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Gonadotrophs are basophilic cells of the anterior pituitary gland specialized to secrete 
gonadotropins in response to elevation in intracellular calcium concentration. These cells 
fire action potentials (APs) spontaneously, coupled with voltage-gated calcium influx of 
insufficient amplitude to trigger gonadotropin release. The spontaneous excitability of 
gonadotrophs reflects the expression of voltage-gated sodium, calcium, potassium, 
non-selective cation-conducting, and chloride channels at their plasma membrane (PM). 
These cells also express the hyperpolarization-activated and cyclic nucleotide-gated 
cation channels at the PM, as well as GABAA, nicotinic, and purinergic P2X channels 
gated by γ-aminobutyric acid (GABA), acetylcholine (ACh), and ATP, respectively. 
Activation of these channels leads to initiation or amplification of the pacemaking activity, 
facilitation of calcium influx, and activation of the exocytic pathway. Gonadotrophs also 
express calcium-conducting channels at the endoplasmic reticulum membranes gated 
by inositol trisphosphate and intracellular calcium. These channels are activated potently 
by hypothalamic gonadotropin-releasing hormone (GnRH) and less potently by several 
paracrine calcium-mobilizing agonists, including pituitary adenylate cyclase-activating 
peptides, endothelins, ACh, vasopressin, and oxytocin. Activation of these channels 
causes oscillatory calcium release and a rapid gonadotropin release, accompanied 
with a shift from tonic firing of single APs to periodic bursting type of electrical activity, 
which accounts for a sustained calcium signaling and gonadotropin secretion. This 
review summarizes our current understanding of ion channels as signaling molecules 
in gonadotrophs, the role of GnRH and paracrine agonists in their gating, and the cross 
talk among channels.

Keywords: gonadotrophs, gonadotropin-releasing hormone, voltage-gated channels, ligand-gated channels, 
electrical activity, calcium signaling, luteinizing hormone secretion

inTRODUCTiOn

Gonadotrophs are the anterior pituitary cell lineage specialized for synthesis and release of two 
gonadotropins, such as follicle-stimulating hormone and luteinizing hormone (LH) (1). In addition 
to genes encoding beta subunits of gonadotropins, Fshb and Lhb (2, 3), gonadotrophs are defined by 
at least two other genes not expressed in other secretory pituitary cell types, such as gonadotropin-
releasing hormone (GnRH) receptor (GnRHR) gene (Gnrhr) (4) and dentin matrix protein 1 gene 
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(5). Together with thyrotrophs, gonadotrophs express the Cga 
gene encoding the α glycoprotein subunit (6). Ontogenetically, 
the lineage commitment is associated with the expression of the 
orphan nuclear receptor NR5A1, a transcriptional factor that also 
plays a role in the expression of gonadotroph-specific genes in the 
postnatal animals (7).

Gonadotrophs are neuron-like; they express numerous 
voltage-gated sodium (Nav), calcium (Cav), potassium (Kv), and 
chloride channels at the plasma membrane (PM), and fire action 
potentials (APs) spontaneously (8). These cells also express ligand-
gated ion channels at PM, which activation by hypothalamic and 
intrapituitary ligands leads to increase in firing frequency and 
facilitation of Ca2+ influx and hormone release (9). The function 
of gonadotrophs is regulated by several Ca2+-mobilizing recep-
tors capable of modulating electrical activity and AP-dependent 
Ca2+ influx and hormone release (10). The main Ca2+-mobilizing 
receptor for these cells is GnRHR, signaling through heterotrim-
eric Gq/11 proteins (11), which α subunit activates phospholipase 
C-β1, leading to generation of inositol-1,4,5-trisphosphate (IP3) 
and diacylglycerol (12) and release of Ca2+ from endoplasmic 
reticulum (ER) through IP3 receptor (IP3R) channels (9).

Here, we focus on the role of ion channels in electrical/Ca2+ 
signaling and Ca2+-controlled cellular functions in gonadotrophs. 
We will first review the expression and roles of voltage-gated 
channels in spontaneous excitability and accompanied Ca2+ influx 
in these cells, followed by description of additional channels 
contributing to facilitation or modulation of excitability of these 
cells. These include the hyperpolarization-activated and cyclic 
nucleotide-gated (HCN) channels, acetylcholine (ACh)-gated 
receptor (AChR) channels, γ-aminobutyric acid (GABA)-gated 
A-type receptor (GABAAR) channels, and ATP-gated recep-
tor (P2XR) channels, all expressed at PM, and IP3R channels 
expressed at ER membranes.

SiGnALinG BY vOLTAGe-GATeD 
CHAnneLS

The superfamily of voltage-gated ion channels of more than 
140 members, including Nav, Cav, Kv, and numerous less selec-
tive channels, is one of the largest groups of signal transduction 
proteins (13). These channels are also expresses in gonadotrophs 
and account for spontaneous and receptor-controlled electrical 
and Ca2+ signaling (9).

Nine members of Nav channels are expressed in mammals, 
which contribute to the initiation and propagation of APs (14). 
The inward Nav current has been identified in rat (15, 16), ovine 
(17), fish (18, 19) and mouse native (20, 21), and immortalized 
gonadotrophs (22, 23). Figure 1A shows traces of Nav currents in 
cultured rat gonadotrophs. It appears that the level of Nav channel 
expression is greater in these cells than in other secretory anterior 
pituitary types (16). Voltage-insensitive Na+ conductance is also 
present in all endocrine pituitary cells, including gonadotrophs 
(24, 25).

The Cav channels have a dual role in excitable cells: they generate 
inward currents that can initiate APs and are also critical for cou-
pling of electrical signals on PM with physiological intracellular 

events by generating intracellular Ca2+ signals. There are 10 mem-
bers of these channels that exhibit different electrophysiological 
and pharmacological properties (26). Pituitary gonadotrophs 
express at least inactivating T-type and non-inactivating L-type 
Cav currents, as documented in cultured cells from rat (16), 
mouse (21), ovine (27), fish (19), as well as in αT3-1 immortalized 
gonadotrophs (22). Figure 1B shows a representative trace of Cav 
current in rat gonadotrophs.

The Kv channels are composed of at least four functional 
classes: fast activating delayed rectifier, slow activating delayed 
rectifier (including M channels), A-type Kv channels, and ether-
a-go-go-gene channels (28). Figure 1C illustrates total Kv cur-
rents in rat pituitary gonadotrophs, which are driven by several 
Kv channels. αT3-1 gonadotrophs (22) and native goldfish (19), 
rat (16) and ovine (29) gonadotrophs express delayed rectifiers, 
which expression is controlled by estrogens (29). The A-type Kv 
channels are also expressed in αT3-1 cells (22) as well as in native 
fish (18, 19, 30), frog (31), and rat (16, 32, 33) gonadotrophs. 
In rats, the expression level of these channels is much higher in 
gonadotrophs than somatotrophs (16). Functional M-type chan-
nels are expressed in mouse gonadotrophs and GnRH through 
a still uncharacterized signal cascade inhibits these channels 
(34). Moreover, our transcriptome study implies that a pulsatile 
GnRH application downregulates the expression of Kcna2 (Kv 
1.2) and Kcnh6 (ether-a-go-go), while it upregulates Kcnk10 
(outward rectifier) and Na+/Ca2+ exchanger Slc24a3, indicating 
that GnRHR may indirectly be involved in regulation of cell 
excitability (5).

Calcium-activated K+ channels (KCa) are composed of two 
families: three small-conductance K+ (SK) channels and one 
intermediate-conductance channel are members of the first 
family and the high-conductance K+ (BK) channels belong to 
the second family. These channels are activated by elevation in 
cytosolic Ca2+ and play a critical role in control of firing prop-
erties of excitable cells (35), including pituitary cells (36). The 
expression of SK channels is well documented in fish (37), rat  
(38, 39), mouse (40), and ovine gonadotrophs (17), and the level 
of their expression is dependent on estradiol (20). Whole-cell 
current recordings confirmed the presence of BK current in 
several pituitary cell types but not in gonadotrophs (16).

Gonadotrophs also express the hyperpolarization-activated 
and cyclic nucleotide-gated (HCN) channels (41), which are 
permeable to both K+ and Na+ and play a critical role in cardiac 
rhythmicity (42). As their name indicates, HCN channels are 
activated by voltage (Figure  1D) and cyclic nucleotides. Rat 
gonadotrophs and other pituitary cell types also express the 
cation-conducting transient receptor potential (TRP) cation-like 
channels (43), initially characterized by their role in Drosophila 
phototransduction (44). Mouse gonadotrophs express TRPC5 
subtype of these channels, which are activated by GnRH and 
promote Ca2+ influx (45). Finally, Ca2+-activated non-selective 
cationic currents are present in rat gonadotrophs, but the nature 
of these channels has not been identified (46).

The expression of voltage-gated channels in gonadotrophs 
makes them electrically excitable cells, i.e., capable of exhibiting 
regenerative and propagated APs spontaneously or in response 
to stimulation. In general, the membrane potential (Vm) of 
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FiGURe 1 | The expression of voltage-gated and ligand-gated ion channels in identified rat pituitary gonadotrophs. (A) Voltage-gated sodium current traces elicited 
by 100 ms voltage steps from holding potentials (HPs) of −117 mV. (B) Voltage-gated calcium current traces elicited by 400 ms voltage-steps. (C) Voltage-gated 
potassium current traces elicited by 1.5 s voltage steps. (D) Cells expressing HCN current display inward rectification in response to hyperpolarizing current pulses 
of −5 pA that are suppressed by 1 mM Cs+, a blocker of HCN channels. (e) Spontaneous electrical activity can be observed in about 50% of cultured 
gonadotrophs. (F) 8-Br-cAMP stimulates electrical activity. (G) γ-aminobutyric acid (GABA)-induced current recorded using gramicidin-perforated patch from cells 
held at different membrane potentials. (H) GABA-stimulated electrical activity. (i) Concentration-dependent effects of acetylcholine (ACh) on the amplitude of 
nicotinic current. (Top) Representative traces. (Bottom) Mean ± SEM values. (J) ACh-induced electrical activity. (K) Concentration-dependent effects of ATP on peak 
P2XR current response. (L) ATP-induced firing of action potentials. Derived from data shown in Ref. (16, 41, 50, 52, 63, 67); no permission is required from the 
copyright holder.
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single gonadotrophs in culture is not stable but fluctuates from 
resting potentials of −60 to −50 mV due to spontaneous activ-
ity of hyperpolarizing and depolarizing channels. When the 
depolarization waves reach the threshold level, gonadotrophs 
fire tall and narrow APs (Figure 1E), with spiking frequency of 
~0.7 Hz, amplitude of more than 60 mV, and half-width of about 
50 ms (47). Ovine gonadotrophs also fire single APs spontane-
ously (17). In contrast to gonadotrophs, other pituitary cell types 
predominantly exhibit bursting pattern of spontaneous electrical 
activity, i.e., periodic depolarized potentials with superimposed 
small-amplitude spikes (47–50).

Depolarizing currents are pacemaking currents, accounting 
for a gradual reduction of PM resting potential toward the thresh-
old for AP firing, and spike depolarization currents, accounting 
for the upstroke of an AP. The nature of channels contributing 
to pacemaking depolarization in gonadotrophs is not well char-
acterized. The ongoing work is focused on the potential role of 
background Na+ (24) and TRP channels (43) in this process. The 
cell permeable cAMP analog 8-Br-cAMP initiates AP firing in 
quiescent gonadotrophs (Figure 1F) and increases the frequency 
of spikes in spontaneously firing cells (41), an action consistent 
with the expression of HCN channels (Figure 1D) and/or protein 
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kinase A-mediated phosphorylation of some other channels in 
gonadotrophs (51).

The main function of Nav channels is to depolarize cells and 
generate the upstroke of the AP, controlling the firing amplitude 
in excitable cell. In gonadotrophs, they act in conjunction with 
Cav channels to generate APs (17) or Cav channels are exclusively 
responsible for the spike depolarization (52). Simultaneous 
measurements of Vm and [Ca2+]i showed that the bulk Ca2+ levels 
are low (50–100 nM) in spontaneously spiking gonadotrophs, in 
contrast to spontaneously bursting lactotrophs, somatotrophs and 
GH3B6 cells, which generate much higher (300–1,200 nM) and 
clearly oscillatory Ca2+ transients (48, 52, 53). In gonadotrophs, 
AP-driven Ca2+ influx is below the threshold needed to trigger 
exocytosis (52), whereas the bursting type of electrical activity in 
lactotrophs and somatotrophs accounts for high basal hormone 
secretion (48, 52). Because in intact tissue pituitary cell lineages 
are organized as complex networks (54–56), further studies are 
needed to characterize the excitatory and secretory patterns in 
pituitary cells with preserved tridimensional structure.

SiGnALinG BY LiGAnD-GATeD 
ReCePTOR CHAnneLS

Ligand-gated receptors channels are activated by chemical signals 
(ligands) rather than to changes in the Vm. These proteins are 
typically composed two different domains: a pore forming trans-
membrane domain and an extracellular domain containing the 
ligand binding site. There are three families of these channels: the 
Cys-loop family of channels activated by ACh, 5-HT, GABA, and 
glycine (57), glutamate-gated receptor-channels (58), and ATP-
gated purinergic P2XR channels (59). Pituitary gonadotrophs 
express GABAAR, nicotinic AChR, and P2X2R channels (9).

γ-Aminobutyric acid is acting through GABAAR and GABACR 
channels permeable to Cl−; in the central nervous system, GABA 
usually silences electrical activity and Ca2+ signaling (60). 
However, in gonadotrophs GABA and muscimol, a GABAAR 
agonist, increase intracellular Ca2+, suggesting that chloride-
mediated depolarization activates Cav channels. Furthermore, 
the GABAAR channel reversal potential for chloride ions is posi-
tive to the baseline Vm (Figure 1G), and the activation of these 
channels results in depolarization of cells and initiation of AP 
firing (Figure 1H) and stimulation of Fshb and Lhb expression 
(61) and LH release (62). The lower expression of cation/chloride 
transporter KCC2 in rat pituitary cells probably accounts for the 
depolarizing nature of GABAAR channels in cultured gonado-
trophs (63).

The binding of nicotine, ACh, or other ligands to AChR chan-
nels stimulates cation (Na+ and K+ and for some neuronal subtypes 
Ca2+ as well) influx through a channel and generally results in 
membrane depolarization. Seventeen subunits of nicotinic AChR 
have been identified and were shown to assemble into a variety of 
receptor subtypes (64, 65). We have shown recently the expres-
sion of β2, β1, α9, and α4 mRNAs in cultured rat pituitary cells 
and β2, α4, and α1 in immortalized LβT2 mouse gonadotrophs. 
We also showed the expression of β2 subunit protein in gonado-
trophs (50). These cells express nicotinic AChR channels capable  

of generating an inward current (Figure 1I) and facilitating elec-
trical activity (Figure 1J) and Ca2+ influx (not shown). We also 
found that GnRHR stimulation downregulates gene expression 
of both α4 and α9 subunits (5, 50), suggesting that the expression 
of nicotinic AChR in gonadotrophs in vitro compensates for the 
loss of GnRH stimulation.

ATP is not only an intracellular molecule but is also released 
by cells and acts as an extracellular ligand for P2XR family of 
channels, composed of three subunits, each composed of a 
large ectodomain, two transmembrane domains and the N- and 
C-terminus facing the cytoplasm (59). In intact gonadotrophs, 
ATP-induced extracellular Ca2+-dependent rise in cytosolic Ca2+ 
(66). In voltage-clamped cells, extracellular ATP-induced non-
oscillatory current composed of rapidly depolarizing, slowly 
desensitizing, and rapidly deactivating phases, with the peak 
amplitudes and the rates of current desensitization determined 
by ATP concentration (Figure 1K). In current-clamped gonado-
trophs, ATP induces a rapid depolarization that initiated firing 
of APs in quiescent cells, an increase in the frequency of firing in 
spontaneously active cells (Figure 1L), and a transient stimula-
tion of LH release (67). The biophysical and pharmacological 
investigations suggested that gonadotrophs express the P2X2R 
subtype of these channels (67). Consistent with this conclusion, 
the full size and several splice forms of P2X2 subunit were identi-
fied in pituitary gland (68).

ATP is released by GnRH-secreting GT1 cells and cultured 
pituitary cells and metabolized by ectonucleotidase (69). 
Furthermore, GnRH increases ATP release in cultured pituitary 
cells (66). In accordance with these observations, it has been shown 
that ATP is co-secreted with GnRH from the median eminence 
into the hypophyseal-portal vasculature in ovariectomized sheep 
and that gonadotrophs have intrinsic ability to metabolize ATP 
in the extracellular space (70). This is consistent with the auto-
crine actions of extracellular ATP, where this molecule amplifies 
GnRH-induced Ca2+ signaling and LH secretion by activating 
P2X2Rs (67, 70). Pituitary cells other than gonadotrophs also 
express pannexin-1 and -2 channels (71), which contribute to 
ATP release in the extracellular medium in cultured pituitary cells 
(72). Thus, ATP and its degradation products ADP and adenosine 
may serve as paracrine factors to provide a cross talk between cell 
lineages within the pituitary gland via P2X2R (67), P2X4R (73), 
G-protein-coupled P2YRs (74), and adenosine receptors (75). By 
physical association with P2XRs, pannexin-1 may also provide 
a mechanism for autocrine control of functions of pituitary cell 
types expressing both proteins (76).

SiGnALinG BY CHAnneLS eXPReSSeD 
in eR MeMBRAneS

Two families of structurally and functionally similar Ca2+ release 
channels, ryanodine receptors and IP3Rs, are expressed in the 
ER membrane. Ryanodine receptors account for intracellular 
transduction and translation of PM electrical signals by Ca2+-
induced Ca2+ release from ER, whereas IP3Rs are activated by 
Ca2+-mobilizing receptors. In non-excitable cells, the IP3R-
induced depletion of ER-Ca2+ stores facilitates Ca2+ influx 
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FiGURe 2 | Influence of Ca2+ mobilization on excitability of pituitary gonadotrophs. (A,B) Gonadotropin-releasing hormone (GnRH)-induced calcium oscillations in rat 
pituitary gonadotrophs (A) and non-oscillatory calcium signals in immortalized αT3-1 pituitary gonadotrophs and testicular Leydig cells (B). (C,D) GnRH-induced 
membrane potential (C) and small-conductance K+ (SK) current (D) oscillations in rat gonadotrophs. (e,F) Increase in the amplitude of GnRH-induced SK current 
oscillations by depolarization (e) and activation of P2X2R channels by extracellular ATP (F) in rat gonadotrophs. Current oscillations were initiated by 0.1 nM GnRH 
(e) and 1 nM GnRH (F). Calcium recordings were done in intact Indo-1-loaded cells (A,B), whereas electrophysiological recordings were done in nystatin-perforated 
cells voltage-clamped (D–F) or in current-clamped cells (C). Vm, membrane potential; I, SK current; HP, holding potential. Derived from data shown in Ref. (36, 50, 
63, 91); no permission is required from the copyright holder.
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through store-operated Ca2+-conducting PM channels. Two 
proteins, named stromal-interacting molecule and Orai, are 
critical for this Ca2+ entry pathway (77). IP3Rs are expressed in all 
secretory pituitary cells as indicated by ability of numerous Ca2+-
mobilizing agents to trigger Ca2+ release from ER (9). In contrast, 
no conclusive evidence was presented about the expression and 
role of ryanodine receptors and Orai channels in gonadotrophs 
and other secretory pituitary cell types (36).

The Ca2+-mobilizing pathway is operative in gonadotrophs 
and is activated by GnRH as well as by pituitary adenylate 
cyclase-activating peptides, endothelins, ACh, vasopressin and 
oxytocin (50, 78–80). Among pituitary cells, a unique charac-
teristic of mammalian gonadotrophs is the oscillatory pattern of 
Ca2+ release through IP3Rs. Figure 2A illustrated GnRH-induced 
Ca2+ oscillations. In contrast, αT3-1 (Figure 2B) and LβT2 gon-
adotrophs (not shown) release Ca2+ in a non-oscillatory manner 
when stimulated with GnRH (81, 82). GnRH-induced calcium 
signaling is also non-oscillatory in fish pituitary cells (83) as well 
as in rat Leydig cells (Figure 2B) (84). In rat gonadotrophs, the 
frequency of Ca2+ oscillations is determined by GnRH concentra-
tion and varies between 3 and 20 pulses per minute (85, 86). 
In neonatal rat gonadotrophs, GnRH-induced, but not IP3-
stimulated, Ca2+ oscillations are inhibited by melatonin (87–90).

Gonadotropin-releasing hormone-induced Ca2+ oscilla-
tions have profound effects on electrical activity of these cells. 
In current-clamped gonadotrophs, GnRH-induced a transient 
hyperpolarization, followed by a bursting pattern episode of tall 
electrical spikes (Figure 2C). When the membrane was voltage-
clamped, GnRH-induced current oscillations were observed 
(Figure 2D) (91, 92). Patterns of Ca2+ and current oscillations are 

highly comparable in the same cell and current oscillations coin-
cide with transient hyperpolazation of PM. It is well established 
that Ca2+-activated SK channels account for coupling from the 
ER to PM in rat gonadotrophs (16, 38, 46, 93), whereas BK chan-
nels may also contribute to such coupling in mice gonadotrophs 
(40). In non-oscillatory αT3-1 gonadotrophs, GnRH stimulates 
L-type Ca2+ channels, leading to protein kinase C-dependent 
ERK activation (94), a process that requires dynamin GTP-ase 
activity (95).

The physiological relevance of bursting electrical activity in 
GnRH-stimulated gonadotrophs has been shown in voltage-
clamped cells. By controlling the holding potential (HP) of the 
cell, this procedure provides a way to control the Ca2+ influx rate. 
In hyperpolarized cells with silent Cav channels, GnRH-induced 
current oscillations persist for about 5 min, reflecting a gradual 
depletion of the ER Ca2+ content. However, when the HP was more 
depolarized, many Cav channels are open and GnRH-induced 
current oscillations last much longer (Figure 2E), indicating that 
voltage-gated Ca2+ influx sustains signaling (91). Facilitation of 
Ca2+ influx through P2X2R channels also increases amplitudes 
of sustained GnRH-stimulated current oscillations (Figure 2F), 
a finding consistent with effect of ATP on GnRH-induced Vm 
oscillations and LH release (67).

The gating properties of IP3R channels in gonadotrophs were 
not studied directly, and our understanding of kinetics of open-
ing and closing is based on analysis of GnRH/IP3-induced Ca2+/
current oscillations. IP3 is needed to initiate the ER-dependent 
Ca2+ signaling, oscillations in intracellular IP3 are not required 
to generate oscillatory Ca2+ release as documented by injection 
of non-metabolizable IP3 analogs, and the concentration of IP3 
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underlines the frequency of spiking (96). Furthermore, cyto-
solic Ca2+ influences IP3-dependent Ca2+ release in these cells 
bidirectionally, stimulatory at lower concentrations and inhibi-
tory at higher concentrations. The rapid stimulatory effect of 
Ca2+ on IP3-depenent Ca2+ release is shown by phase resetting 
of GnRH-induced oscillations by a brief pulse of voltage-gated 
Ca2+ entry (97). The inhibitory effect of high Ca2+ concentra-
tions on GnRH-induced Ca2+ oscillations was also shown (98).

inTeRCeLLULAR SiGnALinG BY GAP 
JUnCTiOn CHAnneLS

Secretory cells are not randomly spread throughout the 
pituitary gland but represent very organized three-dimensional 
network structures critical for the proper cell-type function 
(54, 99). Tridimensional imaging also suggested that pituitary 
gonadotrophs form a homotypic network (55). These and other 
pituitary cells express connexin-43 (100). In general, coupling 
of cells through connexin gap junctions provides a pathway for 
the passage of ions, metabolites, small molecules, and second 
messengers from cell to cell, without exposure to the extracel-
lular environment (101, 102). However, the roles of connexins in 
synchronization of gonadotroph activity in intact tissue have not 
been systematically investigated.

COnCLUSiOn

This short review clearly indicates the complexity in expression 
and role of PM and ER channels in gonadotrophs. Various 

voltage-gated and related channels provide a background pathway 
for spontaneous firing of APs and Ca2+ signaling. In contrast to 
other secretory pituitary cells, spontaneous electrical activity is 
not coupled to exocytosis, i.e., Ca2+ signals generated by APs are 
subthreshold. However, the excitability of gonadotrophs is facili-
tated by activation of nicotinic AChRs, GABAAR, and P2X2Rs, 
and the accompanied Ca2+ signals can trigger gonadotropin 
secretion. Activation of GnRHR and other Ca2+-mobilizing recep-
tors in gonadotrophs leads to Ca2+ release from ER through IP3R 
channels coupled with a rapid LH secretion, and switch in the pat-
tern of firing of APs from tonic single spiking to periodic plateau 
bursting, the latter being essential for sustained Ca2+ signaling 
and LH secretion. Further studies are needed to detail the role of 
ion channels in intracellular signaling cascade, gene expression, 
Ca2+ secretion coupling, and mechanism of synchronous activa-
tion of gonadotrophs in intact tissue.
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