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The replacement of regenerated thyroid follicular cells (TFCs) is a promising therapeutic 
strategy for patients with hypothyroidism. Here, we have succeeded in inducing func-
tional TFCs from human-induced pluripotent stem cells (iPSCs) in scalable suspension 
culture. Differentiation of iPSCs with Activin A treatment produced Sox17- and FoxA2-
expressing definitive endodermal cells that also expressed thyroid transcription factors 
Pax8 and Nkx2-1. Further treatment with thyroid-stimulating hormone (TSH) induced 
TFCs expressing various types of thyroid proteins including TSH receptor, sodium–
iodide symporter, thyroglobulin, and thyroid peroxidase. Interestingly, differentiated cells 
secreted free thyroxine in vitro. These results indicate successful differentiation of human 
iPSCs to functional TFCs that may enable us to fabricate thyroid tissues for regenerative 
medicine and disease models.

Keywords: induced pluripotent stem cells, differentiation, 3D-cell culture, thyroid transcription factor, thyroid 
follicular cells

inTrODUcTiOn

Although thyroidectomy is widely applied for patients with various types of thyroid diseases, such 
as thyroid nodular diseases, goiters, and Basedow’s disease, subsequent hypothyroidism remains 
a highly undesirable problem (1). Currently, patients with thyroid hormone shortage subsequent 
to thyroidectomy require thyroid hormone replacement therapy via oral administration for life. 
However, as doses are often adjusted according to endogenous hormone levels, patients are not 
always maintained in euthyroid condition. Therefore, treatment strategies to physiologically supple-
ment thyroid hormone levels are ideal, with thyroid replacement using regenerated tissue expected 
to be an alternative and radical treatment.

Thyroid tissue is constructed from two types of cells, thyroid follicular cells (TFCs) and parafol-
licular cells (C-cells) (2). TFCs primarily regulate thyroid functions such as production and secretion 
of thyroid hormones, including T3 and T4. A monolayer of TFCs organizes follicles into honeycomb-
like structures that produce thyroglobulin (TG), which is modified with iodine into thyroid hormone 
(2). We previously demonstrated fabrication of the thyroid gland in  vivo using cell sheet tissue 
engineering of rat thyroid cells (3–5). Fabricated thyroid cell sheets showed follicle structures on 
the temperature-responsive culture dishes in  vitro. Moreover, when transplanted subcutaneously 
into a rat total thyroidectomy model, regenerated tissues with structures resembling the thyroid 
gland’s spherical follicular cell layer (with collide inside) and parafollicular cells were observed. 
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Further, serum concentration of free triiodothyronine (T3) and 
thyroxine (T4) recovered to levels similar to that of littermates. 
These findings indicate the integration of suitable cell sources and 
appropriate tissue engineering technologies potentiates fabrica-
tion of functional thyroid tissues to replace thyroid hormone (5).

While it is ideal to transplant a patient’s own thyroid cells 
after isolating and expanding these cells from tissues resected 
during surgery, transplantation of over 100 million TFCs is 
calculated from previous reports in animals (5) to be necessary 
to supplement reduced thyroid hormone levels observed with 
hypothyroidism. Furthermore, this strategy might not be suit-
able for patients with malignant tumors owing to the recurrent 
risk. Recent advancement of reprogramming technologies has 
enabled generation of patient-derived induced pluripotent stem 
cells (iPSCs) that may overcome cell source issues in terms of 
both quality and quantity (6, 7). Additionally, the development 
of three-dimensional (3-D) suspension culture strategies facili-
tates generation of large amounts of differentiated cells, such as 
iPSC-derived cardiomyocytes and pancreatic b cells, within a 
single production run. Recently, we developed a scalable 3-D 
suspension culture system for human iPSCs and succeeded in 
producing over 100 million human cardiomyocytes, which ena-
bled fabrication of functional cardiac tissues in vitro and in vivo 
(8, 9). However, it remains unclear whether human iPSCs can 
be differentiated into functional TFCs using scalable suspension 
culture methods.

Members of the thyroid transcription factor (TTF) family 
include paired box protein 8 (Pax8) and homeobox protein 
(Nkx2-1, also known as TTF-1) (10), which are known to be 
essential for thyroid gland development and morphogenesis 
(11–13). Complete absence of thyroid follicles has been reported 
in mice lacking Pax8 or Nkx2-1 genes (11–13). Meanwhile, over-
expression of Pax8 and Nkx2-1 in mouse and human embryonic 
stem cells (ESCs) or PSCs is reportedly enough to drive TFCs 
differentiation into thyroid hormone-secreting cells that recover 
function of hypothyroidism models in  vivo (14–16). Antonica 
et al. succeeded in generation of functional TFCs from the Pax8 
and Nkx2-1 co-expressed mouse ESCs with Matrigel-supported 
3D culture stimulated by thyroid-stimulating hormone (TSH) 
(14), and also Ma et al. reported the differentiation both of mouse 
and human PSCs into the functional follicle structural TFCs by 
Activin A and TSH stimulation (15, 16). Furthermore, as these 
transcription factors directly regulate expression of thyroid-
specific genes including TG, thyroid-stimulating hormone receptor 
(TSHR), thyroid peroxidase (TPO), and sodium/iodide symporter 
(NIS) (17), specific expression levels of Pax8 and Nkx2-1 might be 
sufficient for functional TFC differentiation. However, it remains 
unclear whether these defined factors can induce sufficient 
upregulation of Pax8 and Nkx2-1 expression to further TFC 
differentiation.

This study demonstrated direct differentiation of human 
iPSCs into functional TFCs using defined factors in a scalable 
suspension culture method. Treatment with Activin A and TSH 
induced Pax8- and Nkx2-1-expressing cells in cell aggregates 
through a definitive endoderm intermediate. Furthermore, 
PAX8- and NKX2-1-expressing cells also expressed TG, TSHR, 
TPO, and NIS and secreted free T4 in vitro.

MaTerials anD MeThODs

growth and Maintenance of human iPscs
Human iPSCs (253G1) were purchased from RIKEN. These cells 
were generated from human skin fibroblast by retroviral trans-
duction of Oct3/4, Sox2, Klf4 (7), and maintained on a feeder-
cell layer of mitomycin C-treated mouse embryonic fibroblasts 
(ReproCELL). Subculture passages were performed every 2 days 
at a 1:3 ratio in Primate ES Medium (ReproCELL) supplemented 
with 5  ng/ml basic fibroblast growth factor (ReproCELL). The 
culture medium was changed every day. Undifferentiated state 
was assessed routinely and before starting differentiation experi-
ments by qPCR for Nanog, Oct-4 gene expression.

Differentiation of human iPscs into 
Definitive endoderm and TFcs
First, we collected human iPSCs using a dissociation solution 
(ReproCELL) and suspended these cells into small aggrega-
tions. To aggregate, cells were harvested in mTeSR1 (Stemcell 
Technologies) with 10 µM Y-27632 (Wako) and then stirred in 
a 30-ml volume-standardized bioreactor (ABLE Co.) for 2 days 
to form embryoid bodies (EBs). These EBs were then cultured 
for 3 days to induce definitive endoderm in StemPro-34 Media 
(Gibco) supplemented with StemPRO-34 Nutrient Supplement 
(Gibco), 400  µM monothioglycerol (Sigma-Aldrich), 2  mM 
l-Glutamine (Gibco), 50 μg/ml l-Ascorbic acid (Sigma-Aldrich), 
100 ng/ml Activin A (R&D systems), and on the first day only, 
3 µM CHIR99021 (Stemcell Technologies). Later, differentiation 
of EBs into TFCs was performed in endodermal medium without 
Activin A and with addition of the following nutrients: 1 mU/
ml bovine thyrotropic hormone (TSH) (Sigma-Aldrich), 50 ng/
ml recombinant human IGF-1 (Invitrogen), 10  µg/ml human 
recombinant insulin (Gibco), 6 µg/ml transferrin (Roche Applied 
Science) and 10−8 M hydrocortisone (Calbiochem). Samples were 
collected on culture days 0, 5, 10, 15, 20, and 25. The medium was 
changed every other day.

rna extraction and real-time reverse-
Transcription Polymerase chain reaction 
(rT-Pcr)
To extract total RNA from EBs, an RNeasy® Plus Mini Kit (Qiagen) 
was used according to the manufacturer’s protocol. cDNA syn-
thesis was completed using a First-Strand cDNA Synthesis Kit 
(OriGene). Primer pairs and TaqMan MGB probes were designed 
for human SOX17 (Hs00751752_s1), FOXA2 (Hs00232764_m1), 
PAX8 (Hs01015257_g1), NKX2-1 (Ttf-1) (Hs00968940_m1), 
SLC5A5 (Nis) (Hs00166567_m1), TPO (Hs00892519_m1), TG 
(Hs00174974_m1), TSHR (Hs01053846_m1), and GAPDH 
(Hs00751752_s1) using a TaqMan gene expression assay (Applied 
Biosystems). RT-PCR was performed with SYBR® Green qPCR 
Master Mix (Applied Biosystems) and a StepOnePlus™ Real-
time PCR System (Applied Biosystems). mRNA expression levels 
were analyzed in real time using the 2−ΔΔCT method normalized 
to GAPDH expression as an internal control. Results were con-
firmed in three different samples (n = 3) for each time-dependent 
collection and all samples were tested in duplicate.
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Flow cytometry
Collected EBs were washed with PBS (Sigma-Aldrich) and 
treated with 0.25% Trypsin-EDTA (Thermo Fisher Scientific) for 
10 min at 37°C to disperse EBs into single cells. Following 2% 
paraformaldehyde (PFA) fixation for 10  min, single cells were 
fixed with 4% PFA for 20 min and then harvested as a cell pel-
let by centrifugation at 430 × g for 3 min. Cells were incubated 
in blocking solution, consisting of 5% donkey serum and 0.1% 
Triton™-X (Sigma-Aldrich) in PBS, for 30 min at room tempera-
ture and then divided into several tubes for staining. Cells were 
then incubated with primary antibodies at 4°C overnight. For 
our double-immunostaining procedure, goat anti-human Sox17 
(AF1924 R&D systems, 1:50) and rabbit anti-human FOXA2 
conjugated to Alexa Fluor® 647 (ab193879 Abcam, 1:200), or goat 
anti-human Pax8 (ab13611 Abcam, 1:200) and rabbit anti-human 
TTF-1 (ab76013 Abcam, 1:200) were used. For negative controls, 
normal goat IgG (sc2028 Santa Cruz Biotechnology), normal 
rabbit IgG (sc2027 Santa Cruz Biotechnology), and normal 
rabbit IgG conjugated to Alexa Fluor 647 (sc24647 Santa Cruz 
Biotechnology) were applied.

Finally, following three rinses with blocking solution, cells 
were incubated for 60 min at room temperature with secondary 
antibodies, including anti-goat Alexa 488 (705546147 Jackson 
ImmunoResearch, 1:200), anti-rabbit Alexa 594 (711586152 
Jackson ImmunoResearch, 1:200), and Hoechst 33342 (H3570 
Thermo Fisher Scientific, 1:500) nuclei stain. Prepared samples 
were evaluated using a Gallios (Beckman Coulter) and obtained 
results were analyzed by Kaluza (Beckman Coulter).

immunostaining
Embryoid bodies were washed with PBS and fixed with 4% PFA 
for 20 min. Cells were incubated for 60 min at room temperature 
with blocking solution, consisting of 5% donkey serum and 0.1% 
Triton-X in PBS, and divided into 1.5-ml microtubes for staining. 
EBs were incubated with primary antibodies at 4°C overnight and 
then rinsed three times with blocking solution before applying 
secondary antibodies for 60 min at room temperature. Primary 
antibodies against Sox17, FoxA2, Pax8, and TTF-1, as well as 
negative control and secondary antibodies, employed the same 
materials and dilution as used for flow cytometry. To identify thy-
rocytes, thyroid-specific antibodies including mouse anti-human 
TSHR (ab6044 Abcam, 1:50), mouse anti-human NIS (ab17795 
Abcam, 1:50), rabbit anti-human TG (ab156008 Abcam, 1:50), 
and normal mouse IgG (sc2025 Santa Cruz Biotechnology) 
was applied for the negative controls. EBs were washed with 
PBS, spread on the surface of a glass slide, and then mounted 
with GelMount™ (Biomeda). Finally, all of the immunostained 
samples were examined under confocal microscope (Olympus).

enzyme-linked immunoassay (elisa)
Medium was sampled at the end point of human iPSC differentia-
tion. To measure the level of human-free thyroxine (free T4) in 
medium, a Human-Free Thyroxine ELISA Kit (MyBioSource) 
was employed according to the manufacturer’s protocol. Results 
were confirmed in three different samples (n = 3) for each col-
lected medium and without cell-cultured medium. All samples 
were tested in duplicate.

statistical analysis
Values are expressed as mean  ±  SD. Data were plotted using 
Microsoft Excel, and statistical analyses were performed using 
ANOVA, post  hoc Tukey’s test and unpaired Student’s t-test. 
Values of p < 0.05 were considered statistically significant.

resUlTs

Differentiation of human iPscs into 
Definitive endoderm
As thyroid development is known to progress via definitive 
endoderm (18–20), human iPSCs were cultured in medium 
supplemented with Activin A for endodermal differentia-
tion following formation of cell aggregates in a stirred vessel 
(Figure 1A). After 2 days in undifferentiated culture conditions, 
spherical agglomerations increased in size to approximately 
100 µm (Figure 1B). The size of these (EBs) increased to more 
than 200  µm in diameter (Figure  1B) after 5  days (day 3 of 
differentiation). To confirm endodermal differentiation, expres-
sion of Sox17 and FoxA2 mRNA was evaluated with RT-PCR 
analysis. Compared with before differentiation (day 0), both 
Sox17 and FoxA2 expression significantly increased on day 5, 
and thereafter decreased until day 20 (Figure 1C). Flow cyto-
metric analysis revealed that more than 45% of cells expressed 
both Sox17 and FoxA2 on day 5 (Figure 1D) and these proteins 
were co-expressed in nuclei within cell aggregates (Figure 1E). 
Accordingly, these results indicate successful definitive endo-
dermal differentiation.

Differentiation of TFcs
Thyroid-stimulating hormone is reportedly critical for thyroid 
development and as TSHR mRNA expression was observed in 
cells on day 5 (Figures 3A,B), we examined whether cells had the 
potential to differentiate into TFCs at this time point with TSH 
treatment (Figure  1A). Pax8 mRNA expression levels and the 
percentage of Pax8-expressing cells were not different between 
day5 and day20 (15 days with TSH treatment), suggesting that 
TSH might not directly affect Pax8 expression. As Pax8 is known 
to be an essential transcription factor not only for thyroid devel-
opment but also kidney and urogenital development, we next 
examined expression of Nkx2-1, another essential transcription 
factor for thyroid development. Nkx2-1 mRNA was slightly 
expressed on day 5 and obvious at day 20, with about 15% of 
cells positive for Nkx2-1. Although Nkx2-1 is also known to be 
critical for lung development, almost all Nkx2-1-expressing cells 
also expressed Pax8 (Figures 2B,C), suggesting that these Pax8 
and Nkx2-1 co-expressing cells might be thyroid progenitor cells. 
These findings suggest continuous treatment with TSH promotes 
thyroid differentiation in suspension cultures through mainly 
promote the expression of Nkx2-1.

expression of Thyroid-specific Markers 
and secretion of Free T4 in Differentiated 
TFcs In Vitro
One report indicates the overexpression of Pax8 and Nkx2-1 
induces expression of TSHR and NIS in human ESCs even before 
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FigUre 1 | endodermal differentiation of human induced pluripotent stem cells (iPscs). (a) Schematic diagram of the induction protocol for definitive 
endoderm production from human iPSCs. (B) Embryoid bodies (EBs) collected pre- and post-Activin A exposure, as observed by light microscopy on culture 
days 2, 5, and 20. Scale bar = 100 µm. (c) Real-time reverse-transcription polymerase chain reaction analysis of definitive endodermal markers. Significant 
differences in Sox17 were detected between EBs after Activin A exposure (culture day 5) and samples on culture day 0, day 15, and day 20. In addition, FoxA2 
expression on day 5 was significantly increased in comparison with cultures on day 0, and decreased with significant differences between those of day 15 and 
day 20. Bars indicate average percentage of Gapdh gene expression ±SD; (*p < 0.05, **p < 0.01 versus day 5, n = 3). Statistical analysis was performed by 
one-way ANOVA and post hoc Tukey’s test. (D) Percentage of Sox17- and FoxA2-expressing cells as counted by flow cytometry. After stimulation with Activin A 
for 3 days, the rate of Sox17 and FoxA2 double-positive cells increased to more than 45%, with a maximum of 58%. Bars indicate average percentage of 
Sox17- and FoxA2-expressing cells ± SD (n = 3). (e) Immunostaining of EBs on day 5 with anti-Sox17 and anti-FoxA2 antibodies. Images in the upper line 
present negative control. Images in the lower show Hoechst33342 for nuclei (blue) and Sox17 (green) and FoxA2 (red). Scale bar = 100 µm in the upper line and 
50 µm in the lower.
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differentiation and promotes the differentiation to TFCs after TSH 
treatment (15). As cells on day 20 co-expressed Pax8 and Nkx2-1 
mRNA and protein (Figures 2A–C), we next examined whether 
these cells might possess characteristics of TFCs. Consistent 
with the previous report examining overexpression of Pax8 (15), 
Tshr and Nis were expressed in cells at day 5 to some extent, 
a feature accompanied by expression of Pax8 (Figures 2A and 
3A). Although expression of Tg and Tpo was not observed 
on day 5, it was observed thereafter until day 20 (Figure 3A). 
Immunostaining of differentiated cells on day 20 revealed expres-
sion of NIS surrounding the nuclei of NKX2-1 positive cells, 
and TSHR protein was expressed in many Nkx2-1-expressing 
cells (Figure  3B). Moreover, TSHR-positive cells gathered 
around cells expressing TG inside their cytoplasm (Figure 3B). 
Secretion of thyroid hormone is the most important function 
of TFCs. Analysis of culture medium harvested 25  days after 
differentiation culture by ELISA showed significant increases in 
human-free T4 compared with control medium (differentiation 
culture medium not used for cultivation; p < 0.01, Figure 3C). 
These findings suggest 3-D suspension culture might success-
fully induce functional TFCs.

DiscUssiOn

In the present study, we demonstrated the direct differentiation 
of TFCs from human iPSCs using defined factors in a scalable 
suspension culture method. Transient treatment with Activin A 
induced expression of Pax8 and TSHR, whereas subsequent treat-
ment with TSH induced the differentiation of TFCs expressing 
TG, TPO, TSHR, and NIS. Moreover, differentiated cells secreted 
free T4 in vitro.

Thyroid tissues are known to differentiate from definitive 
endoderm. As reported in a previous study of endoderm differ-
entiation (21), treatment with Activin A and CHIR99021 induced 
Sox17- and FoxA2-expressing definitive endoderm cells in the 
present study. Surprisingly, we observed expression of Pax8 and 
Tshr as early as the definitive endoderm stage (day 5). As several 
studies have reported promotion of Pax8 and Nkx2-1 expression 
with Activin A treatment (22, 23), the essential role Activin A 
directly plays on differentiation of both endoderm and TFCs 
has been established in our study. Precise mechanisms underly-
ing TSHR expression on day 5 remain unclear. However, as we 
observed a very small number of Nkx2-1-expressing cells on day 
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5 and this transcription factor is known to bind to the promoter 
region of TSHR to promote expression (24), activation of Nkx2-1 
by Activin A may also drive expression of TSHR on day 5. As 
thyroid placode cells co-express Pax8 and Nkx2-1 in the pharyn-
geal floor to be distinguished from other types of cells (25, 26), 
Pax8 and Nkx2-1 are particularly dealt with indispensable factors 
for morphogenesis of the thyroid gland (26–28) and estimating 

thyroid progenitors (29). Therefore, cells co-overexpressing Pax8 
and Nkx2-1 have often been applied to study execution of thyroid 
gland development (15, 16, 30). After treatment with TSH for 
15  days (day 20 of culture), we confirmed abundant Pax8 and 
Nkx2-1 mRNA and protein expression, and about 15% of cells 
were positive for both Pax8 and Nkx2-1. These results indicate 
Pax8 and Nkx2-1 are regulated by Activin A stimulation and 
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FigUre 2 | identification of thyroid transcription markers. (a) Pax8 and Nkx2-1 mRNA expression as measured with real-time reverse-transcription 
polymerase chain reaction. Levels of gene expression were normalized to Gapdh. Bars indicate average percentage of Gapdh gene expression ± SD (n = 3). ND 
indicates mRNA expression was not detected and NS indicates not significant. There was no significant difference between all samples in Pax8 by ANOVA.  
(B) Percentage of Pax8 and Nkx2-1 co-expressing cells as counted by flow cytometry. Pax8-positive cells increased in 5 days to more than 50%, which was 
maintained until day 20, except for a transient decrease on day 10. Percentage of Pax8 and Nkx2-1 double-positive cells increased in a time-dependent manner, 
resulting in 16% approximately on culture day 20. Negative controls were applied for normal IgG instead of primary antibodies. Bars indicate average percentage of 
Pax8- and Nkx2-1-coexpressing cells ± SD (n = 3). Statistical analysis was performed by one-way ANOVA. (c) Immunohistological analysis of Pax8 and Nkx2-1. 
Images in the upper line present negative controls. Images in lower show Pax8 (green), Nkx2-1 (red), and Hoechst33342 (blue). Scale bar = 50 µm.
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FigUre 3 | continued  
evaluation of thyroid specificity with characteristic thyroid markers on culture day 20 and measurement of free T4. (a) Levels of thyroid-specific mRNA 
expression. Bars indicate average percentage of Gapdh gene expression ± SD (n = 3). ND, not-detected. (B) Immunostaining of embryoid bodies on day 20 with 
thyroid-specific markers NIS, thyroglobulin, and thyroid-stimulating hormone receptor. Images in the top line present negative controls. Scale bar = 50 µm in the top 
line, 30 µm in the lower lines. (c) Levels of human-free T4 were higher significantly in the cultured-cell medium than in the control medium (*p < 0.01). Control 
medium is thyroid-stimulating hormone-supplemented medium before cells were harvested. Bars indicate average-free T4 levels ± SD (n = 3). Statistical analysis 
was performed by unpaired Student’s t-test.
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afterward controlled by the TSH/TSHR pathway. As known as 
an established fact, Nkx2-1 is expressed in the multiple kinds 
of tissues and cells, not only thyroid and parathyroid, but the 
fourth branchial pouch, ultimobranchial body, lung, posterior 
pituitary, hypothalamus, and trachea (17, 25, 29). Though the 
current results showed that the percentage of Pax8-negative/
Nkx2-1-positive cells was rare, the possibility of the existence 
of respiratory endoderm or the restricted brain cells cannot be 
kicked out. As well, Pax8 expresses not only in the developing thy-
roid gland but kidneys and myelencephalon (17, 26, 27, 31) and 
plays an essential part in the folliculogenesis of the thyroid gland 
(12). Therefore, the most of the collected cells, Pax8-positive/
Nkx2-1-negative cells might include the developing kidney or 
neural tissue. At last, Pax8-negative/Nkx2-1-negative cells would 
include other than endodermal cells.

Expression of other TTFs, such as haematopoietically  
expressed homeobox (Hhex) and forkhead box E1 (FoxE1) 
proteins (17, 19), may modulate thyroid-specific genes along 
with TSH treatment. As expression of FoxE1 is strongly depend-
ent upon Pax8 in thyroid progenitors (13), expression of Pax8 
activated by the defined factors used in the present study might be 
sufficient to regulate transcription of other thyroid-specific genes.

Nkx2-1 is expressed not only in thyroid tissue but also in lung. 
Recent reports have reiterated the importance of a negative expres-
sion correlation between FoxA2 and Nkx2-1 for specification of 
thyroid tissues (19). Upregulation of Nkx2-1 accompanied by the 
downregulation of FoxA2 is important for thyroid development, 
while maintenance of FoxA2 expression in Nkx2-1-expressing 
cells is essential for lung development (32). In this study, we 
observed downregulation of FoxA2 after treatment with TSH, 
which contributed to the efficient differentiation of TFCs.

In the present study, we supplemented TSH in the culture 
medium to promote differentiation of TFCs from human iPSCs. 
However, the importance of TSH for thyroid development remains 
an open question. Some reports indicate subsequent treatment 
with TSH after transfection of Pax8 and Nkx2-1 promotes differ-
entiation of mouse and human ESCs into functional thyroid cells 
(15, 16, 23, 30, 33–36). More recently, Kurmann et al. reported 
that TSH treatment promoted the further differentiation of thy-
roid progenitor cells into functional TFCs in mouse and human 
ESCs without transfection of TTFs (37). In contrast, Postiglione 
et al. reported the development of normal-sized thyroid glands 
in both TSH-deprived and TSHR-knockout mice. However, 
expression of TPO and NIS was downregulated, suggesting that 
the TSH/TSHR pathway may be important to regulate TPO and 
NIS gene expression but is not essential for thyroid development 
in the mouse embryo (38). In this study, bimodal upregulation of 
TSHR expression was observed at day 5 and day 20. This trend 

might be enhanced by TTFs such as Pax8 and Nkx2-1 in this 
first 5 days. Meanwhile, subsequent TSH treatment may enhance 
TSHR expression along with upregulation of TTFs, potentially 
leading to the expression of genes related to thyroid maturation, 
including NIS, TPO, and TG, via reciprocal TSH/TSHR path-
way activation. In the present study, we successfully observed 
the secretion of free T4 in differentiated TFCs in vitro. Though 
differentiated TFCs did not present typical follicle structures 
in vitro, as cells co-expressing TG and TSHR gathered inside EBs, 
we examined whether these cells could develop and mature into 
functional TFCs under folliculogenesis.

The thyroid gland maintains its characteristic honeycomb-like 
structure by organizing follicles gathered within its lining of fol-
licular epithelial cells (2). Upon a review of the literature, TFCs 
have primarily been differentiated using traditional adherent 
culture methods on dishes (33, 34, 36) or embedded in Matrigel® 
as a 3-D environment (14–16, 32, 37). One of the most unique 
points in our study of TFC induction is the adoption of 3-D 
stirred culture methods for all processes. We previously reported 
the effectiveness of 3-D suspension culture to produce large 
amounts of cardiomyocytes from human iPSCs, especially for its 
ease of scalability for cell proliferation (8). To supplement thyroid 
hormone levels associated with hypothyroidism, it has been 
estimated that more than 1 × 108–1 × 1010 TFCs are required per 
person (5, 39, 40). Therefore, we anticipate utilizing bioreactor 
will contribute to regenerative medicine development for thyroid 
dysfunction by allowing effective production of a large enough 
number of TFCs. Though issues still remain for cell purification 
and tumorigenesis, at least with regard to organization of the thy-
roid gland, we previously succeeded in fabricating rat functional 
thyroid tissue using cell sheet tissue engineering (5). In the future, 
our combination of suspension culture and cell sheet technol-
ogy will facilitate production of human iPSC-derived thyroids 
capable of rescuing hypothyroidism.
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