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Neuropeptide Y (NPY), a neuropeptide highly conserved throughout evolution, is present  
at high levels in the central nervous system (CNS), as well as in peripheral tissues 
such as the gut and cardiovascular system. The peptide exerts its effects via multiple 
receptor subtypes, all belonging to the G-protein-coupled receptor superfamily. Of 
these subtypes, the Y1 and the Y2 are the most thoroughly characterized, followed 
by the Y5 subtype. NPY and its receptors have been shown to be of importance in 
central regulation of events underlying, for example, affective disorders, drug/alcohol 
use disorders, and energy homeostasis. Furthermore, within the CNS, NPY also affects 
sleep regulation and circadian rhythm, memory function, tissue growth, and plasticity. 
The potential roles of NPY in the etiology and pathophysiology of mood and anxiety 
disorders, as well as alcohol use disorders, have been extensively studied. This focus 
was prompted by early indications for an involvement of NPY in acute responses to 
stress, and, later, also data pointing to a role in alterations within the CNS during chronic, 
or repeated, exposure to adverse events. These functions of NPY, in addition to the 
peptide’s regulation of disease states, suggest that modulation of the activity of the 
NPY system via receptor agonists/antagonists may be a putative treatment mechanism 
in affective disorders as well as alcohol use disorders. In this review, we present an 
overview of findings with regard to the NPY system in relation to anxiety and stress, 
acute as well as chronic; furthermore we discuss post-traumatic stress disorder and, in 
part depression. In addition, we summarize findings on alcohol use disorders and related 
behaviors. Finally, we briefly touch upon genetic as well as epigenetic mechanisms that 
may be of importance for NPY function and regulation. In conclusion, we suggest that 
modulation of NPY-ergic activity within the CNS, via ligands aimed at different receptor 
subtypes, may be attractive targets for treatment development for affective disorders, as 
well as for alcohol use disorders.
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iNTRODUCTiON

Neuropeptide Y (NPY), a 36 amino acid neuropeptide, was originally isolated from porcine brain 
using a method detecting the C-terminal amide. NPY belongs to the pancreatic polypeptide (PP) 
family of biologically active peptides, together with two other members, PP and peptide YY (1). 
The amino acid sequence for porcine NPY was determined in 1985 (2), and it was subsequently 
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determined that the amino acid sequence is identical for species 
such as human, rat, porcine, and guinea pig (3). Indeed, both 
mRNA and peptide sequence display a high degree of conserva-
tion throughout evolution (4–6), possibly indicating preserved 
functional relevance.

Expression and synthesis of the PP-family of peptides is a 
multiple step process, also well conserved between species. 
The PP-family of peptides are synthesized as large protein 
precursors; for NPY, the 98 amino acid precursor peptide is 
proteolytically processed into three separate peptide products: 
an N-terminal signal peptide, NPY, and a 30 amino acid 
C-terminal flanking peptide (C-PON). The strong evolutionary 
conservation can be seen for both the NPY peptide and the 
C-PON, with the rat and human sequences showing 100 and 
93% homology, respectively (7).

expression of NPY within the Central 
Nervous System (CNS)
Neuropeptide Y is predominantly expressed in cells originating 
from the neural crest, and it is one of the most highly expressed 
neuropeptides within the CNS; an expression that has been 
shown to be present in, but not limited to, neurons (7–9). NPY 
is expressed at high levels in brain regions involved in regulation 
of affective behavior, energy homeostasis, and memory function 
and plasticity. These include among others, the hypothalamus, 
in particular the arcuate and the paraventricular nuclei, the hip-
pocampal formation, the amygdala, periaqueductal gray, locus 
coeruleus, and septum (7, 10, 11).

The amygdala is a central neurobiological substrate for media-
tion of stress- and anxiety-related behaviors and has strong NPY-
ergic innervation. Within the amygdala, the central amygdala 
constitutes an output relay for the functional consequences of 
amygdala activation by fearful stimuli and, together with the the 
lateral/basolateral complex mediate anti-stress effects of NPY 
(12, 13).

The dorsolateral portion of the periaqueductal gray matter 
(PAG) has been suggested to tonically inhibit the amygdala. The 
PAG is involved in the behavioral output of fear responses, with 
subcompartments differentially involved in defensive behaviors 
(14). The septum is a key component in a behavioral inhibition 
system partaking in regulation of anxiety states. However, while 
important, lesions of the septum that affect anxiety-related 
behaviors most likely reflect effects on fibers passing through 
this structure, most likely belonging to hippocampal output. The 
dorsal hippocampus is an important component of neuronal cir-
cuitry controlling anxiety-related behaviors and stress responses 
and septo-hippocampal circuits are likely to be important for 
fear-related behaviors. Expression of NPY is high in hippocampal 
regions (15).

The numerous functions of NPY within the CNS, as well as its 
extensive expression, contribute to making the NPY system one 
of the most well-studied neuro-hormonal systems.

NPY Receptor Subtypes and Function
Neuropeptide Y exerts its actions via four functionally relevant 
receptor subtypes, the Y1, Y2, Y4, and Y5 (16–19). All NPY 

receptors cloned belong to the superfamily of G-protein-coupled 
receptors but differ in their ligand affinity profiles (20–23). The 
Y1 receptor subtype requires the full peptide to be activated, 
while the Y2-subtype also can be bind C-terminal fragments 
of NPY. The Y4 receptor preferentially binds PP and may be 
referred to the pp1 receptor (17). The Y5 subtype binds similar 
ligands as the Y1 (24). NPY receptors couple via Gi/o proteins to 
several downstream signaling pathways, including inhibition of 
adenylyl cyclase, activation of mitogen-activated protein kinase, 
regulation of intracellular calcium (Ca2+) concentrations, and 
activation of G-protein-coupled, inwardly rectifying potassium 
(K+) channels (25, 26).

The predominantly postsynaptic Y1 receptor requires the 
intact NPY sequence for recognition and activation and is the 
subtype mediating antianxiety and antidepressant actions of NPY 
(13). Activation of the Y1 receptor decreases levels of experi-
mental anxiety, alleviates post-traumatic stress disorder (PTSD) 
and depression-like behavior, predominantly via actions in the 
amygdala and hippocampus (13, 27–29). The presynaptic Y2 
receptor is, in addition to intact NPY, also activated by C-terminal 
fragments of NPY, such as NPY 13–36 and NPY 3–36 (20). The 
Y2 subtype functions as a heteroreceptor, affecting presynaptic 
release of NPY and classical neurotransmitters, including GABA 
and glutamate, as well as norepinephrine (20, 30, 31). The Y4 
receptor has low affinity for NPY and is primarily the target for 
PP, which, as mentioned also, is a member of the PP-family of 
peptides (32). The Y5 receptor was initially thought to be the 
exclusive receptor regulating NPYs effect on feeding behavior 
(33); however, the orexigenic effects of NPY have since been 
determined to also involve the Y1 and the Y2 receptor subtypes 
(34–36).

Within the mammalian CNS, NPY receptor subtypes are 
expressed in regions overlapping with NPY expression and 
involved in regulation of anxiety and stress, depression, energy 
homeostasis, and memory function. These regions include the 
previously mentioned amygdala, hypothalamus, and hippocam-
pus, and also the periaqueductal gray (37), septum (38), and the 
locus coeruleus (39).

STReSS AND ANXieTY

early Findings
An early finding for CNS action of NPY was a long-lasting 
synchronization of the EEG pattern (40). This is similar to the 
effects of sedative/anxiolytic compounds such as bensodiazepines 
or barbiturates. Furthermore, i.c.v. administration of central 
NPY suppressed baseline as well as novelty-induced locomotor 
activity (41). Another early finding, the prevention of formation 
of gastric erosions, also indicated a role of NPY in regulation 
of stress-related events and, possibly, anxiety-related behavior 
(42). Early on, anxiolytic-like effects of NPY were demonstrated 
using the elevated plus-maze (EMP), the social interaction test, 
as well as “conflict tests” such as the Geller–Seifter and the Vogel 
punished drinking conflict test (43, 44). Here, spatial or social 
exploration is suppressed by fear of open spaces, and unfamiliar 
conspecifics, respectively, and restored by bensodiazepines, and 
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also NPY (29, 43, 45). In the light–dark compartment test, a 
model conceptually related to the elevated plus-maze similar 
findings was reported (46). Finally, in the fear-potentiated 
startle model, which is based on fear potentiation rather than 
inhibition of behavior, NPY effectively reverses the potentiation 
of the acoustic startle response, which occurs upon presenta-
tion of a conditioned fear stimulus, but does not affect basal, 
unconditioned startle (45).

Stress and Homeostasis
Responses that may be beneficial in an acute situation may 
become adverse under repeated circumstances. This is in particu-
lar true for stress responses, which when chronically activated 
may cause damage and become the basis for or accelerate disease 
conditions (47). Stress as a term refers to evolutionary highly con-
served processes involving perception, appraisal, and response 
to threatening, challenging, and/or possibly harmful stimuli. 
Homeostasis refers to consistency of internal parameters within 
a normal range, while allostasis is the process of reestablishing 
homeostasis beyond the normal range that entails changing the 
homeostasis to match external demands in response to a chal-
lenge. Allostasis links the brain with the endocrine and immune 
systems to coordinate appropriate responses to a stressor (48, 49).

In addition to being intrinsically harmful, (chronic) stress 
and accompanying alterations in homeostatic balance have 
also been shown to increase vulnerability to addiction (50–52). 
Drug intake and withdrawal also in themselves act as stressors 
leading to a disruption of the homeostatic state and constitute 
a mechanism underlying progression from drug/alcohol use to 
abuse (53, 54). Furthermore, repeated exposure to and with-
drawal from drug use leads to increased sensitivity to stress 
and an increased behavioral stress response (55). A hallmark 
of addiction is the risk for relapse following a period of absti-
nence. During progression from drug use to abuse, alterations in 
hypothalamic as well as extra-hypothalamic structures, such as 
the amygdala, lead to an increased stress sensitivity (51, 55–59). 
Stress-induced relapse is a model frequently used in preclini-
cal settings and involves exposure to a stressor (for example, 
yohimbine or foot shock (60–63), for example) which then leads 
to the reinstatement of a previously extinguished behavior, 
i.e., drug taking.

Affective disorders including anxiety and depression affect as 
many as 1 in 4 individuals during their lifetime, and are, together 
with alcohol use disorders, major causes of “Years of life lived with 
disability” in all ages and “Years of life lost because of premature 
death” as a consequence of illness itself and due to depression 
comorbidity with, e.g., cardiovascular disease and a high suicide 
rate (64–69). Depression is more prevalent in women, while 
alcohol use disorders are more prevalent in men (65, 70). The 
frequency and prevalence of these disorders are increasing due to 
demographic changes (longer life expectancy) and, possibly, due 
to improved diagnostic procedures.

Currently available pharmacological treatments have limited 
efficacy, about one-third of patients do not respond or are only 
partial responders. Thus, there is a major unmet medical need, 
and neuropeptide systems may offer opportunities to develop 
novel treatments to alleviate it.

NPY in Stress and Anxiety-Related 
Behavior
As previously mentioned, central administration of NPY was 
early on shown to mimic anxiolytic and sedative effects of com-
pounds such as barbiturates and benzodiazepines. Later studies, 
using both rats and mice, have confirmed and extended these 
initial findings to an extensive range of experimental models, 
including conflict tests, fear-potentiated startle, and different 
mazes (43–45, 71). Consistent with effects of NPY administra-
tion, overexpression of NPY was shown to exert anxiolytic 
effects. Using an NPY transgenic rat model with hippocampal 
NPY overexpression (72), it was demonstrated that increased 
hippocampal NPY activity led to a behavioral insensitivity to 
restraint stress on the elevated plus maze, absent fear suppres-
sion of behavior in a punished drinking test, and impaired 
spatial learning in the Morris water maze. Additionally, localized 
overexpression of NPY within the amygdala led to decreased 
anxiety, as well as alcohol intake, in rats, further confirming 
a role for endogenous NPY in regulation of anxiety-related 
behavior (73). This was also confirmed by the finding that rats 
with an innate higher number of NPY-positive cells in the central 
amygdala displayed less anxiety-like behavior in the light–dark 
box model (74). However, while the amygdala has long been 
known to regulate fear and anxiety-related behavior, as well as 
being considered a site of storage of fear memories, newer find-
ings suggest that the prefrontal cortex (PFC) is essential in the 
regulation of amygdala-dependent memories and fear expres-
sion (75). Dysregulation of fear related memories are of especial 
importance in patients with PTSD. Within the PFC, activation of 
the prelimbic cortex (PrL) enhances the expression of fear, while 
an elevated activity in the infralimbic cortex (IL) enhances fear 
extinction. It was recently shown that the pyramidal neurons in 
the PrL receive a direct inhibitory input, which is mediated by 
bipolar NPY(+)-GABAergic projection neurons in the IL (76). 
Additionally, infusion of NPY into the IL impairs retrieval of fear 
extinction without affecting depression-like behavior or work-
ing memory (77). Further, NPY is markedly reduced in several 
brain regions in a well-defined rat model of PTSD, exposure to 
predator scent (78–80) and, crucially, direct NPY administra-
tion into the CNS or intranasally administered NPY counteracts 
PTSD symptoms (81–85). Amygdala–PFC connections have 
indeed been demonstrated to be of great clinical relevance in 
PTSD (86). Interestingly, changes in the Npy gene (rs16147 T>C 
polymorphism) represent a risk factor for expression of negative 
affect in individuals exposed to adversity in early childhood (87).

The Y1 receptor subtype has been shown to mediate the 
anxiolytic effect of NPY within the amygdala (13, 88), with 
the presence of the receptor being required for this effect (27). 
Additionally, administration of Y1 receptor antagonists into 
the lateral ventricles or the basolateral nucleus of the amygdala 
induced anxiogenic effects in rats (89, 90). In contrast, activation 
of the Y2 receptor subtypes is anxiogenic, following ventricular 
administration or local injection into the basolateral amygdala 
(91, 92). This is consistent with the proposed localization of 
Y2 receptors presynaptically (93) and has been suggested to be 
due to a self-regulatory mechanism where activation of the Y2 
receptor leads to decreased release of NPY (and regulation of  
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GABA/glutamate dependent on neurobiological substrate). In 
line with this, blockade of Y2 receptors could be expected to 
be anxiolytic. Indeed, using different antagonists aimed at the 
Y2 receptor anxiolytic-like effects have been demonstrated in 
animal models, including the elevated plus-maze and conflict 
tests (94–96). Additionally, Y2 receptor knockout showed a 
low-anxiety phenotype in the elevated plus maze and open 
field tests, suggesting that in addition to limiting NPY-release, 
the Y2 receptor may counterbalance anxiolytic effects of NPY 
(95, 96). Deletion of Y2 receptors also lead to reduced neuronal 
activation in brain areas of interest following stress exposure (97). 
Furthermore, brain region-specific deletions of the Y2 receptor 
gene within the basolateral and central amygdala generated an 
anxiolytic phenotype (98). On the contrary, administration of 
NPY (13–36), a Y2 receptor specific agonist, into the vicinity of 
the locus coeruleus produced anxiolytic effects (39), indicating 
regional differences in effects of Y2 receptor activation.

Although Y4-knockout mice display reduced anxiety-related 
and antidepressant activity, as well as enhanced locomotor activ-
ity in behavioral tests (99, 100), direct activation of the Y4 recep-
tor did not show any effect on anxiety-related behavior (101).  
A putative interaction between Y2 and Y4 receptor subtypes was 
suggested by an amplified anxiolytic-like effect of a double Y2/Y4 
knockout (102). However, further elucidation of the involvement 
of the Y4 receptor subtype is hampered by the lack of specific 
ligands aimed at the receptor. The Y5 subtype has also been 
implicated in regulation of affective behavior, but it is difficult 
to determine the contribution of this receptor subtype due to its 
close relationship with the Y1 subtype. Conflicting results exist 
as to whether Y5 antagonists may reduce food intake and have 
anxiolytic or antidepressant-like effects (103, 104). In an animal 
model, the Y1 and Y5 receptors were shown to have overlapping 
functions as well as expression in regions regulating anxiety. 
Conditional removal of the Y1 receptor in Y5 receptor-expressing 
neurons in juvenile mice leads to higher anxiety but no changes in 
hypothalamus–pituitary–adrenocortical axis activity, under basal 
conditions or after acute restraint stress (105).

NPY AS AN ANTiDePReSSANT

The relationship between anxiety and depression is that of 
overlapping conditions. Symptoms of anxiety and depression 
commonly co-exist, and both disorders are thought to reflect 
maladaptive changes in stress-responsive systems (106).

In depression, there have been reports on reductions in gray 
matter volume and glial density in regions mediating the cogni-
tive aspects of depression, i.e., the PFC and the hippocampus 
(107). In addition, functional studies show that activity within the 
amygdala and subgenual cingulate cortex is chronically increased 
in depressed individuals while reverting back to normal levels 
with successful treatment (108, 109). In rodents, exposure to 
chronic mild stress, a model used to induce a depressive-like 
state, increased activity, measured as c-Fos response, within the 
amygdala, medial habenula, and IL in rats susceptible to the stress 
effects (110). Within the hippocampus, NPY modulates synaptic 
activity and inhibits hippocampal excitability, having distinct 
effects on memory function (30, 111).

Indeed, central administration of NPY was shown to exert 
antidepressant-like effects in the forced swim test (FST), indi-
cated by a dose-dependent increase in swimming and a decreased 
immobility (112). In another study, intracerebroventricular 
administration of NPY in olfactory bulbectomized rats, a rodent 
model of depressive-like symptoms, resulted in attenuation 
of increased behavioral irritability (113), indicating a possible 
therapeutic role of NPY in reducing depression-like behaviors. 
NPY has also been shown to reverse tricyclic antidepressant 
treatment-resistant depression induced by central administration 
of adrenocorticotropic hormone (114). Furthermore, NPY has 
been shown to modulate effects of antidepressant treatments such 
as imipramine and for exploratory treatments such as agmantine 
and other neuropeptides (115–117).

With regard to receptor subtypes mediating the antidepressant 
effects of NPY, activation of the Y1 receptor subtype has been 
shown to have direct antidepressant-like effects, as well as to 
modulate effects of antidepressant treatment (28, 115). Recently, 
intranasal administration of both NPY as well as a peptidergic 
Y1-agonist to rats was shown to have antidepressant-like effects 
(82, 83, 118) Furthermore, it was recently shown that chronic 
treatment with a Y5 receptor antagonist produced antidepres-
sant-like effects in the rat chronic mild stress model and reversed 
depressive-like behavioral changes in the FST and prevented 
degeneration of astrocytes in the mPFC (104, 119).

Reduced NPY expression, both mRNA and protein, may 
constitute a risk for depression and anxiety-related behaviors. In 
a study of Fawn Hooded rats, an animal model of depression, 
decreased NPY concentrations were found in hippocampus com-
pared to control animals (120). In another genetic animal model of 
depression, the Flinders Sensitive Line (FSL) rats, decreased NPY 
protein was found in the hippocampal CA region, while Y1 bind-
ing sites were increased. On the other hand, NPY was increased 
in the arcuate nucleus of the hypothalamus, compared to the non-
depressed control Flinders Resistant Line (FRL) rats (121–123). 
For gene expression, Y1 receptor mRNA was decreased in several 
cortical and limbic regions in FSL rats compared with FRL rats 
(122). Considering the increased prevalence of depression with 
age, the observation that cell loss of the NPY-positive cells in the 
dentate gyrus is enhanced in the depressed FSL animals as they 
age compared to the FRL line confirm their use as a depression 
model (124). Consistent with these findings, decreased NPY in 
selected brain regions has been found in several models of dys-
regulated emotionality and stress, such as learned helplessness 
(125), maternal separation/deprivation (126, 127), chronic mild 
stress (128), social isolation (129), PTSD (79), and acute as well as 
early-life stress (130, 131), as well as in animal models of alcohol 
use such as an alcohol-preferring rat strain (132).

MODULATiON OF NPY eXPReSSiON AND 
ACTiviTY BY STReSS OR TReATMeNT

Exposure to stress or fearful stimuli, or treatment with anxiolytic 
or antidepressant drugs, affects CNS expression and function of 
NPY, the relationship being bidirectional. Acute stress signifi-
cantly decreased NPY expression within the amygdala, an effect 
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accompanied by anxiogenic behavior as measured on the elevated 
plus-maze (130). The reverse relationship was found when the 
stressor was applied repeatedly, indicating an innate mechanism 
for adaptations in amygdala NPY dependent on context or expo-
sure frequency (133).

With regard to treatments, antidepressants administered orally 
to rats increased NPY in frontal cortical regions and the hypo-
thalamus, as did electroconvulsive (ECS) treatment (134, 135).  
Lithium treatment was shown to increase NPY protein and 
mRNA levels in several brain regions in rats, such as the striatum, 
hippocampus, frontal and occipital cortices, and the entorhinal 
cortex (136–139). Early studies of ECS demonstrated that hip-
pocampal and cortical NPY levels increased after repeated ECS 
in rats (140–142). Treatment of experimental animals with SSRIs 
has yielded differential effects on NPY levels in different brain 
regions. Interestingly, antidepressant effects of exercise may be 
related to alterations in hippocampal NPY levels (143, 144).

NPY iN ALCOHOL USe DiSORDeRS

Substance use disorders correlate significantly with prevalence of 
mood and anxiety disorders that develop independent of intoxi-
cation and withdrawal (145–147). Specifically, overconsumption 
of alcohol is commonly associated with anxiety and depression 
(148). Animal models have shown that acute ethanol administra-
tion produces dose-dependent anxiolytic effects short term (149), 
while acute high doses produce withdrawal-induced anxiety 
(150). Additionally, greater alcohol intake has been associated 
with states of anxiety (151). The highly prevalent comorbidity 
has generated interest in anxiolytic and antidepressant drugs as 
putative treatment targets in alcohol use disorders (152).

Accumulating evidence points to a key role of NPY in the 
modulation of the development of alcohol dependence. Alcohol 
consumption is increased in mice with a null mutation of the NPY 
gene, but decreased in transgenic NPY overexpressing subjects 
(153). Furthermore, differences either in electrophysiological 
responses to exogenous NPY or in peptide concentrations in spe-
cific brain regions have been found in rat strains selected for high 
and low alcohol preference (132, 154, 155). Further support for 
an involvement of NPY and its receptors in the behavioral conse-
quences of alcohol dependence come from animals with a history 
of alcohol dependence induced via alcohol vapor exposure. Here, 
changes in NPY-like immunoreactivity (156), stress-responsivity 
(55), and brain activation patterns (157) were seen. These findings 
indicate that alterations in NPY-related systems may underlie 
some of the behavioral changes induced by a history of alcohol 
vapor exposure, and suggesting that NPY, or analogs thereof, may 
modulate alcohol-induced behavioral modifications. Alterations 
in NPY system expression and function are seen for many drugs 
of abuse (158).

Administration of NPY into the ventricles reduced alcohol 
intake in alcohol-preferring P rats (159), as well as in vapor-
exposed animals (160), while this effect was absent in animals 
without a history of dependence or the appropriate genetic 
background (161). Reduction of alcohol intake following NPY 
infusion in predisposed animals might relate to its anxiolytic 
effect, since alcohol dependence is accompanied by an increased 

sensitivity to stress (55). This relates to the clinical context, in that, 
clinical studies have shown a correlation between anxiety levels 
and subsequent alcohol abuse (152).

The amygdala is a central neurobiological substrate in stress- 
and anxiety-related behavior, as well as in modulation of alcohol 
intake (162, 163). Amygdala lesions disrupt anxiety-related 
behavior and reduce alcohol consumption (164, 165). Some 
lines of alcohol-preferring rats also exhibit higher anxiety-like 
behaviors and lower amygdala NPY levels (166). However, as an 
illustration of the complexity of alcohol use disorders, increased 
alcohol intake due to selective breeding can also be accompanied 
by reduced anxiety-like behavior in rodents (166). An infusion of 
NPY into the central nucleus of the amygdala in alcohol-preferring 
rats normalizes both anxiety behaviors (assessed using the light/
dark box exploration test) and alcohol intake (167). Conversely, 
direct injection of NPY into the paraventricular nucleus of the 
hypothalamus actually increases alcohol consumption (168), 
an effect that may illustrate the caloric content of ethanol. 
Additionally, elevated NPY signaling in the nucleus accumbens 
and/or striatum may contribute to the increased sensitivity to 
ethanol-induced behavioral sensitization. Reduced expression 
of ethanol-induced behavioral sensitization was seen following 
activation of Y2 receptors in the nucleus accumbens (169).

Alcohol use disorders are characterized by, among other 
things, escalated consumption over time, an inability to stop 
intake despite adverse consequences, and relapse to alcohol tak-
ing following periods of abstinence. Periods of consumption are 
interspersed with periods of alcohol withdrawal and abstinence. 
Alcohol withdrawal induces acute anxiety (170), which can be 
alleviated by known anxiolytics. Alcohol withdrawal affects NPY 
expression, and withdrawal-induced decreases of NPY within the 
central amygdala likely contribute to increased GABAergic tone 
in alcohol-dependent animals. It has been shown that application 
of exogenous NPY normalizes dependence-induced increases in 
GABA release in CeA (171).

NPY Receptor Function in Alcohol Use 
Disorder
Neuropeptide Y infusion into the CNS reduces alcohol intake in 
animal models of escalated intake, and an overexpression of NPY 
within the amygdala reduces alcohol intake in a choice model 
(72, 73). The direct effect of NPY in reducing alcohol intake is 
most likely due to an increased activation of the Y1 receptor sub-
type. It was recently demonstrated that Y1 receptor activation in 
the bed nucleus of the stria terminalis suppressed binge alcohol 
drinking and that the underlying mechanism was an enhanced 
inhibitory synaptic transmission specifically in CRF neurons via 
a Gi-mediated, PKA-dependent postsynaptic mechanism (163). 
Furthermore, central infusion of NPY, a Y1 receptor agonist, and 
a Y2 receptor antagonist significantly blunted binge-like alcohol 
drinking in C57BL/6J. In that study, binge-like alcohol drinking 
reduced NPY and Y1 immunoreactivity in the central nucleus of 
the amygdala, while 24 h of alcohol abstinence after a history of 
binge-like drinking promoted increases of Y1 and Y2R expres-
sion. The binge-like alcohol drinking augmented the ability of 
NPY to inhibit GABA (172).
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Some data indicate that Y2 receptor antagonism proposedly 
leads to increased NPY in the synaptic cleft, thereby function-
ing as an indirect Y1 receptor agonist. Indeed, results from Y2 
knockout mice in models of alcohol intake (173), as well as in 
anxiety and depression models (95), indicate that antagonism 
of the Y2 receptor may modify these behaviors. Furthermore, 
central administration of the Y2 receptor antagonist BIIE0246 
suppressed self-administration of a sweetened alcohol solution in 
rats, and post-dependent animals showed increased sensitivity to 
this effect (174, 175). However, using a different small molecule, 
non-peptidergic antagonist, JNJ-31020028 (176), in high alcohol-
preferring rats as well as outbred Wistar rats, no effect on alcohol 
intake-related behaviors or relapse to alcohol seeking could be 
detected (177). The differential effects may be due to structural 
differences in the used ligands.

With regard to the Y5 receptor subtype, NPY activity at this 
receptor subtype can modulate ethanol reinforcement in mice 
(178). Furthermore, in a high alcohol-preferring rat line, antago-
nism at the Y5 receptor can reduce alcohol intake (179).

In addition to increased alcohol intake, a hallmark of addiction 
is the risk to relapse following periods of prolonged abstinence 
(52–54). The potential role of NPY as well as NPY receptor ligands 
in preventing relapse of alcohol intake in dependent animals has 
been explored in several experiments. Thus, NPY-administered 
ICV blocked reinstatement of alcohol seeking induced by the 
pharmacological stressor yohimbine, an alpha-2 adrenoreceptor 
antagonist (161).

CLiNiCAL STUDieS

Decreased levels of CSF NPY have been found in patients with 
affective disorders, patients who had a history of suicide attempt, 
PTSD, and dementia (180–185). PTSD patients have lower 
plasma and CSF NPY levels than healthy controls (186, 187). 
Challenge studies have also demonstrated differences between 
in PTSD patients and controls. In healthy subjects, intravenous 
administration of yohimbine has been reported to induce anxi-
ety as well as relapse to alcohol seeking and craving for alcohol, 
increased plasma NPY, highlighting the role of NPY in regulating 
anxiety (187, 188); this effect was attenuated in PTSD. NPY levels 
were also positively correlated with cortisol levels and behavioral 
performance under stress (189–191). The reduced levels of NPY 
in CSF have been shown to be accompanied with reductions in 
NPY immunoreactivity and mRNA in postmortem brain tissue 
(192). In a study with patients with depression and anxiety, serum 
NPY levels were lower in the patients than in the controls. Serum 
NPY levels were increased by treatment with escitalopram and 
venlafaxine in the patients with depression, but not in the patients 
with anxiety (193). Regulation of NPY levels in circulation is 
regulated in part by the enzyme dipeptidylpeptidase 4 (DPP4). 
DPP4 has been shown to have lower activity in depressed patients, 
an effect reversed by antidepressive treatment (194, 195).

GeNeTiCS AND ePiGeNeTiCS OF NPY

Affective disorders as well as alcohol use disorders have strong 
genetic contributions (196, 197). In an early study of the genetics 

of alcohol dependence, linkage analysis on the F2 intercross 
progenies of P and non-preferring rats revealed a chromosomal 
region containing a NPY precursor gene (198, 199). Within the 
Npy gene, a number of functional single-nucleotide polymor-
phisms (SNPs) exist within the Npy gene. NPY haplotypes were 
found to predict levels of NPY mRNA in postmortem brain and 
levels of plasma NPY, as well as emotion-induced activation of 
the amygdala (200). A SNP (rs16147) located in the promoter 
region alters NPY expression in  vitro and seems to account 
for more than half of the variation in expression in  vivo (87). 
In depression, reductions in NPY levels are associated with a 
preproNPY SNP (201, 202). The rs16147 SNP was associated 
with impaired antidepressant treatment response in patients 
with anxious depression (203, 204), and low-expression NPY 
genotypes were also found to be overrepresented in subjects with 
major depression (205).

Within the Npy gene, a thymidine(1128)-to-cytosine(1128) 
polymorphism (T1128C; rs16139), which results in a substitution 
of Leu(7) by Pro(7) in the signal peptide part of pre-pro-NPY, 
was identified in relation to serum cholesterol (206). The minor 
allele of the Leu7Pro polymorphism in the NPY gene has been 
associated with higher processing into mature NPY and higher 
CSF NPY levels (201). The cytosine 1128 (Pro7) allele was shown 
to be rare in a depression population and has been suggested to 
play a protective role against depression (202, 207). Based on 
animal literature, the Pro7 allele was suggested to be associated 
with elevated alcohol consumption in humans. Indeed, the fre-
quency of Pro7 allele was higher in European Americans subjects 
with alcohol dependence compared with healthy controls. These 
findings suggest that in humans, the Pro7 allele of leu7pro may be 
a genetic vulnerability for pathological alcohol consumption and 
dependence. Conflicting data exist with regard to the contribu-
tion of the Pro7 allele in alcohol dependence (208–210). Other 
NPY gene polymorphisms have been associated with alcohol 
dependence including a polymorphism at the 602 position in the 
5′ region and a C to T substitution at the 5671 position (211). 
Additionally, in rhesus macaques, it was suggested that a poly-
morphism within the Npy gene promoter may be associated with 
susceptibility to alcohol use disorders (212). Furthermore, the 
increased drinking of P rats may be related to NPY-ergic activity 
in this selectively bred rat line (213–215).

Neuropeptide Y Y5 receptor variants have also been found 
to contribute to the etiology of panic disorder in a population 
of German patients, supporting the evidence for a risk locus on 
chromosome 4q31–q34 in anxiety disorders (216). With regard 
to the Y1 and Y2 receptor subtypes, limited data on SNPs are 
available. For the Y2, haplotypes containing a SNP within the 
first intron (rs17376826 SNP) have strong associations with body 
mass index, but relations to stress, anxiety, or alcohol addiction 
have not been examined (217). Additional Y2 polymorphisms, 
rs4425326 and rs6857715, have been associated with severe alcohol 
dependence, comorbid alcohol and cocaine, and cocaine depend-
ence in European American population (218). Furthermore, the 
prevalence of current smokers was greater among Japanese men 
having the rs4425326 C-allele compared to ex-smokers (219).

Epigenetic mechanisms have so far only to a limited extent 
been shown to be involved in stress- and nutritional-regulation 
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of NPY expression and function. Perinatal malnutrition has 
stress-like effects on offspring in animal models (220–224) and 
has been shown to alter DNA methylation of CpG dinucleotides 
in the proximal promoter region of the NPY gene within the 
hypothalamus at 16 and 100 days of age, compared to control 
rats (225). Additionally, rearing of newborn rats on a high-
carbohydrate diet, shown to induce hyperinsulinemia, increases 
acetylation of lysine 9 in histone 3 (H3K9) for the NPY gene, 
without changes in histone methylation (H3K9). These findings 
were consistent with the changes in the expression levels of NPY, 
suggesting that epigenetic mechanisms regulate NPY levels in 
response to nutritional stress, at least within the hypothalamus. 
Within the amygdala, NPY protein levels were shown to be 
decreased in the CeA and MeA of rats with access to intermit-
tent alcohol during adolescence (226). The authors additionally 
showed that histone H3K9/14 acetylation was decreased in the 
Npy promoter in the amygdala of alcohol-exposed adult rats 
compared to controls.

In the context of stress and affective disorders, the epigenetic 
contribution to regulation of NPY expression and function needs 
to be further elucidated.

The SNP in the rat NPY gene promoter (C/T; rs105431668) 
affects in vitro transcription and DNA-protein interactions. In 
a rat model of depression, the FSL-line, and its counterpart, 
the FRL line, the presence of the C-allele enables binding of 
a transcription factor (CREB2) and a histone acetyltransferase 
(Ep300). It was determined that the C-allele is only present in 
the FRL rat line and that its presence correlates with increased 
hippocampal levels of NPY mRNA and H3K18 acetylation, a 
gene-activating histone modification maintained by Ep300 
(227, 228). This finding illustrates a direct epigenetic mecha-
nism for regulation of NPY expression and function. At the very 
least, the finding opens up an interesting avenue of explora-
tion for genetic/epigenetic interactions in affective disorders. 
Furthermore, this suggests that different populations due to 
their genetics may be differentially susceptible to exposure 
to stressful, adverse events both during development and in 
adulthood.

As far as other epigenetic mechanisms, histone acetylation 
has been shown to affect anxiety-related behavior as well as NPY 

expression within the amygdala. Specifically, more pronounced 
deficits in histone acetylation were suggested to be involved in 
lower NPY expression in the amygdala of P rats, and, thereby, 
operative in controlling anxiety-like and alcohol-drinking 
behavior (229, 230). With regard to small RNAs, here microRNA 
(miRNA) and NPY, a study indicated that deletion of Dicer, an 
enzyme cleaving pre-miRNAs into miRNAs, in mice leads to 
decreased expression of NPY mRNA within the hypothalamus 
(231). However, the authors indicated that this may be a com-
pensatory mechanism due to the genetic modification, and not 
a direct cause–effect relationship. Thus, miRNA involvement in 
NPY gene expression remains to be elucidated.

CONCLUDiNG ReMARKS

Affective disorders, including anxiety and PTSD, and alcohol use 
disorders are major causes of “Years of life lived with disability” in 
all ages and “years of life lost because of premature death.”

Pathophysiologies are insufficiently understood, and currently 
available drugs in the clinic are only partially effective. While 
dysregulation of the monoaminergic systems may be a sufficient 
cause, there is ample evidence that dysregulation of the gluta-
matergic signaling and changes in neuropeptides, in particular 
NPY may result in same phenotypes. Consequently, there is an 
urgent unmet medical need to develop novel treatments that 
would focus on those targets. Above review of NPY illustrates 
its important role in physiology as well as pathophysiology of 
several brain disorders with dysregulated emotionality and points 
to its potential as a therapeutic agent that can be administered 
intranasally.
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