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The tropical freshwater zebrafish has recently emerged as a valuable model organism 
for the study of adipose tissue biology and obesity-related disease. The strengths of the 
zebrafish model system are its wealth of genetic mutants, transgenic tools, and amena-
bility to high-resolution imaging of cell dynamics within live animals. However, zebrafish 
adipose research is at a nascent stage and many gaps exist in our understanding of 
zebrafish adipose physiology and metabolism. By contrast, adipose research within 
other, closely related, teleost species has a rich and extensive history, owing to the 
economic importance of these fish as a food source. Here, we compare and contrast 
knowledge on peroxisome proliferator-activated receptor gamma (PPARG)-mediated 
adipogenesis derived from both biomedical and aquaculture literatures. We first concen-
trate on the biomedical literature to (i) briefly review PPARG-mediated adipogenesis in 
mammals, before (ii) reviewing Pparg-mediated adipogenesis in zebrafish. Finally, we (iii) 
mine the aquaculture literature to compare and contrast Pparg-mediated adipogenesis 
in aquaculturally relevant teleosts. Our goal is to highlight evolutionary similarities and 
differences in adipose biology that will inform our understanding of the role of adipose 
tissue in obesity and related disease.

Keywords: adipose, zebrafish, adipogenesis, pparg, aquaculture

Adipogenesis—the process of progenitor cell differentiation to generate mature, lipid-laden adipo-
cytes (fat cells) is central to physiological homeostasis. Dysregulation of adipogenesis and a reduced 
capacity to sequester lipid within cytoplasmic lipid droplets (LDs) of adipocytes leads to lipodystro-
phy, ectopic lipid deposition, systemic metabolic dysfunction, and increased risk for developing 
diabetes and cardiovascular disease (1–3). Members of the peroxisome proliferator-activated 
receptor (PPAR) family of nuclear receptors have paramount roles in lipid metabolism; and, in 
particular, PPAR gamma (PPARG) is critical for adipogenesis. Much is known on PPARG-mediated 
adipogenesis in mammalian model systems; however, extensive research has also been conducted 
on adipogenesis in fish species relevant to the aquaculture industry. The aim of this mini-review 
is to integrate findings on Pparg-mediated adipogenesis from the aquaculture industry into the 
larger biomedical-centered literature. This review is focused on adipogenesis in white adipose 
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tissue (WAT); however, adipogenesis in brown adipose has also 
recently been reviewed (4).

PPARG: A MASTeR ReGULATOR OF 
MAMMALiAn ADiPOGeneSiS

Peroxisome proliferator-activated receptor gamma is both nec-
essary and sufficient for WAT adipogenesis in mammals, and 
is considered a “master regulator” of adipogenesis. In mouse, 
Pparg plays an important role in placental vascularization, 
monocyte differentiation, and cardiac development (5, 6); 
however, Pparg is also required for adipogenesis both in vitro 
(7) and in vivo (5, 7, 8). Naturally occurring mutations within 
the PPARG coding sequence can lead to PPARG loss-of-function 
(LOF), severe lipodystrophy, insulin resistance, and diabetes in 
humans (2, 3, 9). Further, adipocyte-specific deletion of Pparg 
in mouse results in the complete absence of WAT (8). Strikingly, 
expression of Pparg, together with provision of an activating 
ligand, is sufficient to initiate an adipogenic program and 
maintain an adipocyte phenotype in previously non-adipogenic 
cells (10, 11). Therefore, PPARG has a central role in mamma-
lian adipogenesis, typified by PPARG LOF in humans, which is 
associated with severe lipodystrophy, and metabolic dysfunction 
and disease.

In mammals, PPARG exists as two isoforms, G1 (γ1) and G2 
(γ2), derived from a single gene, and transcribed by distinct 
promoters (12, 13). PPARG2 contains additional 30 amino acids 
at the N-terminal of PPARG1 and is specific to WAT—whereas, 
PPARG1 can be expressed at low levels in non-WAT tissues  
(12, 13). Both γ1 and γ2 isoforms can instruct a similar adipogenic 
gene expression program; however, PPARG2 exhibits a quan-
titatively greater adipogenic ability (14). Structurally, PPARG 
contains six protein domains (domains A–F) (Figure 1A): the 
N-terminal A/B-domain contains the ligand-independent trans-
activation function 1 (AF-1); the C-domain is a highly conserved 
DNA-binding domain (DBD), consisting of two type II zinc 
fingers; the D-domain is a flexible hinge region; the E-domain 
contains the AF-2 ligand-binding domain (LBD); and at the 
C-terminus, a small F-domain has been shown to interact with 
cofactors (15).

The function of each PPARG domain has been extensively 
studied. The N-terminal AF-1 domain regulates the transcrip-
tional activity of PPARG by (i) influencing Pparg ubiquitination 
and receptor turnover (16), (ii) controlling localization of Pparg 
to distinct cellular compartments (17, 18), (iii) facilitating com-
munication with the LBD and enhancing ligand-dependent tran-
scription (19), and (iv) recruitment of coactivators (20, 21) and 
corepressors (22). Importantly, many AF-1 focused regulatory 
mechanisms rely on posttranscriptional modifications of PPARG 
and can be both ligand-dependent or ligand-independent (23). 
Accordingly, inhibiting phosphorylation of serine 112 (S112) of 
Pparg2 in mouse results in improved insulin sensitivity when 
fed a high-fat diet (24). In addition, humans carrying a muta-
tion blocking phosphorylation of an equivalent serine residue 
also have improved insulin sensitivity (18, 25). Together, these 
studies show that multiple diverse mechanisms converge on the 

AF-1 domain to regulate the transcriptional activity, and insulin 
sensitizing potential, of PPARG.

The transcriptional activity of PPARG is highly dependent on 
its DBD. Mutations within the DBD of human PPARG inhibit the 
transcriptional potential of PPARG and patients carrying such 
mutations exhibit severe insulin resistance and an increased 
risk for diabetes (3, 9, 26). The core DBD is highly conserved 
between different nuclear receptors; both within the PPAR  
family, and between distinct nuclear receptor families (27). 
Indeed, some nuclear receptors bind identical DNA motifs 
(28) and, in support, Pparg retains the ability to conduct an 
adipogenic program even when fused to alternative DBDs (29). 
These data suggest that the specificity of PPARG-mediated gene 
activation is not entirely contained within the DBD. Pparg 
generally binds DNA as obligate heterodimers with members 
of the retinoid X receptor (RXR) family of nuclear receptors 
(30), although some evidence suggests Pparg can also function 
as a homodimer (31). Strikingly, mutations within RXR DBDs 
have severe consequences for the transcriptional activity of 
PPARG:RXR heterodimers, suggesting the DNA-binding activ-
ity of RXR is also central to PPARG function (32). PPARG/RXR 
heterodimers bind to cis-acting peroxisome proliferator response 
elements (PPREs) containing direct repeats of 5′-AGGTCA-3′ 
separated by n nucleotides (DRn) (Figure 1B) (33–35). Along 
with an AAACT flanking sequence situated immediately 5′ to 
the core DRn motif, which helps guide selective PPAR binding 
(36–38). ChIP-Seq analyses for Pparg binding have identified 
DR1 as the canonical motif for PPARG binding (33, 39, 40), and 
binding is dependent on the sequence, and affinity, of specific 
DR1 motifs (40). Wider chromatin organization and acces-
sibility also appear key for PPARG-mediated adipogenesis, as 
extensive chromatin remodeling occurs early in adipogenesis, 
prior to Pparg binding, and creates “hotspots” primed for future 
Pparg binding (41).

THe LBD OF PPARG, KnOwn LiGAnDS, 
AnD MODULATiOn OF 
TRAnSCRiPTiOnAL ACTiviTY

Ligand binding regulates the transcriptional activity of PPARG 
and, as such, the LBD is central to the ability of PPARG to direct 
adipogenesis and regulate insulin sensitivity. Numerous lipid 
metabolites have been identified as PPARG ligands; including, 
polyunsaturated fatty acids (PUFAs), such as docosahexaenoic 
acid and linoleic acid, eicosanoids, and 15-deoxy-Δ12,14-
prostanglandin J2 [PGJ(2)] (10, 42–47). Many of these ligands 
bind PPARG with low affinity and are unlikely to be present 
at concentrations required to activate PPARG in  vivo (48). 
However, derivatives of linoleic acid have been shown to 
potently bind Pparg, and may represent an endogenous ligand 
for PPARG (49, 50). Intriguingly, a cAMP-induced, transient 
Pparg ligand is produced by 3T3-L1 adipocytes during the early 
stages of adipogenesis (51) and drives Pparg-mediated progeni-
tor differentiation. Furthermore, this transient Pparg ligand is 
suggestive of a positive feedback loop, which is autonomous to 
adipocytes and acts in a paracrine manner. Synthetic ligands 
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FiGURe 1 | Overview of peroxisome proliferator-activated receptor gamma (PPARG) structure, DnA-binding specificity, and identification of human 
PPARG genetic variation conserved to fish. (A) Schematic illustrating the domain organization of human PPARG. (B) PPARG:RXRA-binding motifs for human 
(upper motif) and mouse (lower motif). Motifs are derived from the JASPAR database (http://jaspar.genereg.net/). (C) PPARG domain structure with dbSNPS 
predicted to be deleterious using SIFT and Polyphen, and conserved to zebrafish, Nile tilapia, and fugu. Red single nucleotide polymorphisms (SNPs) indicate 
functional verification (9). Yellow–brown histogram indicates the degree of conservation in PPARG between human, mouse, coelacanth, spotted gar, zebrafish, fugu, 
and Nile tilapia. Height and color indicate the degree of conservation.
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also bind and regulate PPARG activity. Most prominently, thia-
zolidinediones (TZDs) are potent PPARG agonists that lower 
hyperglycemia, decrease plasma triacylglycerides and free fatty 
acids, and increase insulin sensitivity (51). As such, TZDs have 
incredible potential to improve insulin sensitivity and glucose 

homeostasis in diabetic patients. However, many TZDs have 
been withdrawn from clinical use, or are under extensive review, 
owing to toxic side effects (52, 53). In particular, TZDs induce 
adipogenesis in patients and can lead to increased weight gain 
(51, 54, 55).
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ZeBRAFiSH AS A MODeL TO STUDY 
Pparg-MeDiATeD ADiPOGeneSiS

As a complement to mammalian model systems, the zebrafish has 
recently emerged as a tractable model for studying adipogenesis 
in vivo. Zebrafish possess adipose tissue that is morphologically 
similar to mammalian WAT (56–58), and which is deposited 
in anatomically homologous regions to mammalian WAT  
(56, 58, 59). Further, zebrafish adipose responds to nutritional 
manipulation, suggesting a conserved role for WAT as an energy 
store or supply during periods of caloric excess or restriction  
(56, 60, 61). Zebrafish possess a single pparg ortholog on chromo-
some 11 (47), which exhibits 67% overall similarity to human 
PPARG (47). The LBD and DBD of zebrafish pparg show especially 
high conservation to human PPARG (80.5 and 94.3% of amino 
acids are identical in LDB and DBD, respectively) (Figure 1C) 
(47, 62). The N-terminal AF-1 domain shows much less conserva-
tion between zebrafish and human (Figure 1C) (47, 62); however, 
this is unsurprising as the AF-1 domain is well known to exhibit 
low similarity even between more closely related species (23). 
Interestingly, zebrafish pparg contain multiple regions with amino 
acid insertions not present in mammalian PPARG, suggesting the 
potential for neo-functionalization of fish Pparg (Figure  1C)  
(47). Importantly, zebrafish pparg mRNA is detected in adipocytes 
(56, 58, 60). Moreover, many compounds known to stimulate 
mammalian Pparg also modulate zebrafish pparg mRNA; includ-
ing, organotin compounds such as tributyltin (63, 64), halogen-
ated analogs of bisphenol A (65), and PGJ(2) (66). Construction 
of a zebrafish transgenic line expressing the human PPARG LBD 
fused to a Gal4 DBD exhibits increased transcriptional activity 
after treatment with TZDs including rosiglitazone, pioglitazone, 
or troglitazone (67), thus suggesting that ligand-dependent 
coactivators of Pparg are conserved and functional in zebrafish. 
Intriguingly, recent work showed that treatment of zebrafish with 
the TZD rosiglitazone increased adiposity, suggesting that the 
role of Pparg in stimulating zebrafish adipogenesis may also be 
conserved to mammals (68).

ADiPOGeneSiS AnD THe AQUACULTURe 
inDUSTRY

The use of zebrafish as a biomedical model system to study 
adipogenesis is at a nascent stage, and many gaps exist in our 
understanding. However, the aquaculture industry has conducted 
extensive investigation into adipogenesis in closely related fish 
species, owing to the fact that adipogenesis affects meat quality, 
animal health, and harvest yields (69). Aquaculture is defined as 
the farming of aquatic organisms; including fish, crustaceans, 
mollusks, and plants. The aquaculture industry contributes ~50% 
of the world’s aquatic food source (70); thus representing a sig-
nificant proportion of all food consumed worldwide (71). For this 
review, we focus on teleost species most closely related to zebrafish. 
For a comprehensive review of teleost phylogeny, we refer you 
to the following articles (72, 73). The teleost lineage is divided 
into three branches; clupeocephalans (including the majority of 
teleosts); and the relatively minor elopomorpha (including eels 

and tarpons), and osteoglossomorpha (fish possessing toothed 
or bony tongues) (72, 73). For this review, we only consider clu-
peocephalans, which belong to two main lineages; ostariophysi 
and euteleostei. In 2010, freshwater fish production was domi-
nated by ostariophysi such as silver carp (Hypophthalmichthys 
molitrix), grass carp (Ctenopharyngodon idella), common carp 
(Cyprinus carpio), and the euteleostei, Nile tilapia (Oreochromis 
niloticus). The euteleostei Atlantic salmon (Salmo salar) was the 
most farmed saltwater fish (70). Extensive regional differences 
exist in the species of fish farmed; for example, Asian countries 
primarily farm ostariophysi carp species, accounting for 89% of 
world aquaculture (70). By contrast, Mediterranean countries 
farm euteleostei species including gilthead sea bream (Sparus 
aurata) (74), European sea bass (Dicentrarchus labrax), and 
flathead gray mullet (Mugil cephalus) (70). Northern European 
countries, primarily farm euteleostei salmonid species such 
as Atlantic salmon and rainbow trout (Oncorhynchus mykiss) 
(70). A characteristic of teleosts is a teleost-specific third whole 
genome duplication (Ts3R), which is estimated to have occurred 
~225–333 million years ago (72, 75). Recent genome sequencing 
projects have revealed that, in addition to Ts3R, certain teleost 
lineages have undergone further extensive genome duplication; 
including, salmonids (76, 77) and common carp (78). Genome 
duplications are hypothesized to underlie the dramatic radiation 
of teleosts and often lead to multiple gene copies, under reduced 
selective constraint, and thus receptive to neo-, non-, and sub-
functionalization of the ancestral gene role (73).

eXTenSive SYnTeniC COnSeRvATiOn 
AT TeLeOST pparg LOCi

As PPARG exerts such a central role in mammalian adipogen-
esis, we first wished to assess whether duplicated teleost pparg 
paralogs have been retained. Only a single pparg ortholog was 
identified in 9 (of 10) teleost fish species with genome data on 
Ensembl (79). These data are striking, as the other members of 
the PPAR family (ppara and ppard) have been extensively dupli-
cated, with paralogs retained, in teleosts (Ensembl Gene Tree: 
ENSGT00870000136388) (47). Teleost species with a single pparg 
ortholog include, ostariophysi such as zebrafish (cyprinidae);  
and euteleostei such as, Atlantic cod (gadiformes), pufferfish 
(tetradontiformes, both fugu and tetraodon), stickleback 
(gasterodae), and Nile tilapia (cichlidae) (Ensembl Gene Tree: 
ENSGT00870000136388) (47). The single teleost species with a 
retained pparg paralog is the ostariophysi blind cavefish (Astyanax 
mexicanus) of the chariciformes order (Figure 2). The striking 
loss of duplicated pparg genes in the majority of teleosts suggest 
stringent selective pressures for retaining Pparg copy number 
and function. To construct a predicted ancestral pparg locus, we 
examined synteny at the Pparg locus in tetrapods (mouse and 
human), a basal sarcopterygian (coelacanth), an actinopterygian 
holosteian basal to teleosts (spotted gar), and a chondrichthyan, 
cartilaginous fish (elephant shark) (Figure  2). Following the 
Ts3R, two pparg loci can be identified which each share extensive 
synteny to the predicted ancestral locus (Figure 2). Remarkably, 
in both ostariophysi and euteleostei, pparg appeared to be 
retained at a specific single locus (locus 1) (Figure 2), with the 
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FiGURe 2 | extensive shared synteny between mammals and fish at the Peroxisome proliferator-activated receptor (PPARG) locus. The predicted 
ancestral locus was inferred from comparing the loci documented in the figure, together with the chondrichthyan elephant shark (Callorhinchus milii) locus  
(not shown). The C. milii locus contained Cenp and Rab43 genes (indicated with an asterisk). Ts3R indicates the teleost-specific genome duplication. Note the 
inversion of TIMP4 and SYN2 upstream of PPARG in the mammalian lineage. Duplicated raf1 paralogs (raf1a and raf1b) are only retained in zebrafish and cavefish.
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exception being Atlantic salmon, which retained pparg at locus 
2 (Figure 2). Strikingly, in all euteleostei species examined, the 
region downstream of pparg contained multiple new genes not 
found in other species (iffo2b, akr7a3, mrto4, megf6b), suggest-
ing an euteleostei-specific recombination event that completely 
changed the sequence downstream of pparg (Figure 2).

SeQUenCe HOMOLOGY OF TeLeOST 
pparg GeneS

Extensive synteny at teleost and mammalian PPARG suggest 
the locus is under considerable selective constraint; therefore, 
we next assessed whether the PPARG amino acid sequence 
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was equally conserved. We aligned PPARG sequences from 
representative tetrapods, a basal sarcopterygian, a holosteian, an 
ostariophysan, and euteleostians (Figure 1C). As expected, not 
all elements of the mammalian PPARG sequence were conserved 
from mammals to fish (Figure 1C). Strikingly, the DBD, hinge 
region, and LDB exhibited high levels of conservation from mam-
mals to fish (Figure 1C). However, we found a large insertion into 
the hinge region specific to the euteleosts, fugu, and Nile tilapia 
(Figure 1C). We further found euteleost-specific and zebrafish-
specific insertions into the AF-1 domain (Figure 1C). Aside from 
these three regions inserted into teleost Pparg, conservation was 
extensive (Figure 1C). Previous studies have identified that the 
LDB of fish Pparg (red sea bream and Nile tilapia) often contains 
additional amino acids compared to human PPARG (80, 81). 
However, the DBD of PPARG is well conserved between fish and 
mammals (81). These distinct patterns of conservation have been 
suggested to reflect the fact that PPARG target genes are well 
conserved, while there may be greater diversity in ligands, which 
activate PPARG (81) and may explain why some human PPARG 
agonists are unable to stimulate pparg expression across teleost 
species (81, 82).

COnSeRvATiOn OF Pparg AMinO ACiDS 
AFFeCTeD BY DiSeASe-ASSOCiATeD 
GeneTiC vARiATiOn in HUMAnS

The considerable sequence conservation between mammalian 
and teleost PPARG suggest that residues affected by naturally 
occurring, disease-associated, mutations in human PPARG may 
also be conserved in teleosts. To address this, we (i) collected all 
known human PPARG single nucleotide polymorphisms (SNPs) 
from dbSNP (347 SNPs), (ii) filtered these SNPs to identify 73 
SNPs predicted to have a highly deleterious effect on PPARG 
function, (iii) identified amino acids altered by the deleterious 
SNPs, which were conserved to teleosts (39 SNPs/amino acids), 
(iv) filtered the conserved deleterious SNPs to ones that had been 
experimentally verified to have an effect on adipogenesis and 
PPARG function in humans (4 SNPs) (9). The resulting collection 
of SNPs (Figure 1C) represent ideal initial targets for modeling 
Pparg function during teleost adipogenesis and highlight the 
highly conserved nature of PPARG from mammals to fish.

eXPReSSiOn DYnAMiCS OF pparg in 
FARMeD FiSH SPeCieS

Although little is known regarding the expression of pparg in 
zebrafish, extensive experiments have been undertaken in farmed 
fish species to determine the dynamics of pparg during adipo-
genesis. In grass carp (ostariophysi), gilthead sea bream, large 
yellow croaker, and Atlantic salmon (all euteleostei), Pparg/pparg 
appeared coincident with early stages of adipocyte differentiation 
and increased gradually throughout adipogenesis (69, 83–87). 
These dynamics mirror those observed in mammalian 3T3-L1 
cells, where Pparg mRNA is present at low levels in adipocyte 
progenitors, and increases upon stimulation of adipogenesis 
(10, 88). Similar to 3T3-L1 cells, cebpb mRNA was also induced 

prior to pparg during differentiation of adipocyte progenitors in 
the euteleostei, cobia (Rachycentron canadum), and in Atlantic 
Salmon (89). By contrast, in red sea bream (Pagrus major) 
(another euteleostei), pparg mRNA appeared to remain stable 
during a 10-day preadipocyte culture; however, isolated cells 
were maintained for 4 days prior to induction of adipogenesis; 
therefore, it remains possible that fluctuations in pparg mRNA 
expression occurred prior to analysis (80). However, by this 
method, accumulation of LDs appeared late and was not robust 
(80). Furthermore, in gilthead sea bream (euteleostei), pparg 
mRNA decreased in preadipocytes upon the addition of an 
adipogenic cocktail (83). The experimental reasons for differ-
ences in teleost pparg expression dynamics is unclear; however, 
in most fish species, the induction and maintenance of pparg 
mRNA during adipogenesis appears largely conserved to mam-
mals. Furthermore, multiple pparg isoforms have been found in 
Nile tilapia and Atlantic salmon (both long and short isoforms)  
(81, 85, 90, 91), suggesting that teleost pparg is alternatively 
spliced similar to mammalian PPARG.

THe FUnCTiOnAL ROLe OF  
Pparg-MeDiATeD ADiPOGeneSiS  
in FARMeD FiSH SPeCieS

In addition to expression dynamics, extensive experiments 
on Pparg-mediated adipogenesis have been conducted in 
aquaculturally relevant fish species. Much of the evidence for 
Pparg-mediated adipogenesis in fish species derive from primary 
adipocyte progenitor, or “preadipocyte,” cell culture systems. 
Primary preadipocyte cultures have been established in multiple 
species, including; Atlantic salmon (84), red sea bream (92), rain-
bow trout (93), grass carp (94), large yellow croaker (69), gilthead 
sea bream (74), and cobia (89). In all of these systems, primary 
stromal-vascular cells were isolated from visceral adipose tissue 
(VAT) [the VAT source most likely equates to the pancreatic VAT 
and abdominal VAT deposits described in zebrafish (59)]. The 
preadipocyte culture methods closely follow established methods 
for the growth and differentiation of mammalian 3T3-L1 cells (95) 
and enable the incubation of preadipocytes, and differentiated 
adipocytes, with a range of pharmacological and biological agents 
to study potential roles during Pparg-mediated adipogenesis.

To our knowledge, no functional genetic data on the role of 
Pparg in farmed fish species is currently published. However, 
extensive data exist on pharmacological manipulation of Pparg 
and adipogenesis. Troglitazone, an insulin sensitizing TZD, 
potently stimulates preadipocyte differentiation in porcine and 
human preadipocytes (96, 97); and co-incubation with insulin 
induced preadipocyte differentiation in rainbow trout (98). 
A second TZD tested in teleosts, ciglitazone, induced pparg 
expression in preadipocytes of red sea bream (80), suggesting 
that TZDs induce both pparg and adipogenesis in teleosts. 
The role of several pro- and anti-adipogenic factors have also 
been studied in fish. Insulin has potent stimulatory effects on 
Pparg mRNA levels, and the proliferation and differentiation of 
mammalian preadipocytes, acting through IRS1 and the MAPK 
pathway (99, 100). In large yellow croaker (Percomorpha), 
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insulin increased pparg mRNA, along with stimulating preadi-
pocyte proliferation and differentiation (69). In accordance with 
mammalian data, Insulin inhibited lipolysis in differentiated 
adipocytes of rainbow trout (69, 101). Similarly, insulin also 
stimulated the differentiation of adipocyte progenitors and lipid 
accumulation in red sea bream (92). These findings suggest that 
insulin has a conserved role in stimulating pparg expression 
and promoting adipogenesis. Insulin-mediated induction of 
pparg and adipogenesis is also potentially conserved to other 
fish species, as the insulin-IRS1-MAPK signaling axis is also 
functional in rainbow trout adipocytes (102). However, unlike 
in rainbow trout, insulin had no effect on adipocyte lipolysis in 
gilthead sea bream (103). Tumor necrosis factor alpha (TNFA) is 
secreted from mammalian adipocytes and inhibits adipogenesis 
(104). Treating large yellow croaker preadipocytes with human 
TNFA reduced pparg mRNA levels, suppressed proliferation and 
differentiation, and stimulated lipolysis in differentiated adipo-
cytes (69). An anti-adipogenic role for TNFA was also found 
in rainbow trout adipocytes at both RNA and protein levels  
(93, 105). PUFAs inhibit the proliferation and differentiation of 
mammalian preadipocytes (106, 107). DHA, an omega-3 fatty 
acid, was used in the treatment of large yellow croaker preadipo-
cytes and led to decreased pparg mRNA levels and reductions in 
cell proliferation (69). It has further been shown that DHA stimu-
lates lipolysis in 3T3-L1 preadipocytes (108); however, DHA did 
not exert a positive effect on lipolysis within large yellow croaker 
adipocytes and was actually observed to have an anti-lipolytic 
effect (69). Interestingly, DHA reduced lipid accumulation in 
Atlantic salmon adipocytes, although a mechanisms by which 
this occurred was not identified (85). Conversely, an analog of 
the saturated fatty acid palmitate, 2-bromopalmitate, increased 
pparg mRNA (red sea bream) (80). pparg cooperates with rxra to 
transcribe fabp4 suggesting that fish Pparg also functions as an 

obligate heterodimer with Rxr proteins to guide adipogenic gene 
expression (Nile tilapia) (81). In Atlantic salmon, pparg mRNA 
was induced after addition of liver X receptor (lxr) agonists (109), 
suggesting Pparg:Lxr coordinate gene expression in teleosts as 
they do in mammals (110).

COnCLUSiOn AnD FUTURe DiReCTiOnS

Peroxisome proliferator-activated receptor gamma is a master 
regulator of adipogenesis in mammals, and mutations deleterious 
to PPARG function lead to increased susceptibility to diabetes and 
cardiovascular disease. In this review, we assessed the literature on 
Pparg-mediated adipogenesis in teleost fish species, including the 
biomedical model system, zebrafish, and multiple aquaculturally 
relevant farmed fish species. We found a high degree of synteny 
and conservation at/in pparg in teleost fish, along with evidence 
of conserved expression, regulation, and function derived from 
primary preadipocyte culture studies. Altogether, information 
on the role of Pparg gleaned from aquaculturally relevant species 
is likely to be highly informative for future zebrafish and mam-
malian biomedical studies on adipogenesis.
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