts at build-
ing TSHR models used those GPCR crystal structure templates 

available at the time: (1) inactive conformations—rhodopsin 
[PDB entry 1F88 (112)], beta-2-adrenergic receptor [ADRB2, 
PDB entry 2RH1 (113), PDB entry 2R4S (114)]; (2) active 
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FiGuRe 3 | Continued  
A full-length model of the thyroid-stimulating hormone receptor (TSHR) leucine-rich repeat domain and a fragmental model of the hinge region.  
(A) The LRRD of the TSHR is the main binding site for hormones and autoantibodies. They interact with amino acids in the concave site of this domain, which is 
arranged as a beta-sheet. Hydrophobic amino acid side chains are located mainly in the inner core of the domain, thus aromatic interactions are of high importance. 
Although the so far solved TSHR LRRD structures are constituted by a maximum of 9 repeats (56, 57), it was suggested (53) that this domain is actually constituted 
by 11 repeats (r1–r11)—as also presented here in this model (designed by a chimeric model-approach, LRRD model comprises amino acids 24–288). In contrast to 
other known LRRD structures with similarity to the glycoprotein hormone receptor (GPHR) LRRDs (66–68), the backbone on the convex side of this domain shows 
only one short helical structure namely in repeat 11. The cysteines at positions 283 and 284 are known to interact with two cysteines at the C-terminal hinge region 
(B). Furthermore, mutations of serine 281 were identified as pathogenic (70, 71) and causing a gain of function by constitutive receptor activation. Of note, lysine 
183 in repeat 7 (blue stick) was identified to be highly responsible for ligand specificity. The Lys183Arg substitution leads to a hypersensitivity for choriogonadotropin 
(74, 75). (B) This fragmental TSHR hinge region model (lilac-purple, amino acids 289–304 and 382–409) is adapted according to the solved follicle-stimulating 
hormone receptor (FSHR) ectodomain (ECD)/FSH complex structure (65) and contains several amino acids of high structural and functional importance. The 
cysteine 398 is located in a small beta-strand that is arranged parallel to the last beta-strand 11 of the LRRD. The two essential disulfide bridges Cys283/Cys398 
and Cys284/Cys408 are shown. A third extracellular disulfide bridge between Cys301 and Cys390 stabilizes the interplay between the N- and C-terminus. 
Moreover, the recent FSHR ECD crystal structure bound with follitropin provided details for the first time on the second hormone-binding site of GPHRs around a 
conserved sulfated tyrosine (in TSHR sTyr385). This tyrosine binds into a pocket between the hormone subunits and contributes to ligand-binding properties (76).
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conformations—opsin [PDB entry 3CAP (115)], opsin in 
complex with a C-terminal-binding peptide derived from the 
Gt-protein [PDB entry 3DQB (116)] or active metarhodopsin II 
(PDB entries 3PXO or 3PQR) (117), the beta-2 adrenergic recep-
tor in complex with agonist and Gs-protein [PDB entry 3SN6 
(118)], or the Adenosine-2A receptor in complex with an agonist 
and a mini-Gs protein [PDB entry 5G53 (119)]. The particular 
template selection was made based on the specific purpose of the 
models—like simulation of an inactive versus active conformation  
[e.g., Ref. (120)] and based on general or local sequence similari-
ties. In the past decade, a large number of new crystal structures 
from diverse GPCRs were solved, including further aminergic 
receptors, chemokine, peptidic, or fatty acid receptors [reviewed 
in Ref. (102) and collected under http://gpcrdb.org/structure  
(121, 122)]. Consequently, this provokes the question as to what 
is currently the best structural template to model the SD or the 
entire structure of TSHR. Based on the overall sequence similar-
ity, the closest single template for modeling the SD of TSHR is the 
beta-2 adrenergic receptor. However, primary sequence similar-
ity to one single structural template may not be the best option. 
It is now common to build homology models using not only one 
template but using several template fragments in order to achieve 
maximum overlap of individual structural features, e.g., helical 
kinks or helical length dimensions (103, 123). Actually the TSHR 
has some of these specific structural properties related to amino 
acid fingerprints, which are not common in class A GPCRs. They 
are of high importance for an accurate model, and therefore they 
are also helpful to estimate the best modeling template. We will 
therefore extract and describe here a few significant examples 
important for defining structural properties of the TSHR, and 
we will also provide an inactive state model that is based on a 
“multi-fragment” approach (123).

One striking difference between the transmembrane helix 
(TMH) domain of most other class A GPCRs and the TSHR is 
that class A GPCRs typically contain a highly conserved proline 
in position 5×50 [modified Ballesteros and Weinstein nomencla-
ture (124) considering structural alignments of bulges (125)] of 
TMH5, which is responsible for a bulged TMH5 conformation 
that causes a kink and twist toward the extracellular end of this 
helix. However, in the TSHR, there is an alanine (Ala593) in the 
corresponding position instead of a proline. Based on modeling 

approaches and mutant studies, in 2011 we suggested that an 
alanine at position 5×50 in TSHR causes a regular and stable 
alpha-helical conformation instead of a proline-supported bulge 
and kink in TMH5 (126). This structural prediction was later 
confirmed in crystal structures of receptors that do not have a 
proline at position 5×50 and which do indeed have a regular 
alpha-helical TMH5 such as the Sphingosine 1-phosphate recep-
tor 1 [alanine in position 5×50; PDB entry 3V2W (127)], the 
P2Y12 receptor [asparagine in position 5×50; PDB entry 4NTJ 
(128)], and the lysophosphatidic acid receptor 1 [threonine in 
position 5×50, LPAR1, PDB entry 4Z34 (129)]. These structural 
implications for Ala593 in TMH5 of TSHR (126) were recently 
confirmed by others (104).

Moreover, a methionine (Met637) in TMH6 of TSHR is also 
a specific feature of this receptor because at the corresponding 
position (6×48) the majority of class A GPCRs have a highly 
conserved tryptophan. Replacement of Met637 by a tryptophan 
led to constitutive activation, indicating a different or altered side 
chain adjustment at this position in the TSHR (106). Homology 
models must be built by incorporation of these special func-
tional–structural characteristics, ideally by using structures with 
the exact match in the respective property. The TMH5–TMH6 
arrangement but also that between TMH3 and TMH5 are key 
features and should be significant for functionalities like the high 
basal signaling activity of the TSHR (130) or the huge amount of 
known constitutively activating TSHR mutations (26), whereby 
these structural features should predestine the TSHR for consti-
tutive activation just by slight amino acid alterations.

To build the most accurate models with implementation of 
these specific features, a fragment-based modeling approach was 
developed, whereby templates are selected separately for each 
TMH and helix 8 using sequence fingerprint motifs and sequence 
similarity scores (103). The general aim was to select “best-
choice” templates based on a logical decision tree or algorithm. 
This initial idea was transferred into a web server and database 
[GPCR-Sequence-Structure-Feature-Extractor (SSFE)1] to pro-
vide the tool to the larger community (123). This initial database 
contained pre-calculated models for more than 5,000 class A 

1 http://www.ssfa-7tmr.de/ssfe.
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TABLe 1 | Template fragments from different G-protein-coupled receptor crystal structures used for building an inactive homology model of the 
serpentine domain of thyroid-stimulating hormone receptor.

Helix Sequence 
similarity (%)

Suggested transmembrane helix 
(TMH) fragment template  
(uniProt entry name—PDB code)

Reasons for template selection (fingerprints)

TMH1 60 ACM2_HUMAN—3UON Highest sequence similarity
TMH2 57 ACM4_HUMAN—5DSG DXXXG at position 2×50 to 2×54, highest sequence similarity
TMH3 53 AA2AR_HUMAN—4EIY GC at position 3×24 to 3×25
TMH4 50 OPSD_TODPA—2Z73 P at position 4×60, highest sequence similarity
TMH5 52 LPAR1_HUMAN—4Z34 No P at position 5×50, no F at position 5×47, N at position 5×47, highest sequence similarity
TMH6 47 OX1R_HUMAN—4ZJ8; OX2R_ 

HUMAN—4S0V; P2Y12_HUMAN—4NTJ
No FXXCWXP motif at position 6×44 to 6×50, PXS at position 6×50 to 6×52, highest sequence 
similarity; no FXXCWXP motif at position 6×44 to 6×50, PXS at position 6×50 to 6×52, highest 
sequence similarity; no FXXCWXP motif at position 6×44 to 6×50, highest sequence similarity

TMH7 50 OPSD_TODPA—2Z73 Highest sequence similarity
H8 55 AA2AR_HUMAN—4EIY Highest sequence similarity

Reasons and fingerprint sequence motifs for selecting a particular TMH template are given.
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GPCRs (also including different species), but most importantly, 
this tool generates homology models and structural predictions 
for sequences of interest uploaded by the user. This method has 
recently been updated to include all 27 currently available inac-
tive class A GPCR crystal structures for template selection and 
homology modeling.2

The inactive TMH model of TSHR generated during this 
recent update selected 6 of the 27 different template struc-
tures for model building (Table  1). Selecting transmembrane 
helices from different structural templates has the advantage 
that sequence differences causing slight backbone changes such 
as bulges or kinks are considered in more detail. Thus compared 
to using a single template, the multiple fragment approach can 
achieve an improved accuracy in the predicted models, which 
is essential for docking of small molecules or virtual screening. 
The reasons and fingerprint motifs for selecting particular TMH 
templates for the multiple fragment TSHR model are given in 
Table 1. For example, the conformation of TMH2 is based on 
TMH2 from ACM4 receptor (PDB entry 5DSG) since it contains 
(like TSHR) the fingerprint motif DXXXG at positions 2×50 to 
2×54 and has the highest sequence similarity of similarly scoring 
templates. TMH3 of TSHR is based on TMH3 of AA2AR (PDB 
entry 4EIY) because of the matching fingerprint Gly–Cys at 
positions 3×24 and 3×25. TMH5 is based on TMH5 of LPAR1 
(PDB entry 4Z34), since like TSHR, there is not only no proline 
in position 5×50 but also no Phe in position 5×47 and an Asn 
at that position instead. Three different templates OX1R (PDB 
entry 4ZJ8), OX2R (PDB entry 4S0V), and P2Y12 (PDB entry 
4NTJ) score most highly for TMH6 and are suggested for 
modeling this helix. We selected the model using human orexin 
receptor type 1 (OX1R_HUMAN) for further analysis due to it 
having the highest number of motifs matched and having the 
best resolution for the X-ray structure. Thus, the resulting TSHR 
model contains distinct kinks in TMHs 2 and 6 and a straight 
TMH5 due to the matched fingerprint motifs in these helices 
(Figure 4A).

2 http://www.ssfa-7tmr.de/ssfe2.

Figure  4B shows a comparison between this multiple frag-
ment model with the best matching single template TSHR 
model based on the ADRB2 [PDB entry 2RH1 (114)]. The single 
template model differs not only by additional bulges in TMH2 
and 5 and in the orientation of the highly conserved cysteine in 
TMH3 but also in orientations of the side chains Val421 (position 
1×39) and Leu587 (position 5×44) (Figure  4B). Conservative 
mutations at these positions to isoleucine and valine, respectively, 
cause constitutive activation (104) and is thus incompatible with 
them being orientated toward the membrane as observed in the 
single template TSHR model (Figure 4B). However, the activat-
ing roles of these mutations are rationalized by the structural 
data when these side chains point toward neighboring helices 
(and thus potential interaction partners), as is observed in the 
multiple fragment TSHR model (colored in gray in Figure 4B). 
This clearly demonstrates the advantage of the multiple fragment 
approach in achieving an improved accuracy in the predicted SD 
models. Along these lines, recently 16 inactive crystal structures 
were used to generate multiple-template SD models of the TSHR 
utilizing another strategy (131). In their approach, Modeller 
(132) was used to build an averaged model of the TSHR SD by 
automatically combining all templates.

This also includes the intra- and extracellular loops. For adjust-
ing the extracellular loops of TSHR models, different approaches 
have been used. SSFE integrated Superlooper2 (133), while others 
used Monte Carlo refinements (134) and Rosetta protocols (135) 
for TSHR loop modeling.

The SD model in an active state TSHR conformation can 
be built on the helix arrangement as observed in the crystal 
structures of opsin (116), metarhodopsin II (117), adenosine 2A 
receptor (119), or the beta-2 adrenergic receptor (118), where a 
huge outward tilt movement of ~8–14 Å of TMH6 were observed 
compared to the inactive state conformation [e.g., reviewed in 
Ref. (136, 137)]. The beta-2 adrenergic receptor crystal structure 
complexed with agonist and Gs-protein (PDB entry 3P0G) served 
as a template to build the TSHR active state SD model. However, 
additional TSHR-relevant fingerprints of TMH conformations 
(described above) were considered while modeling for TMH2 
(kink but no bulge) and TMH5 (straight helix).

http://www.frontiersin.org/Endocrinology/
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FiGuRe 4 | Fragment-based thyroid-stimulating hormone receptor 
(TSHR) serpentine domain (SD) model with specific structural 
features. (A) This TSHR SD model was built from multiple transmembrane 
helix templates (see Table 1). The best matching fingerprint motifs between 
TSHR sequence and the selected template transmembrane helix (TMH) 
fragment are highlighted and indicate a central kink motif for TMH2 (brown: 
DXXXG at position 2×50 to 2×54), an extracellular kink for TMH3 (cyan: 
Gly–Cys at position 3×24 to 3×25), an extracellular proline for TMH4 (green: 
P at position 4×60), a regular central alpha helix for TMH5 (rose A5×50, 
N5×47), and a strong kink for TMH6 (yellow modified FXXCWP motif at 
position 6×44 to 6×50, PXS at position 6×50 to 6×52). The remaining TMH 
templates were selected based on having the highest sequence similarity. 
(B) Comparison of the multiple-template fragment-based model (gray) with 
the best matching single template TSHR SD model based on the beta-2 
adrenergic receptor (PDB entry 2RH1) (blue), which differs in additional 
bulges in TMH2 and 5 but also in orientations of the side chains V421 
(position 1×39) and L587 (position 5×44). Constitutively activating 
mutations of both residues (104) are rationalized by the fragment-based 
model when these side chains point toward neighboring helices (gray), but 
are incompatible with them being orientated toward the membrane as 
observed in the single template TSHR model (blue).
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TSHR-interacting Proteins—Hormones, 
Antibodies, G-Proteins, and Arrestin
The TSHR is a hub for signal transduction between different cel-
lular regions and transduces information from signal inducers 
(extracellular) toward intracellular signaling molecules. Taking the 
high number of different GPCRs and ligands into consideration 
[more than 800 in humans (7, 138)], these ligand/GPCR(s)/effector 
systems are generally of high evolutionary success and importance 
(139). The physiological differentiation between particular GPCRs, 
their ligands, and resulting signaling in one cell or tissue are deter-
mined by time occurrence, cell-specific expression levels, ligand/
receptor selectivity, and spatial separation, which also holds true 
for the TSHR under physiological conditions. In addition, for 
TSHR-interacting proteins like the Gs-protein (140–142) or TSH 
(143, 144) pathogenic mutants are known. These facts, as well as in 
context to its interacting proteins makes it very interesting to study 
and describe the TSHR or to search for further potential interaction 
partners that are unknown so far. But what is currently known about 
TSHR-interacting proteins in bound or unbound conformations?

In Figure 5, we provide an overview of known TSHR interac-
tion partners and respective available structural information. In 
brief, TSHR can interact extracellularly with:

 i. TSH and thyrostimulin, but no direct structural information 
is yet available, only structural homology models can be 
designed based on similarity to existing crystal structures 
of FSH [PDB entries 1FL7 (145)—unbound state, 1XWD 
(64) and 4AY9 (65)—bound state] or CG [all structures are 
in unbound state, PDB entries 1HCN (146), 1HRP (147), 
1QFW (148)] (see Figure 2).

 ii. Blocking [PDB entry 2XWT (57)] or activating antibodies 
[PDB entry 3G04 (56)], direct structural information is 
available in bound conformations, and also the unbound 
structure of an (inverse agonistic) antibody is available [PDB 
entry 4QT5 (149)].

In the transmembrane region TSHR can constitute:

 iii. Homodimers (150, 151), which can be modeled by using 
several different GPCR dimer structures (see also Structural–
Functional Aspects of TSHR Oligomerization), like from 
the μ-opioid-receptor [MOR (152)], κ-opioid receptor 
[KOR (153)], opsin (115), chemokine receptor CXCR4 
(154), or the β-adrenergic receptor 1 [β-1AR (155)]. So far, 
it is unknown whether TSHR also constitutes functionally 
relevant heterodimers with other GPCRs, but it would be of 
enormous importance to clarify this question because heter-
odimerization could have dramatic consequences on TSHR 
functionalities as known from other GPCRs (156–160) and 
many different GPCRs are expressed in the same tissues as 
TSHR [e.g., searchable in Ref. (161)].

Intracellular interaction partners are:

 iv. Arrestin, where bound complexes with opsin or rhodopsin 
are available [rhodopsin/arrestin PDB entries 4ZWJ (162), 
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FiGuRe 5 | Available structural information for thyroid-stimulating hormone receptor (TSHR) interaction partners. As shown in Figure 2, structural 
information on the TSHR is still limited. However, several interaction partners like autoantibodies (TSH is not solved so far), or Gi, Gs, and arrestin in bound and 
unbound conformations already have determined structures available. This knowledge can be used to construct larger model complexes as presented in  
Figures 6, 8 and 10.
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5DGY (163)], and opsin/arrestin fragment [PDB entry 4PXF 
(164)], but also unbound arrestin structures were already 
determined [e.g., inactive state—PDB entry 3P2D (165)], or 
pre-active states [PDB entries 4J2Q and 4JQI (166, 167)].

 v. Numerous crystal structures of unbound (inactive) G-protein 
subtypes have been solved, like for Gi [PDB entries 1GIA 
(168), 1GG2 (169)], Gs [PDB entry 1AZT (170)], and Gq 
[PDB entries 3AH8 (171), 3OHM (172), 2BCJ (173)]. Based 
on the beta-2 adrenergic receptor/Gs complex, a bound Gs 
conformation is also available [PDB entry 3SN6 (118)].

Thus, based on the above as well as the information from 
Figure 2, it is clear that a specific set of structural information is 
already available for TSHR and interacting proteins, intracellular 
and extracellular. Consequently, the available data enables two 
objectives:

 1. The assembling between TSHR and interacting proteins as 
models of complexes.

 2. The estimation of structural transitions between the unbound 
and bound states for TSHR as well as for the interacting 
partners.

However, it must also be concluded that much structural 
information is still missing, such as from the TSHR-binding 
hormones [TSH, thyrostimulin (174–176)], or TSHR structures 

themselves, or with bound allosteric ligands or intracellularly 
complexed partners. Moreover, combined with the missing 
information of the entire TSHR SD region or the full-length 
receptor with spatially adjusted domains, the molecular interpre-
tation of functional data from mutagenesis studies or pathogenic 
findings is an approximation rather than a definitive answer so 
far. However, in the following section, we describe examples of 
feasible complex models, which are based on above described 
structures or homology models.

Feasible TSHR and TSHR Complex Models
At the moment, the gap in structural information can only be 
resolved by building homology models based on the afore-
mentioned crystal structures (Figures  2, 3A,B, 5 and 9). By 
building individual and complexed homology models, insight 
into the TSHR SD, the differences between active and inactive 
structures or between bound and unbound properties of the 
interacting proteins can be gained. The principal idea of homol-
ogy modeling is to adapt the already determined homologous 
structures and respective amino acid sequences (e.g., described 
in Section “TSHR-Interacting Proteins—Hormones, Antibodies, 
G-Proteins, and Arrestin”) toward the targets of interest—
e.g., TSHR and TSH. This method is appropriate because the 
structural conservation and similarity of GPCRs is higher than 
their amino acid sequence similarity (100, 101, 103). We used 
the structural information documented above (i.–v.) to design 
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FiGuRe 7 | Details of thyroid-stimulating hormone receptor (TSHR) 
structure and activation. This complex model visualizes important 
determinants and aspects of the TSHR activation mechanism. The hinge 
region links the LRRD with the serpentine domain and both parts harbor 
determinants for hormone binding. Ligand-binding triggers conformational 
changes at a convergent center between the LRRD and hinge region, thereby 
an inhibitory impact of the extracellular part on the receptor gets abrogated 
and an ‘‘intramolecular agonistic unit’’ or “tethered internal agonist” close  
to the transmembrane domain 1 becomes activated (violet surface). This 
extracellular signal induction is conveyed via structural rearrangements of the 
transmembrane-spanning helices toward the intracellular side. Several amino 
acids of high structural–functional relevance are involved in receptor activation 
(orange sticks) by maintaining specific activity-related conformations. They 
are localized at distinct spatial regions inside the TSHR, and they are 
interrelated with each other. The resulting active receptor conformation opens 
a spatial crevice for binding of intracellular interaction partners (Figures 6  
and 8). Notably, the TSHR is characterized by specificities in the structural 
details such as a regular conformation of TMH5 compared to most other 
G-protein-coupled receptors (GPCRs), having an alanine instead of a proline 
at the 5×50 position, respectively. Moreover, the TSHR like all other 
glycoprotein hormone receptors (GPHRs) has a methionine at position 6×47 
in TMH6, where usually a tryptophan is located in most class A GPCRs. In 
addition, it has been shown several times (48, 110, 177) that the known 
allosteric-binding sites for small drug-like molecules acting on GPHRs are 
located between the transmembrane helices close to the extracellular loops, 
which is shown here exemplarily by a partial surface-pocket representation 
and a bound synthetic antagonist.

FiGuRe 6 | A thyroid-stimulating hormone receptor (TSHR)/Gs 
complex model. The nearly completed complex model between TSHR–TSH 
and Gs in an active conformation can be assembled based on information 
summarized in Figures 2 and 3. TSH (or thyrostimulin) binds at two sites in 
the TSHR, called binding site I (LRRD) and binding site II (hinge region), of 
which several specific amino acids mediate the contact and specificity for the 
hormone. This model provides structural information according to the general 
TSHR scheme in Figure 1, including the detailed disulfide bridges at the 
extracellular part, localization of the hinge region, or justification of the Gs 
molecule at the active TSHR structure conformation [based on the beta-2 
adrenergic receptor/Gs complex PDB entry 3SN6 (118)].
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the following TSHR-related models in different activity-state 
conformations:

 (1) The hormones TSH and thyrostimulin in bound and 
unbound conformations based on FSH (free and bound) or 
CG (unbound) (Figures 2, 6–8).

 (2) The full-length TSHR LRRD based on the LRRDs of the 
TSHR and of FSHR ECD/FSH complexes—as ligand bound 
conformations (Figure 3).

 (3) The LRRD in combination with the hinge region based on 
the FSHR ECD/FSH complex—active state conformation 
(Figures 3B and 6).
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FiGuRe 8 | A thyroid-stimulating hormone receptor (TSHR)/arrestin 
complex model. Binding and action of β-arrestin-1 and β-arrestin-2 on 
TSHR has already been reported (178–181). The putative structural 
conformation of TSHR adapted to this interacting protein is different to the 
TSHR/G-protein complex as shown in the presented superimposition of a 
TSHR/arrestin model (orange surface, complex is based on the crystallized 
rhodopsin/arrestin complexes PDB entries 4ZWJ, 5DGY) with the TMH6 
conformation from the active TSHR/Gs complex (white backbone).
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 (6) TSHR SD in an inactive state (e.g., Figure 4) based on other 
GPCRs with determined structures.

 (7) TSHR SD in active state conformations (e.g., Figures 6, 8 
and 9) like from ADRB2 or opsin.

 (8) Inactive or active state conformations with bound allosteric 
ligands (Figure 7).

 (9) TSHR SD or full-length TSHR as homomers (in inactive 
or active states) based on solved dimer structures of other 
GPCRs like opsin or MOR (Figure 10).

 (10) TSHR in complex with arrestin (active state, Figure 8).
 (11) TSHR in complex with G-protein (active state, Figure 6).
 (12) TSHR homomers in complex with intracellular effectors 

[assembled active state complex models (Figures 7 and 8) 
in superimposition with dimeric GPCR crystal structures 
(Figure 10)].

These models provide insights into the:

•	 the putative structure and domain composition (Figures 6–10);
•	 hormone binding-related determinants (Figures 3 and 6);
•	 determinants of signal transduction at the extracellular region 

(Figures 3 and 7);
•	 constitution of the SD in different conformations (Figures 6–9);
•	 visualizing particular important amino acids for intramolecu-

lar signal transduction (Figures 7 and 9);
•	 TSHR-binding modes with G-protein or arrestin (Figures  6 

and 8).

The models outlined above are advanced compared to the few 
experimentally determined TSHR structures yet they are only 
approximate models and not necessarily correct or precisely pre-
dictive. Functionally supportive data for assembling the SD and 
the extracellular region are rather rare (135, 189). More detailed 
methods for building these models are described in our own 
previous publications on the TSHR or other GPCRs [e.g., Ref. (53, 
90, 91, 126, 189, 190)]. However, what can these models tell us or 
how can they help to visualize mechanisms of the TSHR? In the 
following sections, we will highlight several important insights 
related to regulation and action of the TSHR, which are strongly 
dependent on structural properties.

SiGNAL TRANSDuCTiON BY 
STRuCTuRAL ReORGANiZATiON:  
THe TSHR AT wORK

induction of Signaling in the  
extracellular Region
Induction of the endogenous signal transduction by the TSHR 
is triggered extracellularly by TSH (191) or thyrostimulin bind-
ing (174–176). The LRRD and the hinge region both harbor 
determinants for hormone binding [reviewed in Ref. (36, 63)]. 
Additionally, one specific residue of high importance for TSH 
binding is a sTyr sTyr385 (76, 92) located in the C-terminal end 
of the hinge region (Figures 3 and 6). Further amino acids in the 
hinge region are involved in ligand binding, mainly character-
ized by negatively charged side chains (53, 192–194). Generally, 
the hinge region has a drastic influence on hormone binding, 

 (4) The partial extracellular TSHR part bound with TSH or thy-
rostimulin based on the FSHR ECD/FSH complex (Figure 6).

 (5) The TSHR extracellular part (LRRD and hinge region) 
bound with antibodies based on template chimeras between 
the solved LRRD/antibody complexes and the FSHR/ECD.
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FiGuRe 9 | TMH3–5–6 contact motif in the active state conformations of the beta-2 adrenergic receptor and an active state thyroid-stimulating 
hormone receptor (TSHR) model. A specific contact motif between residues in transmembrane helices 3, 5, and 6 is observed in the crystal structure of an active 
state conformation of the beta-2 adrenergic receptor (118) comprised Ile121 (3×40)—Pro211 (5×50)—Phe282 (6×48) [(A), left panel]. Such hydrophobic contact 
can also be found in the TSHR model comprised Val509 (3×40)—A593 (5×50)—Met 637 (6×48) [(B), right panel], although the amino acids differ. This contact motif 
is essential for triggering the active state in the TSHR.
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structural constitution, and signal transduction, also in concert 
with the SD [e.g., Ref. (55, 195–201)].

From homology models of the TSHR (91) based on the crystal 
structure of the extracellular domain of FSHR (65), it was sug-
gested that upon hormone or activating antibody binding a spa-
tial displacement triggers conformational changes at a convergent 
center between the helical C-terminal end of the LRRD (pivotal 
helix) and the N- and C-terminus of the hinge region (Figures 3 
and 7). The hinge region flexibility agrees with later suggestions 
that interactions between negatively charged residues in the hinge 
region and positively charged residues in the LRRD of TSHR 
are released upon hormone activation (202), or with suggested 
charged–charged interactions between the LRRD (Glu251) and 
hinge region (55). From the same models in 2012 (91), it also 
became clear that serine 281 is located within the short helix at the 
junction between the LRRD and hinge region (Figure 6). From 
naturally occurring mutations and mutagenesis studies, this resi-
due is known to be functionally significant (constitutive receptor 
activation) (69, 70, 72, 73). This serine has also been suggested 
to interact with the extracellular loop 1 (73), which was recently 
supported by cross-linking studies (135).

Notably, the hinge region has an inhibitory function on 
receptor activity as revealed by previous mutational studies  
(201, 203–205). In addition, it was shown in 2002 that the 
extracellular N-terminal TSHR part switches from a tethered 
inverse agonist to an internal agonist (173), although the precise 
determinants of both (eventually separated) functional units are 
still not clarified in their entirety because of a lack of experimental 
structural data. However, in 2004, it was found that the internal 
agonist comprises specific amino acids (Asp403–Asn406) in the 
C-terminal hinge region (189) and further experiments refined 
these insights on the intramolecular agonist unit (196, 200). A 
recent study with a peptide including Asp403–Asn406 showed 
that it can act agonistically (90), providing evidence that the 
internal agonist (assumed for all three GPHR subtypes) is located 
extracellularly close to TMH1 (90, 189, 201). In conclusion, the 

TSHR is characterized by a tethered ligand, which is not common  
in class A GPCRs, but has been described as a mechanism in 
several particular cases (206). Moreover, the internal agonist is 
very likely embedded in-between the extracellular loops of the  
SD (90, 189, 201) and conveys the signal from the extracellular 
region toward the transmembrane domain (Figure  7). In this 
regard, it has been shown previously that the extracellular loops 
trigger the signal cooperatively (207).

Signal Transport across the 
Transmembrane Domain
Signal transduction by GPCRs is regulated by a specific rearrange-
ment of particular helices to each other. But how does this process 
occur at the protein level and how is it regulated in the TSHR? 
Due to the lack of determined entire structures of the TSHR (and 
other GPHRs), the question arises how exactly does the extracel-
lularly provided signal gives rise to helical movements. Generally, 
highly conserved amino acids in the class A GPCRs that are also 
found in the TSHR contribute to the maintenance of individual 
activity states and associated conformations by forming specific 
interactions. These interactions must be modified to facilitate 
helix movements and for new ones to occur after initial events 
to stabilize the active state conformation—in interplay with the 
ligand and the intracellular effector (208–211). It is known that 
the largest spatial movement related to GPCR activation affects 
TMH6 around a pivotal helix-kink at the highly conserved 
proline 6×50 (116, 118). This key event must also be assumed 
to occur in the TSHR, which is supported by the fact that a huge 
number of constitutively activating mutants, particularly on 
TMH6, are known for the TSHR (26, 43).

Moreover, both above described TSHR specificities—the regu-
lar alpha-helical conformation of TMH5 and the tightly packed 
methionine 637 in TMH6—have impact on the hydrophobic 
helix–helix interfaces between TMH3–TMH5–TMH6, which 
are important for the transition between the active and inactive 
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FiGuRe 10 | Continued  
Putative thyroid-stimulating hormone receptor (TSHR) dimer formations. A definitive TSHR homodimer interface still awaits experimental evidence but 
based on the available data it can be summarized that the serpentine domain has the main impact on dimer formation with the extracellular part also contributing 
(182–184). Already crystallized G-protein-coupled receptor (GPCR) homodimer arrangements are available [reviewed in, e.g., Ref. (185, 186)] and they point to three 
different potential arrangements between the receptor protomers, at: (I) TMH1–helix 8/TMH1–helix 8, (II) TMH5–TMH6/TMH5–TMH6, and (III) TMH4–ICL2/
TMH4–ICL2. These insights can be extrapolated to other GPCR oligomers assuming homology in sequence, structure, and mechanisms and using superimposition 
here we present two of these putative arrangements for a putative TSHR dimer constellation (150, 151, 187, 188) (entire homology model). In panel (A), a putative 
TMH5/ICL2–TMH5/ICL2 interface is shown based on the solved dimeric chemokine receptor CXCR4 [PDB entry 3ODU (154)], and in panel (B), a putative 
arrangement of the protomers with a TMH1/helix 8–TMH1/helix 8 interface is presented based on the opsin-dimer [PDB entry 3CAP (115)]. Both arrangements are 
feasible and also might occur simultaneously (e.g., in oligomers). In panel (A), the extracellular parts of both protomers get sterically close (see insert with partial 
surface representation) and hormone binding would need a rearrangement of this extracellular constellation. In panel (B), a symmetric TMH1–helix 8 interface 
hormone binding would not be influenced by the protomer arrangement.
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state conformation. This is supported by previous studies where a 
hydrophobic interaction between TMH5 and TMH3 of the TSHR 
was analyzed by a complementary double mutant Val509Ala/
Ala593Val (Val509, TMH3, 3×40; Ala593, TMH5, 5×50) (212). 
This double mutant led to a functional rescue of the respective 
single-mutant dysfunctions and provided evidence for a direct 
hydrophobic interaction of these TMH3 and TMH5 residues. 
This finding is strongly supported by crystal structures of other 
GPCRs in the inactive and active state conformation, where an 
inward movement of proline (in the corresponding position 
5×50) toward TMH3 and 6 is observed for the active state such as 
for the beta-2 adrenergic receptor [ADRB2 (118)] or mu-opioid 
receptor [MOR (213)], thereby three hydrophobic residues of 
the ADRB2 located (i) on TMH5 (Pro211, 5×50), (ii) on TMH3 
(Ile121, 3×40), and (iii) on TMH6 (Phe282, 6×44) interact tightly 
as a hydrophobic patch and contribute to the network of interac-
tions that stabilize the active state conformation (Figure  9A). 
This spatial arrangement of the three hydrophobic residues was 
termed “PIF motif ” or “contact motif ” (210). Agonist binding 
induces these tightly packed hydrophobic interactions resulting 
in a rotation of TMH6, with a consequent outward tilt movement 
of the cytoplasmic helical end (Figure  8). Although the corre-
sponding positions differ in sequence in the TSHR, a hydrophobic 
contact motif is also formed here by the aforementioned Ala593 
(TMH5, 5×50) together with Val509 (TMH3, 3×40) and Met637 
(TMH6, 6×48), which are subsequently also involved in the 
conformational active/inactive state transition (Figure 9B). This 
corresponds with constitutively activating mutations (CAMs) 
that were already identified at these TSHR positions [Ala593Asn 
(214), Val509Ala (212), and Met637Trp (106)].

But how are these modifications in the transmembrane region 
initiated or enabled? What we know is that the extracellular loops 
connect the helices (Figure 1) and it can be assumed that interac-
tions occur between the TSHR hinge region and the extracellular 
loops (73, 201). They likely trigger the signal cooperatively toward 
the transmembrane region (207). In addition, specific loops or 
parts may also interact with the extracellular ends of certain 
helices as shown for the ECL2 and TMH6 in the TSHR (105). In 
conclusion, modifications of the loops can be transferred directly 
to interacting or connected helices, which are in line with reports 
in other GPCRs, where a salt bridge facilitates a link between the 
loops and receptor activation (215).

Second, signal transduction in the TSHR is not a single line 
of information flow but rather a multitude of synchronized 
sequences of events occurring. This assumption is made based on 

the fact that several previously reported inactivating or activating 
mutants at distinct amino acid positions are located at different 
receptor regions (Figure  7). Well investigated and significant 
examples are Lys660 in the TMH6/ECL3 transition (216), Lys565 
in the ECL2 (105), Asp474 in TMH2 (217), or Glu409 in the 
transition between the hinge region and TMH1 (90) (Figure 7). 
Furthermore, Asp633 (TMH6) and Asn670 (TMH7) (107, 218, 
219) are located in the central part of the domain core; and Tyr601 
(220) or Asp619 (221, 222) is in the transmembrane region close 
to the intracellular site. In consequence and in contrast to the 
predominantly hydrophobic interfaces between TMH3–TMH5–
TMH6, the helix–helix interfaces between TMH3, TMH2, 
TMH6, and TMH7 are characterized by the occurrence of essen-
tial hydrophilic contacts, e.g., at the highly conserved positions 
Asp2×50 or Asn7×50 (107, 219).

These hydrophilic contacts are complimented by conserved 
water molecules localized close to the mentioned conserved resi-
dues (103). Together, they constitute a network of intramolecular 
and water-mediated interactions (223) that are important for sta-
bilizing GPCR structures by linking TMHs (224–226). Molecular 
dynamic simulations of class A GPCRs suggested an intrinsic 
water pathway, interrupted in the inactive state by hydrophobic 
layers of amino acid side chains, which change their conforma-
tion upon agonist binding leading to a continuous water channel. 
It is suggested that Tyr7×53 of the NPXXY motif is of importance 
in this context (227). Receptor activation probably leads to a rear-
rangement and an extension of the water network [for example, 
Ref. (90, 107)] from the ligand-binding site to the cytoplasmic 
surface (228, 229), at least for specific GPCRs. As well as water, 
allosteric sodium has also been observed in antagonist/inverse 
agonist bound class A GPCR structures in a highly specific 
arrangement between TMH2 and TMH7 (224). During activa-
tion, the sodium pocket collapses and the ion translocate toward 
the cytoplasm. However, it seems that not all GPCRs possess this 
pocket, such as visual opsins which instead have ordered water 
molecules between Asp2×50 and Tyr7×53 [PDB entry—4X1H 
(228)]. These observations underline the integral role of water 
molecules in GPCRs.

Apart from extracellular activation by its endogenous hor-
mone ligands and autoantibodies, the TSHR signaling can be 
modulated by small-molecule ligands (SMLs) (52). Investigation 
of a potential allosteric-binding pocket for SMLs within the trans-
membrane domain (Figure 7) by modeling-driven mutagenesis 
led to the identification of distinct CAMs, including Val421Ile, 
Tyr466Ala, Thr501Ala, Leu587Val, Met637Cys, Met637Trp, 
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Ser641Ala, Tyr643Phe, Leu645Val, and Tyr667Ala (106), and 
silencing mutations such as Val424Ile, Leu467Val, Tyr582Ala, 
Tyr582Phe, Tyr643Ala, and Leu665Val (230). These positions 
not only indicate key amino acids covering the allosteric-binding 
pocket of the TSHR but also positions where the TSHR confor-
mation can be changed to an active or inactive state. Mapping 
these residues onto a structural model of TSHR indicates loca-
tions where SML agonists or antagonists enhance or impair 
signaling activity (231). These signaling sensitive amino acids are 
also compiled in the web-based resource “SSFA-GPHR” (41–44).3

intracellular Binding and Activation  
of Signaling effectors
All amino acids of the intracellular TSHR loops were already 
investigated by site-directed mutagenesis studies (111, 221, 
232–235). Moreover, pathogenic mutations at these receptor 
parts were also identified in patients (236–239). These mutants 
and site-directed studies revealed that the entire set of the three 
ICLs and helix 8 contribute to induction of intracellular signal-
ing by the TSHR, although differences concerning the impact on 
specific signaling pathways has been observed. Diverse activa-
tion pathways in class A GPCRs converge near the G-protein-
coupling region (240). In principle, GPCR-mediated G-protein 
activation is characterized by structural shifts inside and between 
the G-protein subunits to each other, followed by exchange of 
GDP for GTP in the alpha-subunit and (partial) separation of 
the Gα- from the Gβγ-subunits (241). This opens up interfaces 
to further contact partners (242). These events at the intracellular 
effector are induced by binding to the receptor in predisposition 
(without intracellular effector but with a bound agonist).

The intracellular effector can bind to the TSHR by fulfilling 
two criteria: (i) a spatial fit and (ii) an interaction surface that 
does not preclude binding, rather being supportive. So far, it is not 
known for GPCRs how exactly selectivity for a certain G-protein 
subtype is determined directly on the receptor. GPCRs with a 
preference for a particular G-protein subtype like Gs or Gq could 
not be allocated yet to a specific set of amino acids in the intra-
cellular site. Additionally, receptor selectivity on the intracellular 
receptor site can be altered by making an amino acid substitution 
that repulses a specific effector (biased inactivation), and this is 
indeed the mechanism of several inactivating mutations in the 
intracellular TSHR loops, where, for instance, Gq activation is 
abolished but not activation of Gs [e.g., mutation Phe525Lys 
(243)]. This, in turn, would mean that selectivity is not associated 
with a complementary interaction pattern, it might be (theoreti-
cally) that selectivity in binding should be reached by a specific 
exclusion of effector subtypes due to small changes in the shape of 
the promiscuous receptor G proteins binding interface.

What is known concerning binding of intracellular effectors 
to the TSHR? As noted above, a huge amount of functional data 
from amino acid substitutions in relation to G-protein activation 
(not for arrestin binding) is already available and based on these 
data first molecular models of a putative TSHR/Gq-protein com-
plex were previously generated (111). This can now be extended 

3 http://www.ssfa-gphr.de.

by incorporation of TSHR/Gs (Figure  6) and TSHR/arrestin 
(Figure 8) complex models based on recently determined struc-
tural complexes of other GPCRs [based on the beta-2 adrenergic 
receptor/Gs complex—PDB entry 3SN6 (118), or the rhodopsin/
arrestin complex—PDB entry 4ZWJ (162)]. The intracellular 
loop 1 (ICL1) contributes to G-protein binding but the amino 
acids have a different impact (111). Of particular interest is 
Arg450 at the transition between ICL1 and TMH2, where several 
cases of naturally occurring inactivating mutations were reported 
(244–247). Amino acid Arg450 may directly interact with Gα 
as suggested by our homology model, e.g., with Gln390 in the 
C-terminal α5-helix of Gαs (111). However, the middle part of 
the ICL1 is exclusively oriented toward the beta-subunit of the 
G-proteins and mutations in this region only decrease inositol 
phosphate (IP) generation, not cAMP accumulation (Leu440Ala, 
Thr441Ala, and His443Ala). Of note, it was reported for the MOR 
that initial interactions between the G-protein and intracellular 
loop 1 and helix 8 may be involved in G-protein coupling specific-
ity and that TMH5/6 contribute later in the process of complex 
formation (248). This finding would be in general agreement with 
our suggestion that ICL1 is also involved in G-protein coupling 
by the TSHR.

In addition, the intracellular loop 2 (ICL2) is significantly 
involved in G-protein activation in the TSHR (221, 243). Amino 
acids Met527, Arg528, and Asp530 are critical for both Gs and 
Gq activation, whereas alanine mutations of Ile523, Phe525, 
and Leu529 only impaired Gq-mediated signaling but not the 
Gs-mediated cAMP accumulation. Alanine mutations of Met527, 
Asp530, and Arg531 also caused impaired basal cAMP accumula-
tion (120), which indicates involvement in Gs binding also in the 
basally active state conformation. Moreover, we suggest that the 
ICL2 conformation is helical (Figure 6) as supported by several 
crystal structures of diverse GPCRs, specifically in complexes 
(118, 162). In addition, the transitions between TMH5–ICL3–
TMH6 were identified as being important for G-protein activa-
tion, whereby single substitutions of Tyr605, Val608, Lys618, 
Lys621, and Ile622 selectively decrease Gq activation (220, 221). 
By contrast, mutations at Asp617 and Asp619 cause constitu-
tive receptor activation for the Gs-mediated pathway (218, 221,  
239, 249).

Finally, these mutation-based studies at all three ICLs have 
shown that the binding modes between TSHR and Gs versus 
Gq do partially overlap, while completely inactivating mutations 
were only found for the receptor/Gq complex. The fact that 
Gq-mediated signaling, but not Gs-mediated cAMP accumula-
tion, can be impaired by single side chain substitutions suggests 
that Gq binding is more fine-tuned than Gs binding. In strong 
relation to this might be the observed high basal activity for 
cAMP accumulation by TSHR, which is related to a permanent 
binding capacity and activation of Gs (130). The differences 
between Gs and Gq activation must be deciphered in more detail 
by determination of complex structures.

Moreover, so far, no experimental data from mutagenesis 
studies or structure determination are available concerning bind-
ing of arrestin to the activated TSHR, although arrestin binding 
is known to be of functional importance, e.g., for physically 
blocking further G-protein coupling and initiating the receptor 
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shut-off (178–181). Activated GPCRs are phosphorylated by spe-
cific kinases on multiple sites at the C-terminus. In the inactive 
or basal state, arrestins are unable to bind activated TSHR, and 
interaction with several receptor-attached phosphates is critical 
for such an interaction. GPCR binding by arrestin is often dis-
cussed in terms of two events. Arrestin forms a low-affinity pre-
complex with the receptor, in which the phosphorylated receptor 
C-terminus replaces the C-tail of arrestin and thereby gains access 
to the high number of basic residues in the N-domain area (166, 
167). C-tail displacement induces numerous conformational 
changes in key motifs and an overall domain rearrangement in 
arrestin that allow the second and tight-binding event of the 
activated receptor and the formation of a high-affinity complex. 
A key interaction of this high-affinity complex is the binding of 
the so-called finger loop region in arrestin to the intracellular-
binding crevice of the activated receptor (162, 164), thereby the 
finger loop adopts a near helical structure and interacts with 
the highly conserved E(D)RY motif of the activated receptor. 
Remarkably, arrestin (namely, the near helical finger loop region) 
and G-protein (namely, the C-terminal alpha5 helix in the Galpha 
subunit) share a common binding crevice on the activated recep-
tor (164). On the basis of the low-resolution crystal structure 
of peptide linker-fused rhodopsin–arrestin complex (162), a 
putative TSHR/arrestin complex model was created (Figure 8). 
The putative structural conformation particularly in TMH6 and 
ICL1-3 of TSHR adapted to this interacting arrestin model is 
slightly different to the TSHR/Gs-protein complex. However, 
until now, there are still many unanswered and unresolved ques-
tions due to the limited structural and biochemical knowledge of 
arrestin binding to GPHRs.

Structural–Functional Aspects  
of TSHR Oligomerization
Constitution of homo- and heteromers has been demonstrated 
for several members of different GPCR groups (250–253). 
Oligomerization is a biological tool for fine-tuning signaling 
and hence also physiological function (254–256), which is also 
relevant to endocrinology (257) and in pathological condi-
tions (258–262). It is well documented that dimerization or 
oligomerization can have an impact on signaling properties as 
well as ligand binding (263, 264), signal transduction (265, 266), 
or cell-surface expression (267). Thus, oligomerization has been 
demonstrated to be a common and important feature of GPCRs 
including TSHR. What is known regarding TSHR oligomeriza-
tion so far?

 i. TSHR oligomerization (150, 151, 187, 188) occurs early in 
the endoplasmatic reticulum and is suggested to be crucial 
for proper receptor expression (268).

 ii. TSHR probably forms higher order homomers rather than 
dimers (182) and the extracellular region participates in oli-
gomerization, while the main protomer contact is most likely 
located at the transmembrane-spanning part (Figure  10) 
(183).

 iii. A recent study revealed that two TSH molecules bound to a 
TSHR homodimer are required to activate not only Gs but 
also Gq (269).

 iv. It has been debated as to whether TSH influences dimer 
formation (183, 270). On the one hand, it was proposed that 
oligomeric TSHR rapidly dissociates into active monomers 
upon TSH binding (271). On the other hand, dimerization 
was found not to be affected by ligand binding (182).

 v. Functionally dominant-negative effects have been shown for 
partially inactivating TSHR mutations (272). TSHR di- or 
oligomerization presents a molecular explanation as to why 
these TSHR mutations exhibit a phenotypic effect even in the 
heterozygous state of an inactivating mutation (273).

 vi. By contrast, CAMs do not influence dimeric TSHR arrange-
ments (182, 274).

One of the basic questions concerns TSHR oligomer organiza-
tion from the structural perspective. Interfaces (contact-regions) 
between GPCR protomers were found under experimental 
conditions for different GPCRs, for instance, at the region of 
ICL2–TMH4 (275–277), TMH4–TMH5 (278), or TMH5–TMH5 
(279–281). Most importantly, several crystal structures of 
dimeric GPCR complexes were determined, e.g., the μ-opioid-
receptor [MOR (152)], κ-opioid receptor [KOR (153)], opsin 
(115), chemokine receptor CXCR4 (154), and the β-adrenergic 
receptor 1 [β-1AR (155)]. Dimer interfaces are observed between 
TMH5–6, e.g., in the crystal structure of the CXCR4, or in the 
case of opsin, KOR, and β-1AR, the protomer interface is located 
between TMH1 and helix 8. Due to these repeated findings in 
the dimeric crystal structures, it can be postulated that class A 
GPCRs tend to have a preference to form protomer contacts at 
TMH1, helix 8, TMH5, and the ICL2–TMH4 transition.

Detailed characterization of TSHR oligomerization pointed 
to the SD as a main determinant for intermolecular receptor–
receptor interplay and indicated that the extracellular receptor 
region might participate in this constellation (183, 184, 282). 
Recent studies suggested that the TMH1 is a main contact in the 
SD of the TSHR (283), which is in accordance with several of 
the crystallized GPCR interfaces reported above [e.g., the KOR 
dimer interface at TMH1–helix 8; PDB entry 4DJH (153)]. In 
line with this finding and with the published crystalized dimers, 
we provide molecular homology models of two putative TSHR 
dimer arrangements (Figure  10). In a putative symmetric 
TMH5–TMH5 interface, the TSHR would have additional side 
chain contacts at the extracellular side between TMH5 and 
TMH6 (Figure 10A). In a putative contact arrangement between 
TMH1–helix 8 (Figure  10B), TMH2 would contribute to the 
protomer contacts. A striking difference between both general 
orientations of the protomers is the relative orientation of the 
extracellular parts. Because it is so far unknown how the extra-
cellular N-terminal LRRD and hinge region is arranged relative 
to the SD, the correct TSHR–TSHR constellation is unknown. 
According to our current homology models and arrangement of 
the ECD relative to the SD (Figure 6), a TMH5–TMH5 interface 
would result in sterical clashes between the extracellular parts and 
hormone binding would require initial structural modifications. 
In a TMH1–helix 8/TMH1–helix 8 protomer arrangement, the 
ECDs of both receptor molecules (models) would be freely acces-
sible for the hormone molecules. In any case, it is reasonable to 
assume that both transmembrane interfaces occur simultaneously 
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in higher order complexes of the TSHR [as observed for the  
β-1AR (155)], which is probably functionally relevant for proper-
ties such as negative cooperativity in ligand binding caused by 
lateral intermolecular allosteric effects and/or negative intramo-
lecular cooperative effects (183, 284).

Interestingly, the structure of the FSHR extracellular region 
with bound FSH was solved as a trimeric complex comprised 
three individual receptor/ligand units (49), while the previously 
solved FSHR/FSH complex with a shorter LRRD and without 
the hinge region (64) is a dimeric LRRD/hormone complex. 
Furthermore, in these two partial FSHR structures, interactions 
between the respective protomers are not similar, which might 
indicate flexibility in the arrangement or artificial constellations 
based on the crystallographic method. However, the trimeric-
structure organization for GPHRs should be kept as one of vari-
ous options for a multimeric receptor organization, since it also 
fits to several functional data (86, 285).

OPeN QueSTiONS AND FuTuRe 
DiReCTiONS

In summary, well-defined structural rearrangements and interac-
tion events between different proteins accompanies and charac-
terizes the TSHR activation process. Any modification such as 
substitution of interacting amino acids may affect the resulting 
signaling, which is supported by a huge number of naturally 
occurring mutations in addition to designed inactivating or acti-
vating receptor mutants (41–44). Many insights concerning the 
TSHR structure in relation to detailed and general functions were 
already identified. This information is useful for deciphering the 
mechanisms of signaling or pathogenic conditions at the molecu-
lar level. However, we also draw attention to the lack of structural 
information, meaning that the main open questions concern the 
entire receptor structure—with and without the “C-peptide,” 
with interaction partners (arrestin or G-proteins) or the exact 
oligomer constitution. For instance, the bound TSH structure in 

complex with TSHR would be hugely beneficial for many TSHR-
related studies, including the improved directed development or 
refinement of medical therapeutics targeting the TSHR. Finally, 
the dynamic signaling process considering all known (and so 
far unknown) interaction partners resolved in time and cellular 
localization [also intracellularly (180, 181, 286–290)] would push 
the field enormously toward a comprehensive understanding of 
the TSHR, including suggested extra-thyroidal actions (29, 34, 
291–296).
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