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Autoimmune diseases (AIDs) are the result of specific immune responses directed 
against structures of the self. In normal conditions, the molecules recognized as “self” 
are tolerated by immune system, but when the self-tolerance is lost, the immune system 
could react against molecules from the body, causing the loss of self-tolerance, and 
subsequently the onset of AID that differs for organ target and etiology. Autoimmune 
thyroid disease (ATD) is caused by the development of autoimmunity against thyroid 
antigens and comprises Hashimoto’s thyroiditis and Graves disease. They are frequently 
associated with other organ or non-organ specific AIDs, such as myasthenia gravis (MG). 
In fact, ATD seems to be the most associated pathology to MG. The etiology of both 
diseases is multifactorial and it is due to genetic and environmental factors, and each of 
them has specific characteristics. The two pathologies show many commonalities, such 
as the organ-specificity with a clear pathogenic effect of antibodies, the pathological 
mechanisms, such as deregulation of the immune system and the implication of the 
genetic predisposition. They also show some differences, such as the mode of action of 
the antibodies and therapies. In this review that focuses on ATD and MG, the common 
features and the differences between the two diseases are discussed.
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inTRODUCTiOn

Autoimmune diseases (AIDs) are the result of specific immune responses directed against structures 
of the self. Under normal conditions, the immune system is tolerant to molecules recognized as 
“self ” and does not react to antigens expressed in endogenous tissues. If self-tolerance is missing, the 
immune system could develop an immune response against self-molecules, causing the development 
of AIDs that include autoimmune thyroid diseases (ATDs) and myasthenia gravis (MG).

The etiology of AIDs is multifactorial and involves genetic and environmental factors. ATDs are 
endocrine diseases due to an autoimmune reaction against thyroid antigens, in a specific genetic 
background triggered by exposure to environmental factors (1).

The two main ATDs are Graves disease (GD) and Hashimoto’s thyroiditis (HT) that are character-
ized by hypothyroidism and thyrotoxicosis, respectively, by the production of thyroid autoantibodies 
such as thyroid peroxidase (TPO), thyroglobulin (TG), and thyroid-stimulating hormone receptor 
(TSHR), as well as by lymphocytic infiltration of the thyroid (1). MG is a neuromuscular disorder due 
to a defective transmission of the nerve impulse to muscles, causing muscle weakness and abnormal 
fatigability. In most cases, MG is mediated by antibodies targeting the acetylcholine receptor (AChR) 
while in a minority of patients, the autoantibodies are specific for muscle-specific kinase (MuSK) or 
agrin receptor LRP4 (low-density lipoprotein receptor-related protein-4). Other targets, such as titin, 
and ryanodine, have been investigated (2).
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TAble 1 | Epidemiological and clinical features of patients with autoimmune thyroid diseases and myasthenia gravis (MG).

Hashimoto’s thyroiditis Graves’ disease AChR-MG MuSK-MG

Hypothyroidism Hyperthyroidism

Incidence About 2% About 2% About 0.1% About 0.01%

Female/male 
ratio

Around 10 Around 10 Early onset: F > M (ratio around 3) Around 6
Late onset: F = M

Tissue 
pathology

Damage of the thyroid 
gland

Enlarged thyroid (diffuse goiter) Thymic pathologies, hyperplasia among the young patients, and 
thymoma among the oldest patients

No thymic 
pathology

Therapy Levothyroxine (LT4) Anti-thyroid drugs, radioactive 
iodine, and surgery

Anticholinesterase drugs, thymectomy, immunosuppressive drugs 
(azathioprine, corticosteroids)

Corticosteroids
Rituximab

The data on this table were collected from the following Ref. (8–12).
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COnCOMiTAnT THYROiDiTiS AnD MG: 
ePiDeMiOlOGiCAl FeATUReS

The prevalence of ATDs is high and estimated to be 5% in the gen-
eral population (3) while MG is a rare disease with an incidence 
of 8–10 cases per one million persons/year and a prevalence of 
150–250 cases per one million (4) (Table 1). Although ATD is one 
of the most representative organ-specific autoimmune disorders, 
it is associated with other autoimmune endocrine failures or 
non-endocrine diseases (5). Among the non-endocrine diseases, 
we can mention vitiligo, pernicious anemia, MG, autoimmune 
gastritis, celiac disease, and hepatitis (6, 7). Interestingly, in these 
associated diseases, the presence of anti-TPO antibodies is more 
frequent than the prevalence of ATDs (6).

The aim of this review is to focus on the association between 
MG and ATDs. The most common diseases coexisting with MG 
are GD and HT, with a frequency of 7 and 3%, respectively (13). 
ATDs were diagnosed in 26.8% of MG Polish patients including 
4.4% with GD, 9% with HT, and 13.4% with anti-thyroid antibod-
ies (14). In British and German populations, 16% of early-onset 
MG (EOMG), 9% of late-onset MG, and 17% of thymoma-MG 
patients had antibodies against TPO or TG (15). About 0.2% of 
patients affected by ATDs show MG that is much higher than 
the general incidence of MG (0.01%). MG could be ocular or 
generalized, even if ATDs are more frequent in the ocular group 
(16–18). When associated to ATDs, MG shows specific features, 
such as the young age of onset, mild clinical symptoms, low levels 
of AChR antibodies, and low frequency of thymic alterations 
(18–20). These data highlight that the association between MG 
and ATDs is much more frequent than expected.

eTiOlOGY

The etiology of AIDs is still unknown. Drugs, virus infections, 
radiation, stress are some of the environmental factors that may 
be involved in the development of ATDs and MG in susceptible 
individuals, contributing to the activation of an innate immune 
response (8, 10, 21, 22).

Factors of Predisposition
Autoimmune thyroid diseases are more common among women 
than men with a female:male ratio of 5–10:1. There is a difference 

in prevalence and incidence in the base of geographic area, race, 
and age. The frequency of anti-thyroid antibodies increases with 
age, showing a peak ranging from 45 to 55 years. In females, one 
of the two X chromosomes is inactivated during early embryonic 
stage (23). The inactivation of the same X chromosome, that occurs 
in more than 80% of cells, could result in defect in immunological 
tolerance to X-linked antigens that could lead to autoimmunity. 
Moreover, fetal microchimerism was observed in blood and 
thyroid tissues from women with either HT or GD. During preg-
nancy, the production of maternal regulatory T cells (Treg) early in 
pregnancy could lead to a decrease in the circulating anti-thyroid 
antibodies, maintaining a state of tolerance to fetal alloantigens in 
order to avoid fetus rejection. After birth, anti-thyroid antibodies 
rebound with a transient increase. The persistence of fetal cells in 
maternal tissues leads to fetal microchimerism (24).

In MG, instead, the early-onset forms, characterized by the age 
of onset before 50 years, are more frequent in female than male with 
a ratio female:male of 3:1. Different studies suggest an important 
role of estrogens in MG (25), since estrogen receptors are expressed 
on thymic epithelial cells and on thymocytes (21). The female bias 
in AIDs could be due to reduced expression by estrogens of AIRE, 
a transcription factor involved in negative selection, resulting in a 
decreased quality of autoreactive cells elimination (26).

By case–control studies, and more recent genome-wide 
association studies, different genes have been associated with 
the ATDs and MG and the presence of specific autoantibodies. 
Genes involved in T-cell activation and regulation, such as pro-
tein tyrosine phosphatase non-receptor 22 (PTPN22), cytotoxic 
T-lymphocyte antigen-4 (CTLA4), and human leukocyte anti-
gens (HLA), are associated with both ATDs and MG. PTPN22 
is an intracellular protein tyrosine phosphatase bound to c-src 
tyrosine kinase, involved in T-cell activation (27); CTLA4 plays 
a role in inhibiting T-cell signaling, and the HLA is essential for 
presenting exogenous antigens for recognition by CD4+ T-helper 
cells (28). Other genes have been associated to a single disease, as 
indicated in Figure 1. Therefore, in both ATDs and MG, factors 
of predisposition include not only genetic background, but also 
the potential role of sexual hormones.

Triggering Factors
Hepatitis C virus (HCV) infection is the most associated 
to ATDs both in adults and children, in fact, infected HCV 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FiGURe 1 | Predisposing genes in autoimmune thyroid diseases (ATDs) and 
myasthenia gravis (MG). The data on this figure were collected from the 
following Ref. (28–30).
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patients show dysfunctions in the thyroid (10, 31). In patients 
with chronic hepatitis C (CHC), the thyroid disorders are 
characterized by an increased risk of ATD and hypothyroid-
ism in females, elevated levels of anti-TPO antibodies, and 
by papillary thyroid cancer risk (32, 33). The hypothesized 
mechanism is that HCV envelope protein E2 induces strong 
inflammatory responses in human thyrocytes, resulting in the 
production of interleukin (IL)-8, IL-6, and tumor necrosis 
factor-α (TNF-α). The E2 protein also induces the upregulation 
of molecules involved in innate immune pathways (34). Also 
human herpes virus-6 (HHV-6) infection is associated with 
ATD onset, in fact, a high level of HHV-6 activation marker 
was found in thyroid tissue of patients with ATD (35). In myas-
thenic patients, the existence of a chronic inflammatory state 
in the thymus could alter innate immune responses leading 
to self-tolerance failure (36–39). The inflammatory state could 
be due to persistent viral replications, in fact, Epstein Barr 
virus (EBV), cytomegalovirus, human foamy virus, and Nile 
virus were found to be associated to MG (40, 41). Pathogen 
infections could play a role in AIDs through dysregulation of 
toll-like receptor-mediated innate immune responses, which 
can result in altered innate immune responses and long-term 
inflammation, rendering the thymus vulnerable to auto-sensi-
tization (40, 41). EBV is one of the main candidates suspected 
to play a role in MG initiation, since it is able to promote B-cell 
abnormal activation and survival, and to disrupt critical B-cell 
tolerance checkpoints (40, 42–44).

Recent data have confirmed a strong association between 
ATD development and interferon (IFN)-α therapy in patients 
with CHC. About 40% of CHC patients acquire thyroid disor-
ders while receiving IFN-α. IFN-induced thyroiditis is visible 
as clinical thyroiditis in about 15% of HCV patients receiving 
IFN-α and subclinical thyroiditis in up to 40% of patients (45). 
Moreover, it was observed that the generation of anti-thyroid 
antibodies tends to continue also after IFN therapy (30).  IFN-α 
could induce thyroiditis by both direct toxic effects on the 
thyroid and by immune recruitment mechanisms (46).

Interestingly, IFN-I therapies can also prime the development 
of MG (47). IFN-I, especially IFN-β, could play a central role 
in the thymic follicular hyperplasia of MG patients by inducing 
high expression of α-AChR and of CXCL13 chemokine in thymic 
epithelial cells, and of the chemokine CCL21 in endothelial 

lymphatic cells, two chemokines involved in the abnormal 
recruitment of B cells in EOMG thymuses. IFN-β also increases 
B-cell activating factor expression, which promotes the develop-
ment of autoreactive B cells (48). Also, IFN-β overexpression in 
MG thymus can mediate the effects of dsRNA activation and 
causes α-AChR subunit overexpression, suggesting that IFN-β 
can play a central role in MG development (36).

Other drugs can induce AIDs, including immunomodulatory 
agents used to treat melanoma, such as monoclonal antibodies 
inhibiting the immune checkpoint pathways, as CTLA4 and 
programmed cell death protein 1 (PD-1), two-cell surface recep-
tors on T  cells which down-regulate immune response (49). 
Ipilimumab is a human immunostimulatory antibody targeting 
CTLA4 that can cause thyroiditis and/or hypothyroidism in 6% 
of cases after several cycles. Pembrolizumab and nivolumab act 
against PD-1 and, if combined with ipilimumab to inhibit both 
CLT4 and PD-1, show a stronger effect with thyroiditis in 22% 
of cases (50).

DiFFeRenTiAl AnD COMMOn FeATUReS 
in ATDs AnD MG

Antibodies
Both MG and ATD diseases are organ specific and antibody-
mediated, and both kinds of disorders combine many different 
pathologies. Patients with ATDs have antibodies against proteins 
of the thyroid, but the characteristics of the disease differ accord-
ing to the autoantigen. Patients with HT have serum antibodies 
reacting with TG, TPO, while patients with GD have antibodies 
against the receptor of TSH (51) (Table 2).

Myasthenia gravis is due to antibodies against the neuro-
muscular junction (59). Similarly to thyroiditis, in MG, several 
antigens are the targets of the autoantibodies, and the disease 
features depend upon the nature of the antibodies. Patients with 
anti-AChR, but not with anti-MuSK antibodies, have thymic 
pathologies, hyperplasia among the young patients, and thymoma 
among the oldest patients (60).

Interestingly, in both MG and ATDs, some forms of the 
disease are IgG4 dependent, an Ig subclass that does not bind to 
the complement. In MG, anti-MuSK antibodies are IgG4 (61). 
In ATDs, several subcategories of IgG4-mediated diseases have 
been identified including a fibrosing variant of HT, IgG4-related 
HT, and GD with elevated IgG4 levels (62). These IgG4 diseases 
share common mechanisms that involve the mechanical inter-
ference of extracellular ligand–receptor interactions by the IgG4 
antibodies (63).

The mechanisms of action of the antibodies are quite differ-
ent in MG and ATD, likely due to the nature of the target antigen 
and its localization. In HT, together with cytotoxic cells, the 
antibodies contribute to the destruction of the thyroid, leading 
to hypothyroidism (Table 2). In the case of GD, the antibod-
ies against TSHR could be stimulatory, blocking or neutral; 
when the stimulating antibodies predominate, clinical features 
become obvious (56). Thus, the antibodies are functional, able 
to stimulate or to inhibit the secretion of thyroid hormones. 
Fluctuating antibody levels can lead to syndromes alternating 
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TAble 2 | Physiopathological features of patients with autoimmune thyroid diseases and myasthenia gravis (MG).

 Hashimoto’s thyroiditis Graves’ disease AChR-MG MuSK-MG

Humoral 
immunity

Target of the 
autoantibodies

TG (20–50%), TPO (90–95%) TSHR AChR MuSK

Mechanism of the Abies Thyroid destruction by cytotoxic cells, 
death receptors, and impairment of 
thyroid hormone production

Overactivation of 
the gland: thyroid 
stimulatory, blocking, 
and neutral Abies

AChR blocking, internalization, 
and degradation

Disruption of 
neuromuscular junction 
and inhibition of the 
retrograde signaling

Role of complement Yes Yes Yes No

Cellular 
mechanisms

Infiltration of the target 
organ

+++ Thyroid + Thyroid, but not 
destruction

Neg in the muscle Neg in the muscle
+++ in the thymus Neg in the thymus

Ectopic GC Yes (thyroid) Yes (thyroid) Yes (thymus) No

T-cell involvement Th1, Th17 Th2, Th17 Th1, Th2, Th17 Th1, Th17

Role of epithelial cells Overproduction of pro-inflammatory 
cytokines and chemokines by thyroid 
epithelial cells

Overproduction of pro-
inflammatory cytokines and 
chemokines by thymic epithelial 
cells

Unknown

Regulatory B cells Normal B10 number Normal B10 number Decreased B10 cell number Decreased B10 cell 
number

The data on this table were collected from the following Ref. (1, 52–58).
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between hyperthyroidism and hypothyroidism (64). In the case 
of MG, anti-AChR antibodies induce its degradation depend-
ent upon the complement, and its internalization (2), while 
anti-MuSK antibodies disrupt the neuromuscular junction and 
inhibit the retrograde signaling (65, 66). Recent findings sug-
gest that the anti-AChR antibodies could also have a functional 
effect, by inducing the overproduction of IL-6, a cytokine that 
plays a role in muscle biology (67). It is not clear yet if this 
mechanism participates to the pathogenic mechanisms or is a 
compensatory mechanism.

Most of the autoantibodies have a clinical usefulness. Anti-
TPO and anti-TSHR antibodies are relevant for the diagnosis of 
HT and GD, respectively (30, 68). Anti-TSH receptor antibodies 
are of interest in GD as they correlate with the disease severity and 
their levels decrease with therapies (69). However, anti-TPO and 
anti-TG Abs are not unique to HT patients since these antibodies 
are detectable in the majority of GD patients (70). In the case of 
MG, the anti-AChR antibodies are very useful for the diagnosis 
but not for the follow-up. On the other hand, for the group of 
patients with anti-MuSK antibodies, monitoring its level is rel-
evant, since it correlates with the clinical course (2).

infiltration of the Target Organ and 
Germinal Centers
Patients with GD can have an infiltration of the thyroid gland, 
while in the case of HD, the infiltration is severe and accompa-
nied by the destruction of the thyroid (71). Ectopic B-cell fol-
licles are observed in the thyroid gland in HT (72). Autoreactive 
B cells within these lymphoid follicles were recognized by their 
ability to bind thyroid antigens (72). In MG, the neuromuscular 
junctions displays minimal lymphocytic infiltration, while the 
thymus at least in the young patients includes many infiltrat-
ing cells, signs of inflammation, and germinal centers (53). 
The degree of hyperplasia is related to the level of anti-AChR 
antibodies (73).

immune Dysregulation
In both MG and ATDs, T-cell immune-mediated mechanisms 
are involved. In ATDs, cellular immunity targeting thyroid anti-
gens is very common (74, 75). This mechanism is also a feature 
of experimental thyroiditis obtained in animals by injection of 
thyroid antigen with adjuvants (76). In MG, similar data are 
observed; in the patients, and in the experimental models of MG, 
T-cell proliferation using the autoantigen or peptides from the 
AChR has been shown (77–79).

In addition, inflammatory cells such as Th1 and Th17 were 
shown to be involved in the different forms of thyroid or 
myasthenic diseases (Table  2). Th1 cytokines are increased in 
MG patients and its experimental model (EAMG) and normal-
ized with therapies (80, 81). Th1  cells and their cytokines are 
required for EAMG development (82), through the production 
of complement-dependent anti-AChR antibodies that are patho-
genic (82, 83). In addition, TNF-α has been shown to contribute 
to the chronic inflammation observed in the MG thymus (84). 
In ATDs, Th1 cells recruited in the thyroid may be responsible 
for increased production of IFN-γ and TNF-α, which in turn 
stimulates the secretion of the pro-inflammatory chemokine 
CXCL10 from the thyroid cells, resulting in an amplification 
feedback loop, which could perpetuate the autoimmune process 
(1). Th17 cells and IL-17 have an inflammatory and pathogenic 
role in MG and ATD (85). Interestingly, IL-17 also contributes to 
B-cell responses. Indeed, mice mutated for IL-17 receptor have 
reduced humoral responses and germinal center development 
(86). In MG patients, the seric level of IL-17 is increased (84, 87). 
In the mouse model, IL-17 deficient mice are resistant to develop 
MG, and the pathogenic anti-murine AChR antibodies are lower 
compared with wild-type mice (88). In ATDs, an increased dif-
ferentiation of Th17 lymphocytes and an enhanced synthesis of 
Th17 cytokines were shown, mainly in HT (89).

Finally, the defects of immune regulation are a hallmark of 
AIDs. In both MG and thyroiditis, functional defects of Treg 
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cells have been shown while the cell number is normal (90–92). 
In addition, there is a shift from Treg cells to Th17 cells, sug-
gesting that Treg/Th17 balance is altered (84, 93). However, in 
MG, it was also demonstrated that the Teff cells are resistant to 
suppression (84). To our knowledge, there is no equivalent study 
in ATDs disorders. The number of B reg cells has been shown to 
be decreased in MG but not ATDs (55, 58, 94).

Microbiota is essential for immunologic and digestive homeo-
stasis (95) and is involved in many AIDs (52). In animals, the 
lack of microbiota is associated with reduced intestinal surface 
areas with shorter villi, changes in mucus layer, and permeability 
(5, 96), together with reduced B- and T-cell production (97). 
Interestingly, in humans, a morphological and functional dam-
age of the intestinal barrier was similar in patients bearing type-1  
diabetes and with ATD (98). In addition, in hyperthyroid 
patients, the microbiota composition was shown to be altered 
(99). This aspect has not yet been investigated in MG.

THeRAPieS

Although both MG and ATDs are associated with immune system 
defects, the treatments are different. In the case of MG, treatments 
include anticholinesterase molecules and immunosuppressive 
therapies. Among these therapies are conventional immunosup-
pressant, such as azathioprine, as well as corticosteroids. Recently, 
monoclonal antibodies against B lymphocytes have proved inter-
esting (100). In the case of thyroid disease, therapies are aimed at 
regulating thyroid hormone levels (101). The treatment of choice 
for HT or hypothyroidism is thyroid hormone replacement. The 
drug is orally administered usually for life.

Surgery is applied in both pathologies. In MG, thymectomy 
may be proposed when the thymus is hyperplastic or when a 
thymoma is associated. Recently, a Thymectomy Trial in Non-
Thymomatous MG Patients Receiving Prednisone Therapy was 
conducted in order understand if transsternal thymectomy with 
prednisone therapy could be more efficient than prednisone 

alone after 3 years. An improvement of clinical outcomes over a 
3-year period in patients with non-thymomatous MG underwent 
thymectomy was observed (102). In ATDs, thyroid ablation is 
recommended in GD when the goiter is large, and in HT when 
a defined thyroid nodule is present (68). It is interesting to note 
that in both cases the organ that is operated is inflammatory and 
contains germinal centers with B lymphocytes participating in 
the pathogenic response.

COnClUSiOn

In conclusion, MG and ATD share many commonalities. They 
are both organ-specific AIDs with a clear pathogenic effect of 
antibodies, although ATDs are 50–100 times more frequent than 
MG disease.

Interestingly, ocular involvement is observed in both patholo-
gies. The pathological mechanisms high up many commonalities, 
such as deregulation of the immune system and the implication 
of predisposing genes, such as HLA and PTNP22 genes. However, 
the mode of action of the antibodies is different: if the antibodies 
in ATDs deregulate the level of the hormones, in the case of MG 
they reduce the expression of receptors at the motor plate leading 
to a functional defect of the synapse.

It is interesting to note that certain drugs are capable of induc-
ing MG and ATDs, for example, IFN-I or monoclonal antibodies 
against immune checkpoints have proved to be inducers of these 
pathologies.

Finally, therapies in MG and ATDs are different. In ATDs, the 
use of molecules to regulate the level of the hormones is satisfac-
tory. In MG, anticholinesterases are generally insufficient, and 
immunosuppressive therapy is very frequently associated.
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