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Glucose homeostasis is finely regulated by a number of hormones and peptides released 
mainly from the brain, gastrointestinal tract, and muscle, regulating pancreatic secretion 
through cellular receptors and their signal transduction cascades. The endocrine func-
tion of the pancreas is controlled by islets within the exocrine pancreatic tissue that 
release hormones like insulin, glucagon, somatostatin, pancreatic polypeptide, and 
ghrelin. Moreover, both exocrine and endocrine pancreatic functions are regulated by 
a variety of hormonal and neural mechanisms, such as ghrelin, glucagon-like peptide, 
glucose-dependent insulinotropic polypeptide, or the inhibitory peptide somatostatin. In 
this review, we describe the role of neurohormones that have been less characterized 
compared to others, on the regulation of insulin secretion. In particular, we will focus on 
melatonin, galanin, and RFamide neuropeptides QRFP26 and QRFP43, which display 
either insulinotropic or insulinostatic effects. In fact, in addition to other hormones, amino 
acids, cytokines, and a variety of proteins, brain-derived hormones are now considered 
as key regulators of glucose homeostasis, representing potential therapeutic targets for 
the treatment of diabetes and obesity.
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iNTRODUCTiON

Type 1 and type 2 diabetes (T2D) are characterized by a reduced insulin secretion from the pancreas, 
due to shortage of β-cells and decreased β-cell function. Because both types of diabetes eventually 
lead to β-cell loss, a major goal in research is to identify strategies to preserve β-cell mass and 
increase β-cell function (1, 2). Pancreatic exocrine and endocrine secretion is partly controlled 
by neuronal projections from the vagus nerve, as well as many hormones produced in peripheral 
tissues, including the gastrointestinal tract. These comprise the gastric peptide ghrelin, the intesti-
nal peptides glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide, 
somatostatin, produced by pancreatic δ-cells, or the adipose tissue-derived peptide leptin. Insulin 
release by β-cells is also influenced by non-hormonal signals, such as small proteins, amino acids, 
lipids, and cytokines. Moreover, recent studies have demonstrated that different neuropeptides are 
implicated in the regulation of glucose homeostasis and β-cell function, providing a physiological 
link between the brain and the endocrine pancreas (3, 4).

In the present review, we describe the role of neurohormones whose effects on insulin secretion 
and glucose homeostasis have been less well characterized compared to others. These include neu-
ropeptides mainly displaying inhibitory functions on insulin secretion, such as the chronobiotic 
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hormone melatonin, produced in the pineal gland, and galanin, 
released by the central and peripheral nervous systems and 
the gastrointestinal tract. Furthermore, we illustrate the effects 
of the hypothalamic RFamide peptides QRF26 and QRFP43, 
which, in addition to regulating feeding behavior, display both 
insulinostatic and insulinotropic actions and also promote 
pancreatic β-cell survival. Overall, because of their different 
ability to regulate β-cell function and glucose homeostasis, these 
hormones may be considered as potential therapeutic agents  
in diabetes and metabolic diseases.

Melatonin
Melatonin is a hormone predominantly produced by the pineal 
gland of the mammalian brain. It is synthesized and secreted 
in a circadian manner at night and functions as chronobiotic 
agent, regulating the seasonal and circadian rhythms, such as 
the sleep–wake cycle. Therefore, it is a “Zeitgeber,” entraining 
circadian rhythm and indicating the time of day to various 
different organs and tissues in the body (5). In addition to the 
pineal gland, melatonin is produced by neuroendocrine cells in 
the retina and peripheral tissues, such as gastrointestinal tract, 
pancreas, and immune cells. In fact, because of its widespread 
production, melatonin acts in both endocrine and paracrine/
autocrine manner. Furthermore, its effects have been shown in 
the cardiovascular and immune system, and on the regulation of 
metabolic functions (6–8).

At the cellular level, melatonin signals through two inhibitory 
G-protein (Gi)-coupled receptors, MT1 and MT2, whose binding 
results in inhibition of cAMP production. These receptors are 
widely distributed in the brain as well as in peripheral tissues, 
including the pancreas (9, 10). Furthermore, melatonin binding 
sites in cell nuclei of rat liver hepatocytes have been demonstrated 
(11) and identified as retinoid-related orphan receptor, mediat-
ing the genomic effects of the hormone (12, 13). Melatonin also 
interacts with cytosolic proteins, including calmodulin and 
calreticulin, implicated in the regulation of the cytoskeleton and 
the control of nuclear receptors (14, 15).

Interestingly, a variant of the human melatonin receptor 1 b 
gene (MTRB1) has been associated with high plasma glucose 
levels, reduction of insulin response to glucose, and increased 
risk of T2D (16–18). However, the role of melatonin on insulin 
secretion has not been clearly elucidated, as both inhibitory and 
stimulatory actions have been reported, probably because of the 
pleiotropism at the level of the receptor and second messengers 
(10, 19). Interestingly, most studies suggest that melatonin 
inhibits insulin secretion from pancreatic β-cells (20–22), while 
there are reports showing lack of effect (23). In fact, in INS-1 
pancreatic β-cells, expressing MT1 receptors, acute treatment 
with melatonin inhibited GLP-1-induced insulin secretion. 
However, prolonged pretreatment with melatonin, enhanced 
insulin secretion in the presence of either the cAMP activator 
forskolin or GLP-1. Similar findings were observed in isolated 
rat islets (24). In another study, Peschke et  al. demonstrated 
that melatonin inhibits cAMP and insulin secretion in INS-1 
β-cells stimulated with forskolin, in a Gαi-dependent manner. 
Melatonin also inhibited insulin release in INS-1 cells treated 
with the inositol trisphosphate stimulator carbachol; however, 

in pertussis toxin (PTX)-incubated cells, the hormone increased 
carbachol-induced insulin release. These results suggested that in 
β-cells, MT1 receptor activates different signaling pathways dis-
playing opposite effects on insulin secretion (25). Interestingly, 
downregulation of MT1 receptor expression in INS-1 β-cells 
reduced the insulinostatic effect of melatonin, indicating that, 
at least in rodent β-cells, the effects of the hormone are mainly 
mediated by this isoform of the receptor (26). Recently, rat 
islets and INS-1 cells were found to express MT2 (27), which is 
also involved in the inhibitory effect of the hormone on insulin 
secretion (27, 28). Of note, in isolated human pancreatic islets 
expressing both MT1 and MT2, melatonin promotes insulin 
secretion, in contrast with the effects in rodent β-cells and islets, 
possibly through an indirect action involving stimulation of 
glucagon secretion following its binding to MT1 receptors (29). 
In addition, melatonin has been shown to promote the secre-
tion of glucagon in pancreatic αTC1.9 α-cells, expressing MT1 
and MT2, treated with different concentrations of glucose (30). 
Furthermore, long-term administration of melatonin resulted 
in elevation of plasma glucagon concentrations in Wistar rats 
(WR), whereas in type 2 diabetic Goto-Kakizaki rats glucagon 
levels were decreased compared to untreated animals (30). 
Interestingly, mRNA expression for glucagon receptor, which 
was slightly reduced in the liver of untreated GK rats compared 
to WR, was upregulated by melatonin in GK rats and decreased 
in WR. Furthermore, MT1 and MT2 mRNA was elevated  
in the liver of MT1 or/and MT2 knockout (KO) mice compared 
to wild-type animals, suggesting that melatonin influences 
pancreatic glucagon secretion and displays metabolic effects in 
the liver.

With regard to melatonin and glucose homeostasis, it has 
been demonstrated that high levels of melatonin, due to blind-
ness (31) or to exogenous administration of melatonin, result 
in an increase in blood glucose levels (32); moreover, glucose 
levels are reduced and insulin levels increased after pinealectomy 
(33, 34). However, most studies suggest that the pineal gland has 
an inhibitory effect on pancreatic β-cell function, as melatonin 
reduces insulin levels and glucose tolerance in animals and 
humans (35–38). Furthermore, elevation of insulin has been 
shown to inhibit the synthesis of melatonin from the pineal gland 
(39). Collectively, these findings suggest an antagonism between 
insulin and melatonin functions. This is further sustained by the 
fact that in man, insulin levels are elevated during the day and 
low at night, whereas the opposite occurs for melatonin (40); 
interestingly, diabetic patients show an abnormal circadian 
rhythm of melatonin (5). In addition, melatonin has been shown 
to promote the expression and release of GH and prolactin in 
female primates through MT1 (41), and the secretion of prol-
actin in humans (42–44), whereas ACTH secretion was found 
to be inhibited in the mouse pituitary corticotrope tumor cell 
line AtT20 (45). Hence, some of the actions of melatonin on 
glucose metabolism may be mediated by its effects on secretion 
of pituitary hormones.

A recent study has demonstrated that the risk variant 
rs10830963 of MTNR1B is an expression quantitative trait locus 
(eQTL), conferring increased expression of MTNR1B mRNA 
in human islets, which likely results in a reduction in insulin 
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secretion and increased risk of T2D (22). Furthermore, mela-
tonin was found to inhibit cAMP levels and insulin secretion in 
INS-1 832/13 β-cells, and these effects were further enhanced 
in β-cells overexpressing MTNR1B (22). Of note, melatonin 
is a prescription drug for improving sleep and for jet lag (8); 
therefore, it should be carefully administered in individuals with 
sleep disturbances, particularly in obese patients and carriers 
of the MNTR1B risk allele. However, administration of mela-
tonin has been shown to improve sleep quality independently 
of rs10830963 genotype, despite the negative effect on insulin 
secretion (22). Moreover, the reduction of insulin release at 
night, mediated by the high levels of melatonin, when the 
metabolic demands are low because of reduced food intake, may 
be a protective physiological mechanism to prevent nocturnal 
hypoglycemia (22).

Interestingly, mice with a disruption of the receptor have 
been shown to secrete more insulin, despite no change in glucose  
levels, suggesting reduced insulin sensitivity but unchanged insu-
lin tolerance (22). In addition, melatonin treatment in a human 
recall-by-genotype study was found to reduce insulin secretion 
in all subjects and to increase glucose levels; moreover, insulin 
reduction was even enhanced in individuals with the risk vari ant 
(22). Collectively, these findings suggest that increased melatonin 
signaling in islets impairs β-cell function, resulting in hyperglyce-
mia and increased risk of T2D.

Galanin
Galanin, a 29- to 30-amino acid neuropeptide initially discovered 
in porcine intestine (46), is expressed in the central and periph-
eral nervous systems and intestinal neuroendocrine system of 
many mammalian species (47–51). Galanin co-localizes and 
is coexpressed in neurons with a number of neurotransmitters 
and displays strong inhibitory effect on synaptic transmission 
(52–55). Because of its broad expression, galanin regulates many 
neuronal functions, such as memory and learning, neuropathic 
pain, neuroprotection, and neuroendocrine activity, representing 
a therapeutic potential for diseases such as Alzheimer’s disease, 
epilepsy, and diabetes (51, 56–58). Three distinct G-protein-
coupled receptors GalR1, GalR2, and GalR3 are involved in the 
effects of the neuropeptide. GalR1 and GalR3 are coupled to  
the inhibitory G-protein Gi, whereas GalR2 associates with 
either Gi or Gq/11, thus displaying both inhibitory or stimula-
tory responses (51, 59).

Galanin-positive nerve fibers have been shown in the pancreas 
of different species, including rat, mouse (60, 61), and humans 
(62–64). Furthermore, a number of studies have indicated that 
galanin displays strong inhibitory effects on insulin secretion. In 
fact, galanin administration was found to reduce insulin levels 
in many species (65–67). In addition, a whole-genome profile 
study has demonstrated that the expression levels of a number of 
hippocampal genes, including galanin, and from the prefrontal 
cortex, such as GalR2, were dysregulated in type 2 diabetic 
rats, further suggesting the importance of the galanin system 
and the complexity of insulin signaling in modulating brain 
functions (68). Interestingly, infusion of galanin into animals 
through the pancreatic artery, at a concentration similar to that 

released from stimulated pancreatic nerve termini, resulted in 
inhibition of insulin secretion (69). However, conflicting results 
have been reported in humans, as galanin either suppresses 
insulin levels (70) or has no effect (71, 72). Moreover, galanin 
levels were inversely correlated with plasma insulin levels in 
postmenopausal women, whereas in controls there was a posi-
tive correlation (73).

Galanin and galanin analogs have been shown to reduce 
glucose-induced insulin secretion in isolated rat and pig islets 
(66, 74–76). The inhibitory action on insulin secretion in rat 
and mouse islets was found to involve a Go2 protein, through 
the regulation of both KATP and Ca2+ channels (60, 77). In line 
with these inhibitory effects, galanin infusion increased the 
levels of blood glucose in dogs but not in humans (69, 78). 
Furthermore, glucagon levels are upregulated by galanin, sug-
gesting a role for glucagon in mediating the effects of galanin 
in glucose increase (49, 69).

Of note, transgenic mice overexpressing galanin showed vis-
ceral adiposity, increased body weight, increased serum choles-
terol and triglycerides, hyperinsulinemia, and impaired glucose 
tolerance, indicating that elevated circulating galanin levels 
contribute to the development of metabolic syndrome (79). The 
obese phenotype was observed in the absence of increased food 
intake, suggesting defects in energy expenditure, since these mice 
had reduced oxygen consumption, as well as carbon dioxide and 
heat production (79). Surprisingly, mice with a loss-of-function 
mutation in the galanin gene [galanin KO mice] showed impaired 
inhibition of insulin secretion after activation of autonomic 
nerve, suggesting that galanin may act on sympathetic nerves 
to inhibit insulin secretion (80). Furthermore, insulin secretion 
was found reduced in galanin KO mice in response to glucose 
and arginine, compared to wild-type mice, and β-cells showed 
reduced sensitivity to glucose (80). Collectively, these findings 
suggest that in addition to regulating energy expenditure, gala-
nin may be involved in the regulation of normal β-cell function. 
Conversely, galanin infusion has no effect on glucose tolerance 
in humans (71, 81, 82) and does not influence the postprandial 
rise of plasma glucose levels (70).

Reduced levels of pancreatic galanin were found in obese, hyper-
insulinemic mice (83), and galanin-expressing cells were found 
to be strongly reduced in islets of diabetic rats (61). Interestingly, 
in rat and bovine pancreatic islets, galanin-like immu noreactivity 
co-localized with that of insulin, suggesting that galanin may 
influence insulin secretion in an autocrine/paracrine manner  
(61, 84). Furthermore, administration of a centrally active gala-
nin analog with high affinity for GalR1 has been recently shown  
to reduce insulin secretion and promote hyperglycemia, provid ing a 
further understanding on the role of GalR1 in vivo (85).

However, a beneficial effect for galanin in animal models of 
diabetes has been also reported (86), therefore, additional studies 
are required to shed light on the role of galanin in human metabolic 
disorders and diabetes. Importantly, intranasally administered 
galanin-like peptide (GALP), whose aminoacid sequence 9–21 
is identical to that of galanin 1–13, reduces body weight, food 
intake, water intake, and locomotor activity in leptin-deficient  
ob/ob mice and in diet-induced obese (DIO) mice (87). The 
decrease in body weight was found to be stronger in hyperglycemic 
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compared to mormoglycemic mice, suggesting that intranasally 
administered GALP displays its best effect in obese mice with 
higher glucose levels. Interestingly, in DIO mice, the decrease in 
body weight after intranasal treatment with GALP was observed 
in spite of a reduction in locomotor activity, suggesting that GALP 
restrains energy intake and pro motes energy expenditure (87). 
Other studies have demonstrated that intracerebroventricular 
GALP reduces food intake and stimulates energy expenditure; 
however, these effects did not persist over time, suggesting that 
the mice become insensitive to repeated treatment with GALP 
(88, 89). Conversely, repeated intranasal administration of 
GALP continued to decrease food intake and locomotor activ-
ity compared with repeated intracerebroventricular injection, 
suggesting that sensitivity to GALP is maintained and intranasal 
administration is the best way for GALP to exert its effects against  
obesity (87).

RFamide Neuropeptide QRF26 and QRF43
The neuropeptide QRFP26 and its N-extended form QRFP43 are 
members of the RFamide peptide family, discovered in 2003 by 
three different groups (90–92). The gene encoding the QRFP26/
QRFP43 precursor is widely distributed among vertebrates, 
including humans, mice, rats (90–92), and other species (93–95), 
indicating that these neuropeptides have been highly conserved 
during evolution (96).

QRFP26 and QRFP43 are the cognate ligands of the former 
orphan receptor GPR103, also called SP9155 or AQ27, and 
now renamed QRFPR (90, 97). QRFPR is a G-protein-coupled 
receptor, with a 52% amino acid identity with neuropeptide FF 
receptor 2 (NPFF2), another receptor for mammalian RFamide 
peptides. However, whereas QRFP26 also displays low moderate 
affinity for NPFF2, QRFP43 only binds to QRFPR, which, in 
turn, is not recognized by other mammalian RFamide peptides 
(98). Two isoforms have been described for QRFPR (QRFPR1 
and QRFPR2) in rodents, sharing high homology with the unique 
form of human QRFPR, and QRFP26/QRFP43 bind with similar 
affinity to both forms of the receptor in rodents (99, 100).

The genes for QRFP26/QRFP43 precursor and QRFPR are 
mainly located in the hypothalamic nuclei, as well as in other 
brain areas involved in the control of feeding behavior (90, 101). 
Accordingly, intracerebroventricular (i.c.v.) injection of both 
QRFP26 and QRFP43 in mice has been shown to promote food 
intake and to increase body weight and fat mass (90, 97, 100,  
102, 103). In addition to the central distribution, QRFP26/
QRFP43 and QRFPR are expressed in peripheral organs, includ-
ing adipose tissue and macrophages (104–106), eye, trachea, 
mammary gland, and testis, endocrine glands, including the 
pituitary, thyroid, and parathyroid glands, coronary artery, gas-
trointestinal tract, bladder, and prostate (91, 92, 100, 107). Thus, 
because of the broad distribution of QRFPR, QRFP26/QRFP43 
have been shown to regulate a variety of physiological functions, 
including adipogenesis, lipolysis and inflammation (104–106), 
blood pressure (100), bone formation (108), and hypothalamo–
pituitary–gonadal activity (109, 110).

Although initially not found in mouse and rat pancreas 
(91, 92), expression of QRFP26/QRFP43 and QRFPR mRNA 

and protein was later found in human endocrine pancreas and 
isolated pancreatic islets (107, 111), rat INS-1E β-cells (111), 
and mouse insulinoma MIN6 cells (107). Moreover, in human 
islets, QRFPR co-localized with insulin, suggesting autocrine/
paracrine action of locally produced QRFP26/QRFP43 and 
direct binding of the peptides with its receptor in pancreatic 
β-cells (111).

Interestingly, QRFPR displays sequence similarity with NPY 
and galanin receptors (112), and like NPY and galanin, QRFP26/
QRFP43 have been shown to regulate insulin secretion. In fact, 
QRFP26 was found to reduce glucose-, arginine-, and exendin-
4-induced insulin secretion in rat perfused pancreas, showing no 
effect on glucagon secretion. Since the insulinostatic action of 
QRFP26 was inhibited by PTX upon treatment with exendin-4, 
it was suggested the involvement of a pertussis-sensitive Gα 
inhibitory (Gαi) protein negatively coupled to the adenylyl cyclase 
pathway (113). However, the authors of this study were unable  
to identify the receptor implicated in these effects, likely because 
previous reports failed to demonstrate QRFPR expression in the 
pancreas (91, 92).

In accordance with the findings of Egido et al. (113) QRFP26 
was later found to inhibit glucose- and exendin-4-induced 
insulin secretion in INS-1E β-cells and human pancreatic islets, 
through mechanisms mediated by Gαi and reduction of intra-
cellular cAMP levels (111). Of note, knocking down QRFPR in 
these cells did not affect the insulinostatic action of QRFP26, 
suggesting the involvement of a different receptor. By contrast, 
QRFP43 potentiated insulin secretion in β-cells and human islets 
treated with both glucose or exendin-4, through engagement 
of a Gα stimulatory protein (Gαs) and elevation of cAMP levels 
(111). The insulinotropic effect of QRFP43 was suppressed when 
QRFPR was knocked down in INS-1E β-cells using small inter-
fering RNA, whereas the insulinostatic effect of QRFP26a was 
maintained. Furthermore, QRFP43, but not QRFP26 increased 
glucose uptake by β-cells. At variance with the opposed effects 
observed on β-cell function, both peptides reduced apoptosis and 
cell death induced by serum starvation, inflammatory cytokines 
and glucolipotoxicity in β-cells and human islets, to an extent 
comparable to that induced by exendin-4. QRFP43-induced 
protection involved activation of the survival and proliferative 
pathways phosphatidylinositol 3-kinase/Akt and extracellular 
signal-related kinase 1/2 (ERK1/2), whereas only ERK1/2 was 
required for the survival function of QRFP26 (111). At present 
it is unclear why both QRFP26 and QRFP43 promote survival 
of β-cells, while having opposed effects on insulin secretion. The 
possible explanation would be that, in addition to QRFPR, these 
peptides bind to one or more yet unknown alternative receptors 
involved in their survival action.

The role of QRFP26 was recently investigated on the regu-
lation of glucose homeostasis (107). It was demonstrated a 
positive association between the levels of plasma QRFP26 and 
plasma insulin in patients with diabetes; furthermore, QRFP26 
increased in response to an oral glucose tolerance test. In mice, 
QRFP26 attenuated glucose-induced hyperglycemia, increased 
insulin sensitivity and plasma insulin concentrations but did 
not alter basal glycemia, suggesting antihyperglycemic action. 
In addition, QRFP26 promoted insulin secretion in MIN6 
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insulinoma cells, in a QRFPR-dependent manner, as inhibition 
of QRFPR expression using specific siRNA blocked the insu-
linotropic effect of the peptide. Accordingly, MIN6 showed 
expression for QRFPR but not for NPFF2, the other RFamide 
receptor that can be recognized by QRFP26. Conversely, in 
INS-1E β-cells the insulinostatic action of QRFP26 was inde-
pendent QRFPR binding, suggesting that other receptor(s), such 
as NPFF2 would be involved. However, to date, the presence of 
NPFF2 in INS-1 β-cells or human pancreatic islets remains to 
be determined. Thus, the different effect of QRFP26 on insulin 
secretion in different β-cell types may be attributed to the dif-
ferent expression pattern of the receptor(s). Interestingly, in 
both in vivo and in vitro experiments, high concentrations of 
glucose induced a massive secretion of QRFP26 by the small 
intestine (107). Overall, at variance with the results of Granata 
et al. these findings indicated that QRFP26 acts as an incretin 
hormone to regulate glucose homeostasis.

Overall, the results from different reports indicate that 
QRFP26/QRFP43 regulate glucose homeostasis and β-cell func-
tion; however, further understanding is required to disentangle 
the discrepancies observed in the various experimental models 
and for elucidating the role of the receptor(s) involved in these 
effects. Of note, these neuropeptides increase the survival of 
β-cells and human pancreatic islet cells, suggesting potential 
therapeutic implications in diabetes.

CONCLUSiON

Many important questions on the regulation of β-cell function 
remain unanswered, as a variety of players, and even more to be 
discovered, are implicated in this complex process. In addition 
to their central actions, it is becoming increasingly clear that, 
together with peripheral hormones, neuropeptides are also key 
regulators of glucose homeostasis and insulin secretion, display-
ing both direct and indirect actions in the endocrine pancreas 
(Figure  1). Thus, it is important to further understand their 
specific role and mechanisms, in order to increase the wide range 
of potential therapeutic targets for the treatment of diabetes and 
metabolic diseases.
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