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Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain- 
derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters 
(including serotonin and vagal tone) and gut hormones, increased concentrations of 
free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti- 
inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). 
Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β 
cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and 
other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in 
response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 
DM is due to increased peripheral insulin resistance secondary to enhanced production 
of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and 
trans fats). Type 2 DM is also associated with significant alterations in the production  
and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, 
and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflam-
matory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflamma-
tory cytokines in the systemic circulation. Hence, methods designed to suppress excess 
production of pro-inflammatory cytokines may form a new approach to prevent both type 
1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, 
partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal 
activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, 
concentrations of cytokines and free radicals that results in resetting glucose-stimulated 
insulin production by pancreatic β cells. Our recent studies suggested that bioactive 
lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid 
(which are unsaturated fatty acids) and their anti-inflammatory metabolites: lipoxin A4, 
resolvins, protectins, and maresins, may have antidiabetic actions. These bioactive lipids 
have anti-inflammatory actions, enhance eNO, BDNF production, restore hypothalamic 
dysfunction, enhance vagal tone, modulate production and action of ghrelin, leptin and 
adiponectin, and influence gut microbiota that may explain their antidiabetic action. 
These pieces of evidence suggest that methods designed to selectively deliver bioactive 
lipids to pancreatic β cells, gut, liver, and muscle may prevent type 1 and type 2 DM.

Keywords: bioactive lipids, arachidonic acid, lipoxin a4, polyunsaturated fatty acids, resolvins, protectins, 
maresins
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introdUCtion

The diabetes mellitus (DM) is classically divided into two types: 
type 1 diabetes that occurs because of autoimmune destruction 
of β cells that results in insulin insufficiency and so are insulin 
dependent and type 2 diabetes characterized by peripheral insulin 
resistance and consequent hyperinsulinemia.

CLiniCaL ManiFestations oF dM

In majority of the subjects with type 2 DM, no symptoms could 
be present at the time of detection of the disease. Many a times, 
type 2 DM is detected during a routine general checkup or when 
the subject is evaluated for yet another illness. Thus, type 2 DM 
could be asymptomatic for long periods of time. In an occasional 
instance, type 2 DM is detected due to the presence of a complica-
tion secondary to long-standing diabetes; yet the subject could 
be unaware of the presence of diabetes. Hence, a high degree of 
suspicion is necessary on the part of the physician to detect and 
diagnose type 2 DM. By contrast, type 1 diabetes mellitus (type 
1 DM), in general, shows a more dramatic presentation such as 
diabetic ketoacidosis.

The degree of hyperglycemia may vary depending on the 
underlying disease process. The underlying metabolic process and 
factors that modulate it determine the degree of hyperglycemia 
and, hence, the treatment of diabetes should take into considera-
tion not only the underlying pathobiology but also various factors 
that have the potential to modify it.

CLassiFiCation oF dM

Even though diabetes is distinctly divided into different types at 
the time of diagnosis, many diabetics do not necessarily fit into a 
single class. For instance, those with gestational diabetes mellitus 
may have persistent hyperglycemia even after delivery and may 
be diagnosed to have type 2 DM. By contrast, those who received 
large doses of corticosteroids may be mistakenly diagnosed to 
have type 2 DM; yet such an individual may become normoglyce-
mic, once the corticosteroids are withdrawn. Some of those who 
were given thiazides may develop diabetes after a while. Thiazides 
by themselves are not diabetogenic; such individuals probably 
had type 2 DM that is precipitated by thiazides. Thus, it is less 
important to label a diabetes but it is important to understand 
the significance and consequences of and to treat it as effectively 
as possible.

type 1 dM

Type 1 diabetes that occurs in 5–10% of those with diabetes is due 
to insulin insufficiency due to destruction of β cells. Those who 
are at risk of type 1 diabetes generally show islet cell antibodies,  
anti-insulin antibodies, antibodies against glutamic acid decar-
boxylase (GAD65), and antibodies against tyrosine phosphatases 
1A-2 and 1A-2β. About ~85–90% of these patients have more 
than one of these autoantibodies. A close relationship exists 
between HLA markers: HLA-DQA and DQB genes and type 
1 DM, which (DR/DQ alleles) can be either predisposing or 

protective. In general, subjects with type 1 DM may also have 
other autoimmune diseases (AID).

patHoBioLoGy oF type 1 diaBetes

In general, it is believed that excess production of interleukin-1 
(IL-1), IL-2, IL-6, tumor necrosis factor-α (TNF-α) and mac-
rophage migration inhibitory factor (MIF), nitric oxide (NO), 
superoxide anion, and other related or similar free radicals plays 
a significant role in the pathobiology of type 1 DM. Macrophages, 
lymphocytes, and monocytes infiltrate pancreatic β cells and 
release cytotoxic molecules leading to the development of type 1 
DM (1, 2). Streptozotocin (STZ) induces significant production 
of IL-2, interferon-γ (IFN-γ), and TNF-α by TH1 lymphocytes, 
which activates macrophages, leading to the production of excess 
of nitric oxide (NO) and other nitroso compounds to induce 
apoptosis of β cells (3) Human duct cells situated close to β cells 
produce TNF-α, which can induce death of pancreatic β cells (4). 
Macrophages produce MIF that plays a significant role in type 
1 DM (5). Non-obese diabetic (NOD) mice when administered 
recombinant MIF-protein two times a week (from age 6 to 
11 weeks) show enhanced incidence of type 1 DM compared with 
untreated control (5). TNF-α upregulates MIF production (6, 7) 
and both TNF-α and MIF act in synergy to induce type 1 DM.

Migration inhibitory factor, TNF-α, and ILs enhance the 
synthesis and release of pro-inflammatory prostaglandins (PGs) 
by increasing the expression of COX-2 mRNA but, paradoxically, 
suppress prostacyclin synthase (PGI2S) mRNA expression, leading 
to decreased PGI2 production. By contrast, at low concentrations 
TNF-α decreased, whereas IL-1β enhanced PGI2 production in a 
dose-dependent manner. Paradoxically, low amounts of TNF-α 
and MIF enhanced PGI2 synthesis, but to a much lesser degree. 
Thus, an interaction exists between cytokines and PGs (8–10).

Furthermore, arachidonic acid (AA)-derived prostaglandin 
E2 (PGE2) inhibits TNF-α and IL-1 production (11) implying 
that TNF-α, IL-1-induced enhancement of PGE2 has a negative 
regulatory control on these cytokines and, thus, modulate the 
actions of pro-inflammatory cytokines on the induction of type 
1 DM. For instance, peroxisome proliferator-activated receptor-γ 
(PPAR-γ) activators: conjugated linoleic acid (CLA) and troglita-
zone (12) inhibit free radical generation and TNF-α and IL-2 and, 
thus, inhibit the occurrence of diabetes in the Zucker diabetic 
fatty fa/fa rat (13, 14).

Previously, we reported that oral supplementation of polyun-
saturated fatty acid (PUFAs)-rich oils and pure individual PUFAs, 
such as γ-linolenic acid (GLA, 18:3 n-6), arachidonic acid (AA, 
20:4 n-6), eicosapentaenoic acid (EPA, 20:5 n-3), and docosahex-
aenoic acid (DHA, 22:6 n-3) that serve as endogenous ligands of 
PPARs (12) prevented development of alloxan-induced DM in 
experimental animals (15–18). Free radical-induced DNA dam-
age activates poly (ADP-ribose) polymerase (PARP) synthase 
(19) resulting in enhanced NAD+ utilization and because of which 
NAD+ depletion occurs. This leads to a significant decrease or 
complete depletion of NAD+-dependent energy generation that 
results in alterations in protein metabolism resulting in pancreatic 
β cell death (19, 20). The fact that nicotinamide supplementation 
suppresses free radical generation and, thus, ameliorates DM is in 
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support of the role of PARP and free radicals in the pathogenesis 
of DM. Thus, the protective actin of PUFAs we observed (15–18) 
could be due to their ability to prevent apoptosis of pancreatic β 
cells by restoring to normal altered lipid peroxides, NO, super-
oxide dismutase (SOD), ceruloplasmin, glutathione peroxidase, 
glutathione-S-transferase, and catalase. NO quenches superoxide 
anion (21, 22), whereas SOD inactivates superoxide anion. In our 
study (17, 18), we noted that PUFAs restored SOD and NO to 
normal, which is one mechanism by which they prevent alloxan-
induced type 1 DM.

Recently, we noted that even STZ-induced type 1 and type 2 
DM and high-fat diet (rich in saturated fats and high amounts 
of trans fats) induced type 2 DM can also be prevented by both 
oral and intraperitoneal administration of AA, suggesting that 
AA has potent cytoprotective action both in  vitro and in  vivo 
(unpublished data). In an extension of this work, it was observed 
that the pancreatic β cell protective action of AA is not blocked by 
both cyclo-oxygenase (COX) and lipoxygenase (LOX) inhibitors 
implying that there is no significant role for PGs, leukotrienes 
(LTs), and thromboxanes (TXs) in the cytoprotective action 
offered by AA [Ref. (17, 18) and see below].

In an extension of these studies, it was noted that lipoxin 
A4 (LXA4), an anti-inflammatory metabolite of AA, not only 
protected pancreatic β cells from the cytotoxic actions of alloxan 
and STZ in vitro but also prevented both alloxan-induced type 
1 DM and STZ-induced type 1 and type 2 DM in experimental 
animals (see below). LXA4 restored to normal altered antioxidant 
concentrations, and expressions of Pdx1, NF-kB, and IKB genes 
in the pancreas and plasma TNF-α levels in type 1 and type 2 DM; 
Nrf2, Glut2; COX-2 and inducible nitric oxide (iNOS) proteins 
in pancreatic tissue of type 1 DM and LPCLN2 (lipocalin 2), 
NF-kB, IKB I in adipose tissue of type 2 DM to normal. PDX1 is 
a homeobox protein expressed in β pancreatic cells that maintains 
and expresses the endocrine function of the pancreas. These 
results imply that there are some endogenous anti-inflammatory 
molecules that can protect β cells and prevent both type 1 and 
type 2 DM. Based on our studies, we suggest that AA and LXA4 
belong to this category.

It is interesting to note that other unsaturated fatty acids: 
gamma-linolenic acid (GLA, 18:3 n-6), eicosapentaenoic acid 
(EPA, 20:5 n-3), and docosahexaenoic acid (DHA, 22: n3) also 
showed cytoprotective action against alloxan and STZ-induced 
toxicity to pancreatic β cells in vitro and development of alloxan-
induced type 1 and STZ-induced type 1 and type 2 DM in 
experimental animals, though their beneficial actions were much 
less potent compared to AA (15–18). What is interesting is the 
observation that GLA, EPA, and DHA also enhanced the forma-
tion of LXA4 though much less potent compared to AA. It is 
possible that, especially EPA and DHA displace AA from the cell 
membrane lipid pool and, thus, enhance the production of LXA4. 
This implies that even GLA, EPA, and DHA may bring about their 
beneficial action by enhancing the production of LXA4.

In an extension of these studies, we also noted that anti-
inflammatory metabolites of EPA and DHA, such as resolvins 
and protectins, are ineffective in preventing alloxan and STZ-
induced cytotoxicity against pancreatic β cells in  vitro but, 
paradoxically, prevented development of STZ-induced type 2 

DM in experimental animals (see below). The exact reason for 
this discrepancy between in vitro and in vivo results is not clear. 
One possibility is that the anti-inflammatory actions of resolvins 
and protectins can suppress the peripheral insulin resistance 
seen in type 2 DM and/or able to trigger the production of other 
antidiabetic molecules, such as brain-derived neurotrophic factor 
(BDNF). Though it is not yet certain but our studies showed that 
adipose tissue and liver are the primary targets of resolvins and 
protectins unlike LXA4 that targets specifically pancreatic β cells 
and possibly, LXA4 is a more potent anti-inflammatory molecule. 
Thus, it is likely that although LXA4, resolvins, protectins, and 
maresins are all anti-inflammatory molecules, their targets are 
different and so a difference in their antidiabetic actions.

Yet another molecule that may have a role in type 1 DM is 
nitric oxide (NO). Supraphysiological amounts of nitric oxide 
(NO) produced by induction of iNOS (inducible nitric oxide 
synthase) are toxic to pancreatic β cells. Both macrophage and 
β cell produced NO-induced β cell lysis (23, 24) by damaging 
DNA (25). This leads to activation of ADP-ribose polymerase in 
islet cells (26) resulting in a significant decrease in intracellular 
NAD+ and as a result, insufficient energy generation occurs 
leading to β cell apoptosis. This is supported by the observation 
that mice lacking PARP (poly-ADP-ribose polymerase) gene 
are resistant to diabetes induced by STZ (27). It is possible, but 
needs to be documented, that PUFAs block PARP and, thus, 
bring about their antidiabetic action against alloxan and STZ-
induced type 1 DM. Oral administration of cod liver oil, a good 
source of ω-3 EPA and DHA, during pregnancy decreased the 
incidence of type 1 DM (28) that is in support of our animal 
studies in which we observed that PUFAs prevented type 1 DM 
(16–18). Based on these studies (16–28), it is likely that lower 
intake of PUFAs during pregnancy and lactation by the mother 
and during perinatal period by the newborn may contribute to 
the development of type 1 DM.

aUtoiMMUne type 1 dM

IL-1β, TNF-α, and IFN-γ produced by islet-infiltrating T cells 
and macrophages induce apoptosis or dysfunction of pancre-
atic β cells by enhancing the formation of oxygen free radicals, 
nitric oxide, and peroxynitrite (29, 30). Studies revealed that 
enteroviruses accelerate the development of type 1 DM, in 
part, due to their tropism for β cells and ability to replicate in 
β cells at an appropriate and precisely right time to induce the 
diabetogenic process. In addition, expression of class-I major 
histocompatibility complexes, toll-like receptor-dependent 
immunity, and interferon pathways have a significant role 
in the development of diabetes. By contrast, type 1 DM can 
be prevented by blocking anti-viral responses, inhibition of 
autoreactive memory effector T  cells, and enhancement of 
regulatory T  cell (Treg) function. In this context, induction 
of immunoregulatory mechanisms, especially the function of 
Tregs, is of therapeutic interest (31).

Recent studies suggested that intestinal flora have a signifi-
cant role in the pathobiology of type 1 DM. It was reported that 
bacteria entering the pancreatic ductal system can trigger β-cell 
destruction in experimental animals. Preliminary evidence did 
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suggest that such an event could also occur in humans with type 
1 DM. Instillation of bacterial species that are normally present 
in the human duodenum into the healthy rat pancreatic ductal 
system induced infiltration of neutrophil polymorphonuclear 
cells and monocytes/macrophages around the pancreatic ducts, 
which released IL-6, IL-8, and monocyte chemotactic protein 1 
that, in turn, produced hydropic degeneration of β cells, an event 
that is very much similar with the morphologic findings seen in 
patients dying with type 1 DM. These results strongly suggest that 
bacteria can elicit an adverse innate immunity response (32).

These observations are supported by the reports that nor-
mal controls have microbiota that produce higher amounts of 
butyrate and lactate that aids to induce production of enough 
mucin synthesis that maintains gut integrity. On the other hand, 
non-butyrate-producing lactate-utilizing bacteria are present in 
higher amounts in subjects with type 1 DM because of which they 
fail to produce optimum amounts of mucin (33).

Type 1 diabetes mellitus does not occur in pathogen-free NOD 
mice lacking MyD88 protein (an adaptor for multiple innate 
immune receptors that recognize microbial stimuli), and this has 
been attributed to the presence of commensal microbes. This is so 
since, germ-free MyD88-negative NOD mice develop diabetes, 
whereas colonization of these germ-free MyD88-negative NOD 
mice with healthy gut bacterial phyla do not develop type 1 DM. 
This implies that MyD88 deficiency can change the gut micro-
biota composition, and exposure to specific microbiota can influ-
ence their susceptibility or resistance to the development of type 
1 DM. These results confirm the interaction between intestinal 
microbes with the innate immune system that seems to have a 
critical epigenetic role in the development of type 1 DM (34). For 
instance, abundance of Bacteroides and deficiency of butyrate-
producing bacteria in gut is associated with β cell autoimmunity 
and type 1 DM, suggesting that altered gut microbiota results in 
immunological aberrations that paves way for the development 
of the disease. It is likely that changes in gut microbiota alters 
the gut immune system such that there could be an increase in 
gut permeability, enhanced small intestinal inflammation, and 
impaired tolerance to food antigens, events seen in type 1 DM. 
This alteration in gut microbiota may explain why type 1 DM 
patients are more prone to enterovirus infections, and do not 
develop tolerance to cow milk antigens. This complex interac-
tion among gut microbiota, host, environment, and disease 
mechanisms need further studies to develop novel targets in the 
prevention of type 1 DM (35).

iMMUnotHerapy oF type 1 dM

The involvement of immune mechanisms in the pathobiology 
of type 1 DM is supported by the reports that Bio-Breeding 
(BB) rats do not develop hyperglycemia when treated with 
anti-lymphocyte serum, by transfusion of normal T  cells, and 
cyclosporin A (36–38). The NOD mouse is an animal model 
of type I DM that shows insulitis, infiltration of macrophages 
and lymphocytes into the islets, and reduction of islet size and a 
perturbed immune system (39). These NOD mice have impaired 
cell-mediated immunity, including an absolute decrease in T-cell 
activity, production of IL-2 by spleen cells and proliferation of the 

spleen cells induced by IL-2 are very low (39). These results are 
supported by the observation that NOD mice are protected from 
the development of insulitis and diabetes by strategies designed 
to activate macrophages and killer T-cells, enhancing interferon 
production and increasing IL-2 synthesis (40–43).

For example, OK-432 (a streptococcal preparation), a potent 
activator of both macrophages and killer T cells and an enhancer 
of IL-2 production, inhibited development of diabetes in all the 
treated animals over 24-week observation period compared to 
control (39). OK-432-treated NOD mice showed a significant 
increase both in the number of the mononuclear spleen cells 
and their natural killer cell activity and had few effector cells that 
induce apoptosis of pancreatic β cells (44).

OK-432, an inducer of TNF-α, inhibited insulitis and autoim-
mune diabetes in NOD mice and BB rats that usually develop type 
1 DM. Recombinant human (rh) TNF-α also blocks development 
of diabetes in NOD mice and BB rats. Administration of (5 × 104 
Units) rhTNF-α given by i.p. route twice a week to BB rats from 
4 to 27  weeks of age prevented development of diabetes [non-
treated rats showed 36.4% (8/22), whereas rhTNF-α-treated rats 
had 0% (0/21)] and the treated animals did not lose body weight, 
had normal blood glucose levels, and showed much less insulitis 
(45). These studies (39–41, 45) imply chronic and low dose and 
systemic administration of TNF-α and IL-2 regulate autoimmune 
diabetes in BB rats and NOD mice, suggesting that these animals 
may have a defect in TNF-α and IL-2-mediated immunoregula-
tion. In an extension of these studies, it was observed that serum 
that contained TNF 75 U but not IL-1, IL-2, and IFN-γ (induced 
by OK-432 injection) when administered reduced the intensity 
of insulitis and inhibited the cumulative incidence of diabetes 
in NOD mice compared to the control. This inhibitory effect of 
the serum was diminished, although not significantly, by anti-
mouse TNF antibody. OK-432-injected mice showed decreased 
Thy-1.2+ or CD8+ spleen cells and increased surface-Ig+ (S-Ig+) 
cells, whereas the proliferative response of spleen cells to con-
canavalin A (P < 0.01) and lipopolysaccharide (LPS) (P < 0.05) 
increased, suggesting that protections against the development of 
type 1 DM by OK-432 treatment in NOD mice was due to serum 
factors, including endogenous TNF and IL-2 (and probably some 
other unidentified factors) (46) (see Figures 1–3).

Low-dose IL-2 selectively enhances IL-2-dependent STAT5 
activation of Tregs in healthy individuals. In type 1 DM, IL-2 
augments Tregs cells at an ~10-fold lower concentration of IL-2 
than that is needed by T memory (TM) cells. This selective Treg 
activation responsiveness is due to their higher expression of 
IL-2 receptor subunit α (IL-2Rα) and γ chain and endogenous 
serine/threonine phosphatase protein phosphates 1 and/or 
2  A activity. IL-2-dependent transcriptome in human Tregs is 
optimally activated by a 100-fold lower concentration of IL-2 in 
Tregs versus CD4+ TM cells, implying that human Tregs possess 
an IL-2-dependent transcriptional amplification mechanism 
that selectively activates Tregs to induce their IL-2/IL-2R gene 
program. This explains as to why low-dose IL-2 therapy enhances 
Tregs for immune tolerance and its usefulness in type 1 DM (54, 
55). These studies formed the basis of low-dose IL-2 therapy 
(0.33, 1, or 3 × 106 IU/day. For in vitro studies, a dose of 1–10 IU/
ml of IL-2 for 1  ×  104 each T  cell subset is considered as low 
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FiGUre 1 | Scheme showing probable mechanism by which diabetogenic viruses, streptozotocin (STZ), and alloxan induce the development of type 1 diabetes 
mellitus (type 1 DM). The same mechanism may occur in non-obese diabetic (NOD) and other animals that are known to develop type 1 DM. Bacterial endotoxin 
lipopolysaccharide (LPS), an agonist of toll-like receptor-4 (TLR-4), inhibits type 1 DM. LPS administered to NOD mice during the prediabetic state delays the onset 
and decreases the incidence of diabetes. A multiple-injection protocol of LPS is more effective than a single LPS intervention. LPS administration suppresses spleen 
T lymphocyte proliferation, increases the generation of T regulatory cells [indicated as (+) in the figure], and reduces the synthesis of T-helper 1 pro-inflammatory 
cytokines [indicated as (−) in the figure], and downregulates TLR-4 and its downstream MyD88-dependent signaling pathway and enhances IL-4 and IL-10. Multiple 
injections of LPS induce tolerogenic dendritic cell (DC) subset with low TLR-4 expression and, thus, prevent development of type 1 DM in NOD diabetic mice see 
text, Figure 2, and Wang et al. (47). Alloxan and STZ and other diabetogenic molecules, including viruses, may block activity of desaturases and, thus, decrease 
the formation of arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid that, in turn, leads to deficiency of lipoxins, resolvins, protectins, and maresins, 
potent anti-inflammatory substances. Polyunsaturated fatty acid and their products may alter gut microbiota and regulate Treg and Teff cells. Bioactive lipids inhibit 
production of pro-inflammatory cytokines and possess cytoprotective actions that may explain their ability to prevent type 1 DM (see Figures 6–8).
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dose, whereas 100–1,000 IU/ml is considered as high dose). At 
low dose of IL-2, STAT5 will be activated only in Tregs that may 
have a role in preventing type 1 DM by restoring the unwanted 
immune responses to normal (56, 57) (see Figure 4).

In this context, it is noteworthy that toll-like receptor-4 
(TLR-4) activation is believed to play an important role in islet 
cell inflammation and β cell loss in the development of type 1 
DM. On the other hand, “hygiene hypothesis” suggests that 
bacterial endotoxin LPS, an agonist on TLR-4, inhibits type 1 
DM. LPS administration to NOD mice during the prediabetic 
state delays the onset and decreases the incidence of type 1 DM.  
It is noteworthy that a multiple-injection protocol is more effective 
than a single LPS intervention in the prevention of development 
of type 1 DM. LPS-inhibited spleen T lymphocyte proliferation, 
augmented the generation of CD4(+)CD25(+)Foxp3(+) regula-
tory T cells (Tregs), decreased the synthesis of T-helper 1 (Th1) 
pro-inflammatory cytokines, and downregulated TLR-4 and its 
downstream MyD88-dependent signaling pathway. Multiple 
injections of LPS induced the development of tolerogenic 
dendritic cell (DC) subset that showed low TLR-4 expression 
with little influence on the DC phenotype. It is interesting that 
injection of dendritic cells (DCs) obtained from repeated LPS-
treated NOD mice into NOD/SCID diabetic mice protected the 
progression of diabetes in the recipients. Thus, LPS prevents 

development of type 1 DM in NOD diabetic mice by Treg induc-
tion, downregulation of TLR-4 and MyD88-dependent signaling 
pathway possibly, by augmenting the development of a potential 
tolerogenic DC subset (47).

Based on the preceding discussion, it can be said that type 1 
DM and other AID occur due to an imbalance between autore-
active effector T cells (Teffs) and regulatory T cells (Tregs). Till 
now, blocking Teffs with immunosuppression was considered as 
the only therapeutic approach, but now it is clear that activating/
expanding Tregs seem to be a more attractive option without the 
toxicity of immunosuppression. It is also evident that low-dose 
IL-2 is safe to expand/activate Tregs in patients with type 1 DM. 
Low-dose IL-2 produced a dose-dependent increase in CD4(+)
Foxp3(+) and CD8(+)Foxp3(+) Treg numbers and proportions. 
Tregs expressed higher levels of activation markers, such as CD25, 
GITR, CTLA-4, and basal pSTAT5, and showed a 20-fold higher 
sensitivity to IL-2 than Teff and NK cells. Furthermore, concen-
trations of regulatory cytokines in the plasma were increased in 
a dose-dependent manner, while cytokines linked to Teff and  
T helper 17 (Th17) inflammatory cells remained unchanged and 
Teff responses against β-cell antigens were suppressed. These 
results suggest that low-dose IL-2 therapy is useful in the preven-
tion of type 1 DM and other autoimmune/inflammatory diseases 
(58) (see Figure 1).
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T regulatory, reduces the synthesis of T-helper 1 pro-inflammatory cytokines 
[interleukin-2 (IL-2), interleukin-1 (IL-1), interferon-γ (IFN-γ), and tumor 
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development of type 1 DM in non-obese diabetic mice [see text and  
Wang et al. (47)].
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production by infiltrating macrophages and T  cells and other 
cells. IFN-γ-mediated macrophage activation to produce pro- 
inflammatory cytokines, such as IL-2 and TNF-α, but not NO 
seems to be an important event in early diabetogenic action of 
invading immunocytes. Diabetes induction can be inhibited by 
suppressing IL-1 activity. Though NO seems to play a role in the 
development of type 1 DM, its extent of involvement and partici-
pation diabetes induction in vivo remains to be established (61, 
65) (see Figure 1).

Pancreatic β cells are exquisitely sensitive to the toxic 
actions of reactive oxygen species (ROS). This is supported 
by the observation that autoimmune type 1 DM and alloxan 
and STZ-induced type 1 DM are associated with enhanced 
generation of free radicals (66–71). During the process of 
development of type 1 DM under various circumstances 
(autoimmune type 1 DM and chemical-induced type 1 
DM) increased production of ROS and downregulation of 
antioxidant defenses, such as reduced glutathione (GSH) 
level and catalase, SOD, and thioredoxin (TRX), have been 
observed. This led to the suggestion that presence of adequate 
amounts of antioxidant defenses in β cells may protect them  
(β cells) and inhibit development of type 1 DM (72–75). This is 
supported by the observation that recombinant TRX protected β 
cells against apoptosis mediated through TNF and Fas pathways, 
and when overexpressed in β cells, TRX prevented development 
of type 1 DM in transgenic NOD mice (76). Furthermore, ALR/Lt, 
a NOD-related mouse strain that is resistant to alloxan-induced 
type 1 DM and autoimmune type 1 DM has elevated levels of 
systemic antioxidant defenses. In addition, ALR islets have 
almost fourfold elevated Kruppel-like factor 2 that upregulates 
antioxidant gene expression and inhibits NF-kB activation (77).  
It is known that NF-κB plays a key role in the cytokine-induced 
beta cell death (72). ALR islets that are resistant to alloxan-induced 
and autoimmune type 1 DM are not only cytokine resistant but 
have a defective nuclear translocation of NF-κB P65 subunit 
after cytokine treatment, which can be correlated to reduced 
kinetics of IκB degradation and suppressed iNOS induction (72).  
In contrast to this, β cells of NOD mice are exquisitely sensitive 
to cytokine-mediated apoptosis and are opposite to ALR islets 
that are resistant to cytokine and fee radical-mediated apoptosis 
(78). These results emphasize the significant role played by 
endogenous antioxidants in protecting pancreatic β cells against 
the cytotoxic actions of IL-1, TNF-α, IFN-γ, high levels of IL-2, 
and activated NF-kB that induce excess production of ROS and 
NO, Alloxan, and STZ also induce apoptosis of β cells by induc-
ing enhanced production of ROS. In addition, there appears to 
be a deficiency of anti-inflammatory cytokines, such as IL-4 and 
IL-10, and an imbalance between Treg and Teff that paves way to 
apoptosis of β cells (see Figure 1). Of all, most important issue 
seems to be the cytotoxic action of high levels of IL-2 and β cell 
protective action of low-dose IL-2. These seemingly paradoxical 
actions of IL-2 suggest that in addition to its (IL-2) ability to 
restore the balance between Treg and Teff cells, low dose IL-2 
can restore or enhance antioxidant defenses of β cells. In other 
words, high concentrations of IL-2 enhance free radical gen-
eration and reduce antioxidant content of β cells, whereas low 
concentrations of IL-2 has opposite actions. The big question is 

aLLoXan, stZ-indUCed type 1 dM, 
iL-1, iL-2, and tnF-α, Free radiCaLs 
and pUFa MetaBoLisM

There appears to be a strain-related susceptibility to the induction 
of type 1 DM by immune mediated toxins which could be cor-
related to the induction of high levels of IL-2, IFN-γ and TNF-α 
production. Macrophages are the first cells to infiltrate the islets in 
both multiple low-dose (MLD-STZ) induced type 1 DM in mice 
(59) and rats (60, 61) and BB rats that are prone to diabetes (62).  
It was reported that high levels of oxygen-free radicals produced 
by activated macrophages is seen in diabetes-prone BB rats prior 
to the appearance of inflammatory lesions in the islet cells (63).  
It was found that mRNA expression of Th1-type cytokines: IFN-γ, 
and IL-2 by infiltrating cells correlates with β-cell destruction and 
development of type 1 DM. Type 1 DM in NOD mice is promoted 
by Th1-type cytokines, while diabetes is prevented by T  cells 
producing IL-4 and IL-10 (64). On the other hand, enhanced 
IFN-γ production increased susceptibility to MLD-STZ-induced 
type 1 DM; while downregulation of Th2 cells (and so decrease 
in the production of IL-4 and IL-10) downregulated the disease; 
and inhibition of IL-1 activity downregulated diabetes induction. 
Thus, mouse and rats’ susceptibility to develop STZ-induced type 
1 DM and susceptibility of NOD and BB animals to develop diabe-
tes is closely related to the higher levels of IL-2, IFN-γ, and TNF-α 
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how different concentrations of IL-2 can produce these opposite 
actions. I propose that low and high concentrations of IL-2 have 
diametrically opposite actions on COX and LOX enzymes, IL-1 

and metabolism of PUFAs (see Figures  2 and 3). These mol-
ecules, in turn, act on the gut microbiota, gut hormones, and 
hypothalamic neurotransmitters as detailed below.
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formation of arachidonic acid (AA), eicosapentaneoic acid (EPA), and docosahexaenoic acid (DHA) that are precursors of various eicosanoids and LXs, resolvins, 
and protectins. Glucose, sucrose, and fructose seem to enhance the formation of pro-inflammatory prostaglandins, leukotrienes, and thromboxanes and 
generation of free radicals and decrease the formation of LXs, resolvins, and protectins that have anti-inflammatory activities and prevent development of type 2 
diabetes mellitus and metabolic syndrome and insulin resistance; they may also enhance the formation of pro-inflammatory cytokines and decrease those of 
anti-inflammatory cytokines. The pro-inflammatory activities of glucose, fructose, and sucrose may be in the order of fructose > sucrose ≥ glucose. Nitrolipids are 
formed due to interaction between polyunsaturated fatty acids and nitric oxide and these compounds have anti-inflammatory activity. Fibroblast growth factor 1 
(FGF1) is a critical transducer of remodeling of adipose tissue in response to fluctuations in nutrient availability that is essential for maintaining metabolic 
homeostasis and is regulated by the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ). PPAR-γ is an adipocyte master regulator and the 
target of the thiazolidinedione class of insulin-sensitizing drugs. FGF1 is the prototype of the 22-member FGF family of proteins and is involved in a range of 
physiological processes, including development, wound healing, and cardiovascular changes. FGF1 is highly induced in adipose tissue in response to a high-fat 
diet and that mice lacking FGF1 develop an aggressive diabetic phenotype coupled to aberrant adipose expansion when challenged with a high-fat diet. 
FGF1-deficient mice have abnormalities in the vasculature network, an accentuated inflammatory response, aberrant adipocyte size distribution, and ectopic 
expression of pancreatic lipases. It is interesting that withdrawal of the high-fat diet, inflamed adipose tissue fails to properly resolve, resulting in extensive fat 
necrosis that could be attributed to decreased production of LXs, resolvins, protectins, and maresins. Adipose induction of FGF1 in the fed state is regulated by 
PPAR-γ acting through a conserved promoter proximal PPAR response element within the FGF1 gene. These results suggest that the PPAR-γ–FGF1 axis is critical 
for maintaining metabolic homeostasis and insulin sensitization (48). In this context, FGF-19 has been shown to have hypoglycemic actions. Central nervous 
system responds to FGF-19 administered in the periphery. In mouse models of insulin resistance, leptin-deficiency and high-fat diet feeding and 
intracerebroventricular infusions of FGF-19 improved glycemic status, reduced insulin resistance and potentiated insulin signaling in the periphery. In addition, 
central action of FGF-19 included suppression of AGRP/neuropeptide Y neuronal activity (49). Furthermore, high-fat diet (HFD)-fed mice lacking lysosome-
associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes, showed a resistance 
against HFD-induced obesity, hyperinsulinemic hyperglycemia, and tissue lipid accumulation, accompanied with higher energy expenditure due to high expression 
levels of thermogenic genes in brown adipose tissue in HFD-fed lamp-2-deficient mice. Serum level of FGF-21 and its mRNA expression level in the liver were 
significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPAR-α-, dependent manner. These results suggest that a lamp-2-dependent fusion 
and degradation process of autophagosomes, and FGF-21 are involved in the pathogenesis of diabetes implicating a role for autophagy in this process (50). FGF 
activates phospholipases (51–53) that leads to the release of polyunsaturated fatty acid (PUFAs) that, in turn, can be utilized for the formation of various 
eicosanoids, LXs, resolvins, protectins, and maresins. Thus, PUFAs and LXs resolvins, protectins, and maresins could mediate anti-obesity and antidiabetic 
actions of FGFs. Alloxan, streptozotocin, and HFD block the activity of Δ6 and Δ5 desaturases and, thus, lead to a decrease in the synthesis and plasma and 
tissue levels of GLA, DGLA, AA, EPA, and DHA and decreased formation of LXs, resolvins, protectins, and maresins (from AA, EPA, and DHA) that could lead to 
increase in inflammation [increase in IL-6 and tumor necrosis factor-α (TNF-α)] and failure of resolution of inflammation and tissue repair. This may result in increase 
in peripheral insulin resistance, inflammation of mesenteric tissue, gut, adipose tissue, and liver (including NAFLD = non-alcoholic fatty liver disease). It may also 
lead to inflammation of hypothalamic neurons.
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PGE2 (84). The action of exogenous PGE2 on plaque-forming 
cell (PFC) response seems to depend on its time of action and 
dose. For instance, when PGE2 was added on Day 2 of the 
cultures, induction of the PFC response was inhibited, and the 
maximum inhibition (50%) was seen with 300  nM PGE2. On 
the other hand, when PBMs were cultured during the first 24 h 
with 300 nM PGE2 the PFC response was enhanced because of 
its action on T cells. Paradoxically, PGE2 when added on Day 0 
did not affect the response though a prostaglandin-free monocyte 
supernatant rendered PGE2 suppressive. These results suggest 
that the monocyte supernatant had an inhibitory action on the 
stimulatory effect possibly, due to an interaction between PGE2 
and T cells. These results imply that the actions of PGE2 depend 
on its time of action, the dose employed and its interaction with 
T cells and, possibly, other cells in the milieu (85).

It was reported that PGE2-sensitive T cells produce <200 pg/
ml of both IL-2 and IL-4, while PGE2-resistant T  cells secrete 
>1,000 pg/ml of IL-2, IL-4, or both. The involvement of IL-2 and 
IL-4 in these T cell responses was confirmed by the addition of 
exogenous lymphokines that restored PGE2-inhibited prolifera-
tion. By contrast, PGE2-resistant Th1-, Th2-, and Th0-like clones 
can be made PGE2 sensitive when IL-2, IL-4, or both were 
neutralized by the addition of antibodies to IL-2 and IL-4. These 
and other studies suggest that PGE2 predominantly suppressed 
CD45RA-RO  +  CD4  +  T  cells (Treg or suppressor cells) that 

interaCtion aMonG iL-2, iL-1, CoX, 
and LoX MetaBoLites and pUFas

The fact that low-dose and high-dose IL-2 have differential 
action in the pathobiology of type 1 DM and Treg and Teff 
cells could be related to its interaction(s) with IL-1 and PGE2. 
For instance, (high dose) IL-2 increases the production of IL-1 
and PGE2 (derived from AA) (79), which are pro-inflammatory 
molecules. On the other hand, PGE2 has a negative feedback 
control on IL-2 production (80–83). It is interesting to note 
that precursor of PGE2, AA and the precursor of AA, DGLA 
inhibit IL-1, IL-2, IL-6, and TNF-α production by themselves. 
AA and DGLA inhibit production of IL-1, IL-2, IL-6, and TNF-α 
production both in a PGE-dependent and PGE-independent 
manner (81–83). It is noteworthy that different doses of PGE2 
show diametrically opposite actions on suppressor T (Treg) 
cells. A dose of 0.03–3.0 µM PGE2 did not show any suppressive 
action on cultures of spleen cells, whereas 3 nM PGE2 partially 
suppressed their proliferation. Surprisingly, indomethacin did 
not have any effect on this suppressor cell activity. On the other 
hand, alloantigen-activated proliferation of cells was inhibited 
by PGE2 in a dose-dependent manner. Influence of PGE2 on 
cell-mediated immunity seems to be directly proportional to its 
action on cell proliferation. Studies with indomethacin revealed 
that generation of suppressor cells is only partially dependent on 
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for further details). High levels of IL-2 enhance the production of interleukin-1.
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secrete low levels of both IL-2 and IL-4 (86). In addition, PGE2 
has also been shown to possess anti-inflammatory action (87, 88) 
by enhancing the production of IL-10. Furthermore, IL-2 when 
administered to patients with cancer produced a significant 
increase in IL-1 production in vivo that may account for some of 
its side effects (79). In this context, it is relevant to know about 
essential fatty acid metabolism and its relationship to the action 
of cytokines.

MetaBoLisM oF essentiaL Fatty 
aCids (eFas)

The dietary cis-linoleic acid (LA, 18:2 ω-6) and α-linolenic acid 
(ALA, 18:3 ω-3) are essential nutrients that need to be obtained 
in diet and, hence, are called as EFAs. LA is converted to gamma-
linolenic acid (GLA, 18:3, ω-6) by the enzyme Δ6 desaturase. 
GLA is subsequently elongated to form di-homo-GLA (DGLA, 
20:3, ω–6), the precursor of the 1 series of PGs. DGLA is acted 
upon by enzyme Δ5 desaturase to form arachidonic acid (AA, 
20:4, ω-6), the precursor of 2 series of PGs, TXs, and the 4 series 
LTs. In a similar fashion, ALA is acted upon by Δ6 and Δ5 desatu-
rases to form (EPA, 20:5, ω-3), the precursor of the 3 series of 
PGs and TXs and 5 series of LTs. EPA can be elongated to form 
docosahexaenoic acid (DHA, 22:6, ω-3). AA, EPA, and DHA 
can also form precursors to anti-inflammatory compounds: LXs, 
resolvins, protectins, and maresins. PUFAs and their metabolites, 
including PGs, LXs, resolvins, protectins, and maresins bind to G 
protein-coupled receptors on many cell types and mediate almost 
every stage of inflammation (89–92) (see Figure 3).

LXs, resoLVins, proteCtins, and 
Maresins

The two COX enzymes present in almost all cells and tissues are 
the constitutively expressed COX-1 and the inducible enzyme 
COX-2. Platelets are rich in thromboxane synthetase, which leads 
to the synthesis of TXA2 by platelets, a potent platelet-aggregator 
and vasoconstrictor. By contrast, vascular endothelial cells are 
rich in PGI2 synthetase and, hence, are capable of producing 
prostacyclin (PGI2), a vasodilator and platelet anti-aggregator. 
Endothelial cells have very low activity of thromboxane synthetase 
and so they produce very low amounts of TXA2. PGD2, PGE2, and 
PGF2α, which are major metabolites of the COX pathway, which 
possess pro-inflammatory actions.

There are 3 types of LOXs: 5-, 12-, and 15-LOXs (5-LO, 12-LO, 
and 15-LO). 5-LO is present in neutrophils, produces 5-HETE, 
a chemoattractant for neutrophils, that can be converted to LTs. 
LTB4 is a potent chemoattractant and activates neutrophils; 
whereas LTB4 induces aggregation and adhesion of leukocytes to 
vascular endothelium, and induces generation of ROS, and release 
of lysosomal enzymes. The cysteinyl-containing LTs C4, D4, and E4 
(LTC4, LTD4, and LTE4) induce vasoconstriction, bronchospasm, 
and vascular permeability. LTs bring about their actions by bind-
ing to cysteiny leukotreine 1 and CysLT2 receptors.

Lipoxins (LXs) from AA; resolvins from EPA and DHA; 
protectins and maresins from DHA are generated that involves 
a transcellular biosynthetic mechanism involving neutrophils, 
platelets, and endothelial cells due to a complex yet collaborative 
effort among COX-2, 5-LOX, 12-LOX, and 15-LOX enzymes 
(93–98). LXs suppress leukocyte recruitment, neutrophil 
chemotaxis, and their adhesion to endothelial cells and possess 
a negative regulatory action on LT synthesis and action. By these 
actions, LXs can resolve inflammation. In general, an inverse 
relationship exists between LXs and LTs. Thus, the balance 
between LXs (and resolvins, protectins, and maresins) and LTs 
determines the degree of inflammation and its final resolution. 
In addition, LXs, resolvins, protectins, and maresins have potent 
anti-inflammatory and wound healing actions and, thus, function 
as endogenous anti-inflammatory and cytoprotective molecules. 
It is likely that defects in the synthesis and/or action of LXs, 
resolvins, protectins, and maresins may perpetuate inflammation 
in several inflammatory conditions (89–101).

anti-inFLaMMatory CytoKines iL-4 
and iL-10 enHanCe LXa4 syntHesis

IL-4 and IL-10 have been shown to enhance the conversion of AA, 
EPA, and DHA to their respective LXs (from AA), resolvins (from 
EPA and DHA), protectins (from DHA), and maresins (from 
DHA) indicating that this interaction between cytokines and 
bioactive lipids could be one of the principal mechanisms of their 
(IL-4 and IL-10) ability to suppress inflammation (99–104). IL-4 
has been shown to upregulate 15-LO gene expression in human 
leukocytes that results in increased production of LXs. Glomeruli 
of experimental animals that showed spontaneous recovery from 
glomerulonephritis when injected with nephrotoxic serum 
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showed higher levels of 12/15-LO mRNA and increased glo-
merular IL-4 mRNA, suggesting that T  cell-derived IL-4 may 
regulate the expression of 12/15-LO during glomerulonephritis. 
These results suggest that IL-4 and LO interact with each other 
to initiate the recovery process from immune complex-mediated 
injury. Based on these pieces of evidence, it is suggested that 
LXA4, resolvins, protectins, and maresins are mediators of anti-
inflammatory actions of IL-4 and IL-10 (99–104).

tHe BaLanCe BetWeen LXa4 and Lts 
deterMines tHe deGree oF 
inFLaMMation

The 5-LOX action on AA (and on EPA and DHA) leads to the 
formation of LTs from infiltrating leukocytes, which are media-
tors of inflammation especially of experimental glomerulone-
phritis. LTB4 mediates and enhances neutrophil infiltration of 
target tissues (especially in glomerulonephritis), whereas LTC4 
and LTD4 have vasoconstrictor actions that leads to a decrease 
in glomerular microcirculation. Blockade of the 5-LOX pathway 
ameliorated further deterioration of renal hemodynamic and 
structural parameters. By contrast, 15-S-hydroxyeicosatetraenoic 
acid (15-S-HETE), the immediate product of arachidonate 
15-LOX, and LXs, produced by sequential 15- and 5- or 5- and 
12-lipoxygenation of AA, generated during glomerular injury 
can antagonize leukotriene-induced neutrophil actions. LXA4 is 
a potent antagonist of LTD4 and LTC4 actions, especially, on the 
glomerular microcirculation. These contrasting effects of 5- and 
15-LOX products ultimately influence the extent and severity of 
inflammation (105–108).

These results imply that IL-4 and IL-10 cytokines enhance 
the production of LXs, resolvins, protectins, and maresins and, 
thus, bring about their anti-inflammatory actions. This action 
of IL-4 and IL-10 may be in addition to their ability to suppress 
the production of pro-inflammatory IL-2, IL-6, TNF-α, MIF, and 
HMGB1 cytokines and LTs.

pHospHoLipases, pro- and anti-
inFLaMMatory eiCosanoids, 
CytoKines, and tHeir reLeVanCe to 
inFLaMMation

There are three types of phospholipases that regulate AA and 
other PUFAs release: (i) calcium-independent PLA2 (iPLA2),  
(ii) secretory PLA2 (sPLA2), and (iii) cytosolic PLA2 (cPLA2). 
These three phospholipases have several isoenzymes. In the 
initial stages of inflammation, various PGs, LTs, and TXs are 
formed by the action of respective COX and LOX enzymes that 
induce exudate formation and inflammatory cell influx. Both 
PGE2 and LTB4 formations are triggered by the action of TNF-α, 
which can also initiate influx of neutrophils. By contrast, during 
resolution of inflammation LXA4, PGD2 and 15deoxyΔ12-14PGJ2 
formation is increased. During the resolution phase of inflamma-
tion, a decrease in PGE2 synthesis occurs that is associated with 
decrease or complete absence of neutrophil influx and increase 

in phagocytosis of debris. Since PGE2 and LXB4 and LXA4 and 
PGD2 are derived from AA, it is evident that AA and other PUFAs 
are released in two phases: one at the onset of inflammation and the 
other during the resolution phase of inflammation. Thus, COX-2 
enzyme participates both in pro-inflammatory (by increasing 
the formation of PGE2 and LTB4) and anti-inflammatory stages 
of inflammatory process (by increasing the formation of LXA4, 
resolvins, protectin, and maresins) [(98, 100, 101, 109–112) and 
see Figures 3 and 5].

It has been shown that from the initiation of inflammation 
up to 24 h, type VI iPLA2 protein expression is increased. On 
the other hand, from the beginning of 48–72  h type IIa and 
V sPLA2 expression is increased, whereas the expression of 
type IV cPLA2 that is not detectable during the early phase of 
acute inflammation is increased progressively during resolution 
phase of inflammation and peaking at 72  h. It is noteworthy 
that increase in type IV cPLA2 expression occurs in parallel 
with enhanced expression of COX-2 (112), implying that 
these enzymes are coupled to each other to regulate inflam-
mation. These pieces of evidence suggest that different types 
of PLA2 have distinct and different roles in the inflammatory 
process. For instance, a reduction in the production of PGE2, 
LTB4, IL-1β, and platelet-activating factor (PAF) occurs when 
cPLA2 is inhibited. By contrast, inhibition of types IIa and V 
sPLA2 blocked PAF and LXA4 formation with a simultaneous 
reduction in the activities of cPLA2 and COX-2. These pieces 
of evidence suggest that sPLA2-derived PAF and LXA4 can 
enhance COX-2 and type IV cPLA2 expression and IL-1β 
induces the expression of cPLA2, suggesting that IL-1 has dual 
action: not only initiates and participates in the progression of 
inflammation but also plays a significant role in its resolution by 
enhancing the expression of cPLA2 (100, 101, 112–114). LXA4 
suppresses the production of ILs that are induced by TNF-α; 
enhances TNF-α-mRNA decay, inhibits TNF-α secretion, and 
leukocyte trafficking and, thus, inhibits inflammation (96, 98, 
100, 101, 115–120) (see Figures 3 and 5), suggesting that a close 
interaction exists between cytokines and bioactive lipids in the 
pathobiology of inflammation and its resolution process.

pUFas, LXa4, resoLVins, proteCtins, 
and type 1 dM

How can this knowledge about the pro- and anti-inflammatory 
actions of metabolites of various PUFAs be integrated to the 
pathogenesis of type 1 DM?

In a large population-based, case–control study, it was reported 
that supplementation of cod liver oil (a rich source of EPA and 
DHA) to pregnant women and/or children in their first year of life 
significantly lowered the risk of type 1 DM (28, 121). In addition, 
it was reported that incidence of type 1 DM is lower in those 
who have been breast fed for more than 3 months (human breast 
milk is rich in various PUFAs especially AA) (122). Brugman 
et al. reported that exclusive breast feeding delayed and partially 
protected bio-breeding diabetes-prone rats from type 1 DM (123) 
by enhancing the number of natural regulatory T cells [CD4(+) 
CD25(+) FoxP3(+)] in mesenteric lymph nodes and spleen 
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decrease the formation of free radicals and enhance antioxidant capacity of pancreatic β cells and prevents type 1 DM.
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not only after weaning period but also throughout life lending 
support to the beneficial action of cod liver oil supplementation 
in the prevention of type 1 DM. By contrast, stimulation of 
mesenteric lymph node cells from rats fed solid food during the 
nursing period showed enhanced production of IFN-γ, IL-4, and 
IL-10 compared to exclusive breastfed rats. Furthermore, exclu-
sive breastfeeding increased the number of naturally occurring 
regulatory T (Treg) cells throughout life and decreased cytokine 
secretion at weaning (123). These results assume significance in 
the light of the fact that breast milk is not only a rich source of 
PUFAs but also contain significant amounts of LXA4, d-series 
resolvins (RvD1, RvD2, RvD3, AT-RvD3, and RvD4), protectin 
D1, maresin 1, and E-series resolvins (RvE1, RvE2, and RvE3) 
(124–128). PUFAs and anti-inflammatory metabolites of 
various PUFAs have immunological protective action that may 
be responsible for increased number of Treg cells noted in breast 
fed children by Brugman et al. and for the low incidence of type 
1 DM in breast fed infants.

This relationship between PUFAs and their anti-inflamma-
tory metabolites and type 1 DM is supported by the observation 
that in a mfat-1 transgenic mouse model whose islets contained 
increased levels of n-3 PUFAs and significantly lower amounts 
of n-6 PUFAs compared to the wild type, were resistant to apop-
tosis induced by TNF-α, IL-1β, and γ-IFN. The transgenic islets 
produced decreased amounts of PGE2, had reduced NF-kB acti-
vation and extracellular signal-related kinase 1/2 (ERK1/2) and 
enhanced pancreatic duodenal hemeobox-1 expression (129), 
events that render them resistant to the cytotoxic actions of. TNF-
α, IL-1β, and γ-IFN. Fat-1 mice (fat-1 transgenic mice contain 
excess of n-3 PUFAs by converting n-6 AA to n-3 PUFAs) failed 
to show STZ-induced hyperglycemia (130) due to decreased 
production of TNF-α, IL-1β, and low NF-kB, and enhanced IkB 
pancreatic protein expression. In STZ-treated fat-1-animals, 
PGE2, and 12-hydroxyeicosatetraenoic acid (12-HETE) that are 
formed from AA were low and the anti-inflammatory LXA4 and 
18-hydroxyeicosapentaenoic acid (18-HEPE), the precursor of 
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the anti-inflammatory resolvin E1, were increased (130). These 
results are interesting since, despite the presence of increased 
tissue concentrations of n-3 PUFAs and low amounts of AA, 
in STZ-treated animals the pancreatic tissue showed elevated 
amounts of LXA4 and were resistant to diabetes. This is in sup-
port of our previous proposal that deficiency or low levels of 
AA and/or LXA4 occurs in subjects with DM and when their 
tissue levels are normal pancreatic β cells are resistant to the 
cytotoxic action of alloxan and STZ [(16–18) and see below]. In 
this study (130), the investigators reported enhanced production 
of resolvin E1 that they attributed to protection against develop-
ment of STZ-induced DM.

In this study (130), though tissue and plasma content of AA 
is decreased, fat-1 mice showed enhanced formation of LXA4 
treated with STZ. Both wild-type and fat-1 mice showed that 
the ratio between LXA4 and 18-HEPE (LXA4:18-HEPE) is ~5 
(0:5—LXA4: 18-HEPE in wild type) and (8:40  pg/mg protein-
LXA4:18-HEPE in fat-1 mice), respectively. Thus, near absence of 
LXA4 in wild type but its increase in fat-1 mice is interesting that 
may account for resistance of fat-1 mice to STZ-induced type 1 
DM. It is likely that decreased or absence of LXA4 is responsible 
for the wild type to develop STZ-induced type 1 DM but not 
an increase in 18-HEPE. Thus, in fat-1 mice enhanced LXA4 
formation despite decreased AA indicates that LXA4 prevents 
DM, whereas 18-HEPE is unlikely to be antidiabetic. In contrast 
to the results of the studies obtained with mfat-1 and fat-1 mice 
transgenic mouse models, we observed that AA is the most potent 
compared to other PUFAs in preventing alloxan-induced type 1 
DM in Wistar rats (16–18). Since AA forms precursor to LXA4, 
these results are in support of the above argument that LXA4 is 
responsible for the decreased incidence of STZ-induced type 1 
DM and in mfat-1 and fat-1 animal models.

This is further supported by our studies which revealed that 
LXA4 but not resolvins or protectins prevented alloxan and STZ-
induced apoptosis of pancreatic β cells in vitro (unpublished data 
and see Figure 6), lending support to our contention that LXA4 
is more efficient than resolvins and protectins in the prevention 
of type 1 DM. Furthermore, various PGs, thromboxane B2, and 
LTs were found to be less potent compared to AA in prevent-
ing alloxan-induced type 1 DM (131, 132). In an extension of 
this study, it was noted that both AA and its anti-inflammatory 
metabolite LXA4 prevented type 1 DM in Wistar rats, whereas 
both resolvin D2 and protectin were less effective (see Figures 7 
and 8; unpublished data). It is evident from the data shown in 
Figure 7 that AA when given both orally and intraperitoneally 
completely prevented STZ-induced type 1 DM in Wistar rats. 
This protective action of AA against STZ-induced type 1 DM 
is accompanied by an increase in plasma LXA4 levels and 
decrease in plasma TNF-α levels, suggesting that AA possess 
anti-inflammatory actions by enhancing the formation of LXA4. 
In an extension of this study, we also noted that LXA4 by itself 
can prevent STZ-induced type 1 DM when given IP to Wistar rats 
(see Figure 8). It is interesting to note that plasma LXA4 levels 
were found to be increased on day 30 of the study (Figure 8).  
It is known that LXA4 has a very short half-life (only a few sec-
onds to minutes). Despite this, even after 25 days after the last 
injection of LXA4 (LXA4 was given for 5 days and plasma levels 

were measured on day 30, whereas plasma TNF-α levels in the AA 
study was measured on days 10, 20, and 30) revealed that plasma 
LXA4 were increased in animals that were in receipt of the same. 
This suggests that the administered LXA4 is somehow stabilized 
and remained active till the end of the study (day 30), exogenous 
LXA4 stimulated endogenous production of LXA4 in an auto-
crine fashion or prevention of STZ-induced type 1 DM restored 
endogenous production of LXA4 to normal control values. In 
addition to its anti-inflammatory action, we noted that LXA4 
increased the expression of PDX1 in RIN (rat insulinoma) cells 
in vitro (PDX1 is a homeobox protein expressed in β pancreatic 
cells that maintains and expresses the endocrine function of the 
pancreas) (unpublished data). Since, PUFAs and their metabolites 
may have a role in stem cell survival, proliferation, and differen-
tiation (133–136), it is an intriguing possibility that AA and LXA4 
(and possibly, resolvins, protectins, and maresins) may enhance 
proliferation of pancreatic β cells and/or augment proliferation 
and differentiation of pancreatic stem cells to insulin-secreting β 
cells. In this context, our recent study (see Figure 8D) revealed 
that intraperitoneal administration of resolvin D1 (60 ng/animal) 
to Wistar rats that were induced to develop type 1 DM by STZ 
did not show any change in plasma glucose levels by the end 
of first week. But at the end of second, third, and fourth weeks 
showed gradual decrease in plasma glucose levels to a significant 
degree. These results are surprising, indicating that resolvin D1 
(and probably other similar compounds such as protectins and 
maresins), over a period, may gradually enhance the prolifera-
tion of residual β cells or induce proliferation and differentiation 
of pancreatic stem cells into β cells that can secrete insulin and 
ameliorate hyperglycemia. These interesting interpretations of 
our preliminary results (Figure 8D) need to be confirmed and 
established in future studies. These results are also interesting 
given the fact that LXs, resolvins, protectins, and maresins have 
very short half-life (from few seconds to minutes).

In addition, it is noteworthy that AA administered animals 
showed small but significant increases in plasma TNF-α levels  
(see Figure  7) compared to normal control but significantly 
less compared to the concentrations seen in STZ-administered 
animals. Thus, AA administered (oral or i.p.) seems to induce 
production of low concentrations of TNF-α (and possibly low 
IL-2) that, in turn, lead to Treg induction and enhanced the 
development of tolerogenic DCs and ultimately inhibition of type 
1 DM.

Based on the preceding discussion and results obtained till 
date, the following is proposed. Low doses IL-2 and TNF-α 
activate sPLA2 and cPLA2 to induce the release of AA, EPA, 
and DHA that are converted to LXA4, resolvins, protectins, and 
maresins. PUFAs, LXA4, resolvins, protectins, and maresins 
enhance Treg formation and suppress that of Teff cells and 
stimulate synthesis of IL-4 and IL-10. It is expected that PUFAs, 
LXA4, resolvins, protectins, and maresins suppress production 
of ROS and enhance antioxidant defenses of pancreatic β cells 
that ultimately prevents development of type 1 DM. It is possible 
that PUFAs, LXA4, resolvins, protectins, and maresins stimulate 
formation and function of tolerogenic DCs (see Figures  1–5). 
These concepts are summarized in Figure 5. This is a simplified 
version of a complex set of interactions among cytokines, Treg, 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


A

B

C

FiGUre 6 | Effect of pre-treatment with resolvin D2 and protectin and lipoxin A4 (LXA4) on streptozotocin (STZ)-induced cytotoxicity to RIN5F cells in vitro [these 
data are taken from Ref. (137)]. (a,B) RIN5F cells were pretreated with 1, 5, 10, and 50 ng/ml of resolvin D2 and protectin, respectively to study its modulatory 
action on STZ (21 mM)-induced cytotoxic action. (C) RIN5F cells were pretreated with 1, 5, 10, and 50 ng/ml of LXA4 to study its modulatory action on STZ 
(21 mM) induced cytotoxic action. All values are expressed as mean ± SEM. *P ≤ 0.05 compared to untreated control, #P ≤ 0.05 compared to STZ.
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and Teff cells, PLAs, PUFAs and their metabolites, tolerogenic 
DCs, ROS, and antioxidants and pancreatic β cells. Nevertheless, 
this could form the basis for future studies to dissect the role of 
these factors in the pathobiology of type 1 DM.

By contrast, high doses of IL-2 stimulate production of excess 
of IL-1, TNF-α, IFN-γ, and HMGB1 (high mobility group box 1), 

activate iPLA2 that, in turn, can induce the release of AA, EPA, 
and DHA. These PUFAs lead to the formation of excess of 
PGE2, LTB4, and other pro-inflammatory bioactive lipids due 
to activation of COX-2, including excess generation of ROS, 
NO, and reduction in the antioxidant content in pancreatic β 
cells that will ultimately cause β cell apoptosis and development 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FiGUre 7 | Effect of arachidonic acid (AA) on streptozotocin (STZ)-induced type 1 diabetes mellitus in Wistar rats [these data are taken from Ref. (137)]. These 
studies were approved by Institutional Animal Ethics committee. After 7 days of acclimatization, animals received 10 µg/ml of AA intraperitoneally (IP) or oral (OR) for 
1 week and once in every week, whereas STZ 45 mg/kg of body weight was given only on day 1. (a) Plasma blood glucose levels in animals: blood glucose 
estimation was performed once in 10 days until the end of the study. All values are expressed as mean ± SEM. aP ≤ 0.05 compared to 10th day control values. 
bP ≤ 0.05 compared to 20th day control values. cP ≤ 0.05 compared to 30th day control values. dP ≤ 0.05 compared to plasma glucose levels seen on day 10 after 
STZ alone administration. eP ≤ 0.05 compared to plasma glucose levels seen day 20 after STZ administration. fP ≤ 0.05 compared to plasma glucose levels seen 
on day 30 after STZ administration. All the above set of experiments were done in triplicate on two separate occasions (n = 6) and values are expressed as 
mean ± SEM. *P ≤ 0.05 compared to untreated control. #P ≤ 0.05 compared to STZ. (B) Measurement of lipoxin A4 levels in plasma of AA ± STZ treated animals 
at the end of the study (day 30). (C) Plasma insulin levels in AA ± STZ treated Wistar rats. Insulin estimation was done in the plasma collected at the end of the 
study. All values are expressed as mean ± SEM. *P ≤ 0.05 compared to untreated control. #P ≤ 0.05 compared to STZ control (positive control group). (d) Plasma 
tumor necrosis factor-α (TNF-α) level in AA ± STZ treated rats: TNF-α measurement was done in plasma collected once in every 10 days till the end of the study.  
All values are expressed as mean ± SEM. aP ≤ 0.05 compared to the 10th day control; bP ≤ 0.05 compared to the 20th day control; cP ≤ 0.05 compared to the 
30th day control; dP ≤ 0.05 compared to the 10th day STZ control; eP ≤ 0.05 compared to the 20th day STZ control; fP ≤ 0.05 compared to the 30th day STZ 
control. *P ≤ 0.05 compared to untreated control; #P ≤ 0.05 compared to STZ control. All values are expressed as mean ± SEM.
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FiGUre 8 | Effect of lipoxin A4 (LXA4) on streptozotocin (STZ)-induced type 1 diabetes mellitus (type 1 DM) (a–C) and resolvin D1 on STZ-induced type 1 DM 
(d) [these data are taken from Ref. (137) and unpublished data]. These studies were approved by Institutional Animal Ethics committee. T1D = type 1 DM. After 
7 days of acclimatization, animals received 60 ng/ml LXA4 intraperitoneally for 5 days and 45 mg/kg body weight of STZ only on day 1. (a) Plasma LXA4 levels 
measured on day 30 of the study. (B) Plasma glucose levels: plasma glucose estimation was performed once in 10 days until the end of the study. All values are 
expressed as mean ± SEM. aP ≤ 0.05 compared to 10th day control values; bP ≤ 0.05 compared to 20th day control values; cP ≤ 0.05 compared to 30th day 
control values; dP ≤ 0.05 compared to 10th day STZ values; eP ≤ 0.05 compared to 20th day STZ values; fP ≤ 0.05 compared to 30th day STZ values; *P ≤ 0.05 
compared to untreated control; #P ≤ 0.05 compared to STZ control. All values are expressed as mean ± SEM. (C) Plasma insulin levels: plasma insulin levels were 
estimated on day 30. All values are expressed as mean ± SEM. *P ≤ 0.05 compared to untreated control; #P ≤ 0.05 compared to STZ. (d) Plasma glucose levels in 
STZ-induced type 1 DM treated with resolvin D1 (derived from DHA). *P < 0.05 compared to control.
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of type 1 DM (see Figure 5). Continuous activation of COX-2 
and increased production of PGE2, LTB4, and ROS may result 
in decreased formation and activity of Treg and increase in the 
number of Teff cells and their activation; and deficiency of LXs, 
resolvins, protectins, and maresins which could result in apop-
tosis of β cells. Thus, an imbalance between cytoprotective and 
cytotoxic molecules/events results in the development of type 1 
DM. The results of our studies that AA and LXA4 can prevent 
STZ-induced type 1 DM (see Figures 7 and 8) implies that cell 
membrane content of PUFAs and their response to various 
exogenous and endogenous stimuli, such as LPS, alloxan, STZ, 
IL-1, IL-2, TNF-α, diabetogenic viruses/bacteria, and so on, is 
an important event in the pathogenesis of type 1 DM. In this 
context, the role of gut microbiota in the pathobiology of type 1 
DM needs attention.

pUFas and GUt MiCroBiota

It has been reported that gut microbiota has a significant role 
in the pathobiology of type 1 DM. It has been argued that the 
incidence of type 1 DM increased in recent years due to changes 
in the human microbial environment (138). For example, even 

though NOD mouse is used as a model of autoimmune DM or 
type 1 DM not all NOD mice (even though all are derived from a 
single diabetic female strain of mice) develop or express the same 
level of diabetes. This led to the suggestion that a transmissible 
environmental agent (possibly, gut microbiota) influences the 
incidence and severity of type 1 DM (139). Studies revealed that 
animal house microbial environment can influence the incidence 
of spontaneous type 1 DM in NOD mice (138). It is known that 
injection with Freund’s adjuvant or other various microbial prod-
ucts can decrease the incidence of type 1 DM (140, 141). This 
is supported by the observation that pathogen-free NOD mice 
lacking MyD88 protein (an adaptor for multiple innate immune 
receptors that recognize microbial stimuli) are resistant to the 
development of type 1 DM (34). It was reported that this effect 
is dependent on commensal microbes, implying that intestinal 
microbes interact with the innate immune system and modify 
development of type 1 DM (34). Subsequent studies revealed 
that development or protection from type 1 DM in NOD mice 
lacking MyD88 is dependent on the gut microbiota. These results 
suggest that both promotion and inhibition of autoimmunity can 
be performed by microbes by signaling through receptors such as 
TLRs (142). In general, it was noted that Bacteroidetes act in favor 
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of protection from type 1 DM, whereas Firmicutes promote type 
1 DM pathogenesis (143).

HoW GUt MiCroBiota preVent  
type 1 dM?

Gut is the home to billions of both harmful and beneficial bacteria 
implying that the balance between these two forces determines 
gut health. It is clear from recent studies that gut microbiota deter-
mines not only gut health but also of other organs and systems 
as well. For example, it has been suggested that gut microbiota 
may have a role in the regulation of immune response, response 
to cancer therapy, neuronal function by regulating concentra-
tions of various neurotransmitters, etc (34, 144–148). As already 
discussed above, development of type 1 DM can be influenced by 
gut microbiota and microbial products, such as LPS and Freund’s 
adjuvant (a product of mycobacteria). Wen et al. (34) reported 
that specific pathogen-free NOD mice lacking MyD88 protein are 
resistant to the development of spontaneous of type 1 DM. It was 
found that the composition of the distal gut microbiota changes 
due to MyD88 deficiency implying that the intestinal microbes 
interact with the innate immune system that modifies type 1 DM 
predisposition (34). How this exactly happens is not clear. It is 
likely that microbiota regulate gut and systemic immunocytes, 
produce metabolites that can act on the gut, gut-associated 
immunocytes, alter production and action of neurotransmitters, 
such as serotonin, both in the gut and hypothalamus in this cross 
talk between gut bacteria and pancreatic β cells.

For instance, microbes colonizing gut can induce and expand 
specialized Treg cells that prevent aberrant inflammatory responses 
to β cells and thus, maintain homeostasis. Recent studies (149, 
150) revealed that a subpopulation of gut Treg cells express the 
nuclear hormone receptor retinoic acid receptor-related orphan 
receptor γt (RORγt) in response to microbiota-derived signals 
and, thus, control differentiation of TH17 cells and intestinal 
inflammation that may be relevant to induction of type 1 DM 
(151–154). Short-chain fatty acids, which are common bacterial 
metabolites, have been shown to selectively expand intestinal Treg 
cells (155) and increase RORγt-expressing Treg cells. Mice diet 
rich in the short-chain fatty acid butyrate also expand RORγt-
expressing Treg cells (149). Furthermore, oral administration of 
the combination of 17 strains of Clostridia selected based on their 
high ability to enhance Treg cells abundance and inducing secre-
tion of anti-inflammatory cytokine IL-10 and inducible T-cell 
co-stimulator in Treg cells from the human microbiota to adult 
mice-attenuated colitis and allergic diarrhea (156) and, possibly, 
this approach may also prevent type 1 DM. These results sug-
gest that specific strains of useful bacteria may allow for tailored 
therapeutic manipulation of human immune disorders, including 
type 1 DM.

GUt MiCroBiota and serotonin

Gut microbiota depend for their nutrients on the food consumed 
by the individual to generate unique metabolites that, in turn, 
may provide the host unique nutrients that are likely to play a 

vital role in the regulation of immune development and immune 
response. This implies that gut microenvironment may influence 
the composition of the microbiota. Thus, by altering or alterations 
in the intake of dietary components, such as sugar, fat, or fiber, the 
energy sources for bacteria will be able to influence and determine 
which microbial species thrive in the gut. In a similar fashion, 
it is likely that alterations in host factors, including immunity 
influence the microbiota in the gut. In addition to their modula-
tory influence on immuno-inflammatory response as outlined 
above, gut microbiota also plays a critical role in regulating host 
serotonin production. Gut contains much of the body’s serotonin. 
Spore-forming bacteria from the mouse and human microbiota 
augment serotonin biosynthesis from colonic enterochromaffin 
cells (ECs), which supply serotonin to the mucosa, lumen, and 
circulating platelets (146, 147). It was noted that short-chain fatty 
acids acetate and butyrate elaborated by the gut microbiota deter-
mine enteric serotonin production, implying that gut microbiota 
influence the synthesis of serotonin by ECs and, thus, it (serotonin) 
may have an important role in beta cell function and prolifera-
tion. This is supported by the observation that during pregnancy 
there is an expansion of the maternal population of pancreatic β 
cells. Serotonin has been shown to act downstream of lactogen 
signaling to stimulate β cell proliferation. Inhibition of serotonin 
synthesis blocked β cell expansion. Thus, an integrated signal-
ing pathway linking β cell mass to serotonin signaling pathway 
exists in the body (157, 158). These results indicate that serotonin 
pathway could be exploited to enhance β cells mass in those with 
type 1 DM. It is likely that exogenous and endogenous stimuli that 
reduce β cells mass in type 1 DM act by interfering with β cells 
mass enhancing ability of serotonin. In a recent study, we noted 
that serotonin can enhance the viability (obviously by enhancing 
proliferation) of rat insulinoma pancreatic β cells in  vitro (see 
Figure 9). Thus, it is likely that serotonin not only enhances the 
viability and proliferation of pancreatic β cells by itself but is also 
capable of preventing apoptosis induced by STZ. This suggests 
that presence of adequate amounts of serotonin could increase 
the proliferation of β cells. Alternatively, delivery of serotonin to 
pancreas can, perhaps, increase the number of β cells and, thus, 
mitigate type 1 DM. Since gut microbiota metabolites, such as 
acetate and butyrate, enhance serotonin production from ECs, 
one mechanism by which gut microbiota prevent type 1 DM is 
by enhancing serotonin production that, in turn, increases the 
number of β cells.

Tryptophan, an essential amino acid, present in the diet can 
be utilized by gut microbiota to form indole derivatives, such 
as indole-3-acetic acid, indoxyl-3-sulfate, indole-3-propionic 
acid, and indole-3-aldehyde, which are ligands for the aryl 
hydrocarbon receptor (AHR). It is known that activation of AHR 
of gut-resident T cells and innate lymphoid cells enhances pro-
duction of IL-22, which protects against colitis. It is interesting 
that the susceptibility to colitis could be transferred to wild-type 
germ-free mice by transferring the microbiota (144). This two-
way cross talk between microbes and the immune system may 
also be relevant to type 1 DM. The regulatory role of tryptophan 
in inflammatory response (159) is, in part, dependent on its 
conversion into AHR ligands by the microbiota (144, 159, 160).  
Tryptophan regulates the formation of neurotransmitter serotonin 
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and this may link the role of serotonin in type 1 DM as discussed 
above. Thus, gut microbiota and their metabolites, tryptophan, 
serotonin, and β cell proliferation and inflammatory process, 
especially secretion of IL-22, are closely linked to each other in 
a complex fashion (see Figure 10). In addition, gut microbiota 
restrains excessive inflammation by promoting differentiation of 
Breg (B regulatory) cells in the spleen as well as in the mesenteric 
lymph nodes (161).

pUFas and GUt MiCroBiota

The purported role of PUFAs and their metabolites and gut micro-
biota in the pathobiology of type 2 DM and metabolic syndrome 
implies that there could occur a close interaction between them. 
This is supported by the observation that supplementation of (LA, 
18:2 n-6) and CLA to two individuals leads to the formation of 
vastly different products though are metabolized at similar rates. 
This difference in the products formed has been attributed to the 
action of colonic bacteria. It was reported that proportion of pro-
pionate and butyrate formed were higher in those who contained 
mainly Bacteroidetes (54% of clones), implying that products 
formed from ingested lipids and other dietary constituents in 
the intestine of different individuals may depend on the gut 
microbiota profile that, in turn, may have significant impact on 
gut health. In addition, higher concentrations of the n-3 EPA and 
DHA were noted in the adipose tissue of those who were fed their 
precursors and was also associated with reductions in the pro-
inflammatory TNF-α and IFN-γ, suggesting that the metabolome 
is a composite of host and microbiota metabolic activity (162).

These results are particularly interesting since under various 
pathological situations especially in many genetic or infectious 
diseases (including AID, such as lupus and inflammatory bowel 
disease) the balance between host and microbiota may be altered 
that leads to erroneous communication resulting in significant 
changes in the composition of the human and gut metabolome. 
This may explain changes in the level of hydroxy, branched, 
cyclopropyl and unsaturated fatty acids, aldehydes, and phenyl 
derivatives in blood of patients with various diseases (163, 164). 

One such notable change could be in the formation of branched 
fatty acid esters of hydroxy fatty acids, such as palmitic-acid-
9-hydroxy-stearicacid whose formation is regulated by fasting 
and high-fat feeding. PAHSA increases insulin sensitivity and 
its administration lowered plasma glucose levels by stimulating 
glucagon-like peptide-1 (GLP-1) and insulin secretion and reduc-
ing adipose tissue inflammation (164). These studies suggest that 
human gut microbiota metabolome include compounds such as 
PAHSA (and other hydroxy fatty acids) that have the potential to 
suppress insulin resistance and ameliorate type 2 DM.

GUt MiCroBiota, endoCannaBinoid 
systeM, and oBesity

In addition, obesity is characterized by increased endocannabi-
noid system tone and endocannabinoid system controls gut per-
meability and adipogenesis. Gut microbiota selectively modulates 
colonic CB1 mRNA expression (165). Anandamide (AEA) and 
2-arachidonoylglycerol (2-AG), the endogenous CB1 and CB2 
ligands, and fatty acid amide hydrolase and monacylglycerol 
lipase, the main enzymes responsible for their degradation, 
respectively, can be affected by gut microbiota in the colon but 
not in the jejunum. Intestinal AEA and 2-AG tissue content and 
plasma LPS are reduced in genetically obese mice fed prebiotics. 
CB1 receptor antagonist treatment decreased adiposity, blood 
glucose levels, and gut permeability and inhibited the expres-
sion of hepatic inflammatory markers TNF-α, PAI-1, and TLR4 
mRNA. Thus, gut microbiota participates in the development of 
adipose tissue. Prebiotics decrease AEA levels lending support to 
the concept that gut microbiota modulate the endocannabinoid 
system (166).

Dietary EPA and DHA can modulate endocannabinoid 
synthesis. EPA and DHA can displace AA from phospholipid 
membranes and reduce AEA and AEA synthesis and enhance 
the formation of eicosapentaenoyl ethanolamide and doco-
sahexaenoyl ethanolamide (167–171), which, in turn, decrease 
pro-inflammatory adipocyte IL-6 and monocyte chemotactic 
protein-1 production (172).
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It is evident from the preceding discussion that the CB1 recep-
tor and its endogenous ligands, AEA and 2-AG, control energy 
balance by influencing lipid and glucose metabolism (173).

Though it is not yet clear, it is possible for an interaction(s) 
among gut microbiota, gut microbial metabolites, PUFAs, and 
their metabolites (LXA4, resolvins, protectins, and maresins), 
and endocannabinoid system as shown in Figure  11. It is 
likely that endocannabinoid receptors in the hypothalamus 
and other brain areas also play a role in DM. A stronger role 
for endocannabinoid system is seen in type 2 DM compared to 
its role in type 1 DM. It is likely that gut microbiota converts 

dietary LA and ALA to their respective AA and EPA and 
DHA, respectively, that, in turn, may lead to an increase in 
the formation of their anti-inflammatory and antidiabetic 
molecules: LXA4 (from AA), resolvins (from EPA and DHA), 
and protectins and maresins (from DHA, see Figures  7 and 
8 also), especially in the colon. There is evidence to suggest 
that endocannabinoid system does influence serotonin and 
dopamine release and action (167–170, 174–176) implying an 
interaction between these two systems (see Figure  11) that 
may be relevant to their involvement in the pathobiology of 
type 1 DM.
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type 2 dM

Type 2 DM that accounts for more than 90% of those with 
diabetes is characterized by peripheral insulin resistance and 
low-grade systemic inflammation. Patients with type 2 diabetes 
are generally obese, show insulin resistance, especially those of 
South East Asians descent (especially in persons of Indian sub-
continent), have an increased percentage of body fat in the form 
of abdominal obesity, and have intra- and inter-myocellular and β 
cell triglyceride accumulation. Type 2 diabetes often shows strong 
genetic predisposition but is not well defined.

patHoBioLoGy oF type 2 diaBetes

The exact cause for type 2 diabetes is not clear. Since, there is 
no insulin deficiency, at least in the early stage of diabetes, it is 
obvious that pancreatic β cells are not at fault; but this implies 
that islet cells are not able to secrete enough insulin to overcome 
peripheral insulin resistance in these patients. In other words, if 
peripheral insulin resistance is corrected, then probably insulin 
secreted by β cells is adequate to maintain normoglycemia. 
Low-grade systemic inflammation plays a significant role in the 
onset of type 2 DM (171, 177–182) since these patients have an 

increase in the plasma levels of C-reactive protein (CRP), TNF-α, 
IL-6, and resistin, whereas the concentrations of adiponectin are 
reduced (182–191).

LoW-Grade systeMiC inFLaMMation 
and type 2 dM

Elevated plasma CRP, TNF-α and IL-6 levels can induce endothe-
lial dysfunction (183, 186–192) by enhancing free radical genera-
tion and simultaneously reducing endothelial nitric oxide (eNO) 
generation and its half-life (193–198). We have demonstrated that 
plasma eNO levels are low in those with type 2 DM (183, 189, 190).

It is not known whether inflammation precedes or is second-
ary to the development of type 2 diabetes (197, 198). IL-6 and  
TNF-α increase neutrophil superoxide anion generation (193, 194)  
that can inactivate eNO and prostacyclin (PGI2) resulting in 
endothelial dysfunction. By contrast, adequate production of 
eNO inactivates O2

− and, thus, prevents/arrests thrombosis and 
atherosclerosis (194–199). Thus, enhanced oxidative stress could 
be one factor that contributes to the development of type 2 DM.

Adipose tissue is the source of several soluble factors, such 
as adiponectin, resistin, and corticosterone. Adiponectin has 
anti-inflammatory actions and its plasma levels are inversely 
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correlated to insulin resistance, whereas resistin enhances 
insulin resistance (200–203), and has pro-inflammatory actions 
(204, 205). Transgenic mice over expressing adipose tissue 11 
β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) developed 
abdominal obesity and showed several features of type 2 DM, 
such as insulin resistance, hyperlipidemia, and hyperphagia (206), 
which led to the suggestion that type 2 DM could be termed as 
“localized Cushing’s syndrome.”

Based on these pieces of evidence, it is possible to use elevated 
plasma concentrations of CRP, IL-6, resistin, TNF-α, and reduced 
levels of NO and adiponectin as markers to predict the develop-
ment and progression of type 2 DM, hypertension, and coronary 
heart disease (207–210), whereas reductions in their levels (CRP, 
IL-6, and TNF-α) and increase in those of adiponectin and NO 
induced by diet control, exercise, and statin therapy may suggest 
a better prognosis in these patients. Hence, it may be worthwhile 
to measure these pro- and anti-inflammatory markers to pre-
dict the development of type 2 DM and its response to various 
therapies.

nitriC oXide and type 2 dM

Nitric oxide is synthesized from l-arginine by three different 
types of nitric oxide synthases (NOS)—the endothelial (eNOS), 
the neuronal (nNOS), and the iNOS (211, 212). It is noteworthy 
that eNOS and nNOS are constitutively expressed, whereas iNOS 
is induced in macrophages and other cells by TNF-α and IFN-γ.

Nitric oxide, a vasodilator, platelet anti-aggregator, and an 
inhibitor of vascular smooth muscle cell proliferation is also capa-
ble of regulating leukocyte recruitment. eNO prevents leukocyte 
rolling and adhesion to postcapillary venules. Thus, physiological 
concentrations of NO inhibit inflammation, while its high levels 
as seen in inflammatory conditions produces harmful actions 
(177, 213–223). NO may be converted to peroxynitrite radical 
that is pro-inflammatory in nature. Insulin resistance, obesity, 
atherosclerosis, diabetes, and hypertension are associated with 
decreased eNO production (177, 215–219). NO and its deriva-
tives are microbicidal and, thus, NO serves as an endogenous 
host defense mediator against infections (213).

ros and tHe interaCtions BetWeen 
ros and no and tHeir roLe in  
type 2 dM

Reactive oxygen species or oxygen-derived free radicals  
produced by leukocytes, macrophages, and other similar cells in 
response to exposure to various stimuli and following a phagocytic 
challenge (220–223) occurs because of activation of the NADPH 
oxidative system. ROS species: superoxide anion O2

−( ), hydrogen 
peroxide (H2O2), and hydroxyl radical (OH) react with NO to 
form reactive nitrogen intermediates (RNI) that are cytotoxic to 
various organelles of cells (213, 220–223). ROS and RNI even at 
very low concentrations can increase the expression of chemokines  
(e.g., IL-8), cytokines, and endothelial leukocyte adhesion mol-
ecules that, in turn, amplify the inflammatory cascade (220–223). 
ROS and RNI induce endothelial cell damage and increase vascular 

permeability, cause insulin resistance, and produce thrombus 
formation. Activated adherent neutrophils not only produce 
ROS and RNI but are also capable of stimulating xanthine oxidase 
in endothelial cells. This further aggravates superoxide anion 
generation. ROS and RNI inactivate α1-antitrypsin resulting in 
unopposed protease activity that results in increased destruction 
of extracellular matrix. Type 2 DM is characterized by endothelial 
dysfunction and increased generation of ROS is seen in this con-
dition. It is likely that hyperglycemia and insulin deficiency may 
stimulate ROS generation and decrease eNO generation in type 2 
DM (224–226) and this explains as to why strict control of plasma 
glucose levels is beneficial.

Production of physiological concentrations of eNO occurs 
only when endothelial cells are healthy. In view of this, plasma 
concentrations or endothelial production of NO may serve as a 
marker of endothelial cell integrity and health. Plasma concentra-
tions of eNO are low in subjects with type 2 DM, suggesting that 
endothelial dysfunction is present in them. These reduced levels 
of eNO levels revert to normal following weight loss, implying 
that plasma eNO levels could be used as a marker of endothelial 
function and to judge adequacy of treatment.

insULin resistanCe and type 2 dM 
are CoMMon in indians (soUtH east 
asians): WHy and HoW?

Indians (South East Asians) compared to Western population 
have a higher incidence of abdominal obesity, high prevalence 
of type 2 DM, hypertension, low concentrations of high-density 
lipoprotein (HDL) cholesterol, hypertriglyceridemia, and hyper-
cholesterolemia, all of which are associated with insulin resistance 
(227–239). Hyperinsulinemia may be a consequence of higher 
body fat or abdominal obesity in Indians even when body mass 
index (BMI) is normal that may explain the presence of insulin 
resistance and hyperinsulinemia (227–231) in them.

In this context, it is interesting to note that mice over express-
ing enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-
HSD-1) selectively in adipose tissue develop abdominal obesity 
show insulin resistance, hyperlipidemia, and hyperphagia despite 
hyperleptinemia (206, 232–235), features that are seen in Indians 
with obesity and type 2 DM, though this has been disputed (235). 
Previously, I proposed that higher activity of 11β-HSD-1 will be 
higher in the abdominal adipose tissue of Indians compared to 
Caucasians (230) that may explain why abdominal obesity, insu-
lin resistance, and type 2 DM are common in Indians.

In a similar fashion, Pima Indians, who have high incidence 
of insulin resistance and type 2 DM, were documented to show a 
positive correlation between adipose 11β-HSD1 activity and total 
(BMI, percentage body fat) and central (waist circumference) 
adiposity and fasting glucose, insulin, and insulin resistance. 
Intra-adipose cortisol was positively associated with fasting 
insulin but not with 11β-HSD1, suggesting that higher adipose 
11β-HSD1 activity is associated with features of the metabolic 
syndrome (233). It was observed (234, 235) that 11β-HSD1 
mRNA levels were higher in omental compared with subcutane-
ous preadipocytes.
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Indians have higher plasma levels of pro-inflammatory  
markers such as CRP than do the Caucasians (236–238) that 
could be related to the presence of metabolic syndrome seen 
in them (236–240). HDL is known to stimulate eNO synthesis 
(241), whereas NO, in turn, can inhibit LDL oxidation (242, 243). 
Oxidized LDL and decreased levels of eNO indicate a high risk 
for atherosclerosis and thrombosis, which may explain higher 
incidence of coronary heart disease in Indians. This assumption 
is supported by the results of our study wherein we demonstrated 
the occurrence of high levels of plasma lipid peroxides and low 
NO concentrations in Indians with type 2 diabetes (244). TNF-α 
and IL-6 augment whereas insulin-like growth factor-I and insu-
lin inhibit 11β-HSD-1 (245–249) activity, while insulin and IGFs 
suppress TNF-α and IL-6 and enhance eNO synthesis, implying 
a close interaction among cytokines, eNO, and insulin. This also 
explains the anti-inflammatory actions of insulin (244, 250).

Since insulin has anti-inflammatory actions (244, 250–258), 
it is tempting to speculate that one of the functions of hyper-
insulinemia is to suppress low-grade systemic inflammation. 
In addition, leptin is pro-inflammatory in nature (259). Indian 
children (including Pima Indians) have hyperinsulinemia and 
hyperleptinemia compared to their Caucasian counterpart 
(260–262), suggesting that insulin resistance and low-grade 
systemic inflammation are present in them from early life.

It is likely that increased 11β-HSD-1 activity of adipose tis-
sue in Indians is because of increased plasma and tissue levels 
of pro-inflammatory cytokines, such as CRP, IL-6, and TNF-α 
(230–235) that may be responsible for the high incidence of 
abdominal obesity in Indians. Insulin, IGFs, TNF-α, and IL-6 
regulate 11β-HSD-1 activity in adipose tissue. Hence, the final 
expression of 11β-HSD-1 in abdominal adipose tissue depends 
on the balance between pro- and anti-inflammatory molecules 
(TNF-α and IL-6 versus insulin and IGFs) (245–249). Thus, 
presence of abdominal obesity is a physical sign of elevated levels 
of TNF-α, IL-6, lipids peroxides (since these cytokines stimulate 
free radical generation), LDL, oxidized LDL, hyperleptinemia, 
hypertriglyceridemia, and resistin; and low levels of HDL, eNO, 
adiponectin, IL-4, IL-10, and insulin resistance; hyperinsuline-
mia and glucose intolerance. This may explain the high incidence 
of type 2 DM in South East Asians and Pima Indians.

is type 2 dM HaVinG its oriGins  
in tHe perinataL period?

Type 2 DM may have its origins early in life since low birth 
weight newborn showed high prevalence of type 2 DM in later 
life (263–266). Indian babies are small, who were 2.95 kg or less at 
birth compared to Western infants whose birthweight was more 
than 4.31 kg. Type 2 DM and metabolic syndrome are 10 times 
greater in those who were 2.95 kg or less at birth.

ω-3 and ω-6 pUFas in type 2 dM and 
insULin resistanCe

For adequate fetal growth ω-3 and ω-6 PUFAs are essential 
(267–274). Preterm infants have decreased activity of Δ6 and Δ5  

desaturases and so form low amounts of EPA, DHA, and AA. 
AA status correlated with measures of normalized growth 
through 12 months in infants and it improves first year growth 
of preterm infants (272) by stimulating glucose uptake by cells 
(267, 272). On the other hand, EPA and DHA prolong gesta-
tion and/or increase fetal growth rate and, thus, contribute 
to increase in birth weight (273, 274). Some of the actions 
of PUFAs that are relevant to the present discussion are the 
following.

 1. EPA and DHA inhibit TNF-α and IL-6 production that 
accounts for their anti-inflammatory actions.

 2. EPA, DHA, and AA enhance eNO generation.
 3. EPA, DHA, and AA inhibit 3-hydroxy-3-methylglutaryl coen-

zyme A (HMG-CoA) reductase activity and, thus, regulate 
cholesterol metabolism, suggesting that PUFAs function as 
endogenous statins (275–279).

 4. PUFAs are endogenous ligands for PPAR-α and PPAR-γ 
and, thus, they have actions like thiazolidinediones. PPARs 
have anti-inflammatory actions by virtue of their ability to 
suppress TNF-α and IL-6 production and inhibit free radical 
generation; and at the same time, they enhance the produc-
tion of adiponectin. By functioning as ligands of PPARs, 
PUFAs augment adiponectin production and prevent/arrest 
atherosclerosis.

 5. EPA, DHA, and AA ameliorate insulin resistance. EPA 
and DHA ameliorated insulin resistance and hypertension 
in experimental animals. EPA reduced insulin resistance 
and decreased the incidence of type 2 DM in experimental 
animals. Insulin sensitivity correlated with concentrations 
of EPA, DHA, and AA in skeletal muscle phospholipids in 
humans (275, 280–290). Furthermore, a recent study showed 
that unsaturated fat improves insulin resistance and oxidative 
stress status in subjects with abdominal obesity in postpran-
dial state (291).

 6. EPA and DHA suppress leptin gene expression (292). Leptin 
has pro-inflammatory actions. EPA/DHA functions as 
endogenous anti-inflammatory molecule by inhibiting leptin 
production.

 7. Indians (who as a race are at high risk of metabolic syndrome 
including hypertension) showed significantly lower plasma 
concentrations of AA, EPA, and DHA compared to healthy 
Canadians and Americans (293).

 8. Higher levels of PUFAs in the cell membranes enhances the 
number of insulin receptors on the membrane and their 
affinity to insulin by rendering membrane more fluid and 
thus, decreases insulin resistance. By contrast, saturated 
fatty acids have opposite actions and increase insulin resist-
ance (294).

These pieces of evidence led us to suggest that insulin 
resistance and type 2 DM are common in Indians because of 
perinatal deficiency of EPA, DHA, and AA. Maternal protein 
restriction and/or increased consumption of saturated and/or 
trans-fatty acids and energy rich diet during pregnancy may lead 
to a decrease in the activity of Δ6 and Δ5 desaturases, which are 
needed for the conversion of dietary EFAs: LA and ALA to their 
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respective long-chain PUFAs (see Figure  4 for metabolism of 
EFAs). This ultimately results in both maternal and fetal defi-
ciency of EPA, DHA, and AA. Perinatal protein depletion causes 
significant decrease in the activities of Δ6 and Δ5 desaturases 
in fetal liver and placenta (295). Thus, activities of Δ6 and Δ5 
desaturases are decreased by both protein deficiency and high-
energy diet intake.

Eicosapentaneoic acid, DHA, and AA are known to inhibit 
TNF-α and IL-6 synthesis. This implies that high plasma levels 
of TNF-α and IL-6 seen in instances of insulin resistance is 
due to EPA, DHA, and AA deficiency. Thus, maternal and fetal 
deficiency of EPA, DHA, and AA tends to increase the plasma 
and tissue levels of TNF-α and IL-6 in the fetus. This may explain 
why prenatal exposure to TNF-α produces obesity (296), and 
obese children and adults have high levels of IL-6 and TNF-α 
(240, 297). Low plasma and tissue concentrations of PUFAs such 
as EPA, DHA, and AA can decrease secretion of adiponectin 
(298, 299) that can aggravate insulin resistance and enhance 
the chances of development of type 2 DM. Increased circulating 
levels of TNF-α and IL-6 augment the activity of 11β-HSD-1 
resulting in an increase in the production of corticosterone in 
the adipose tissue, which can lead to abdominal obesity char-
acteristically seen in Indians and those with insulin resistance 
and type 2 DM.

VentroMediaL HypotHaLaMiC (VMH) 
and type 2 dM

Hypothalamus plays a significant role in the control and 
maintenance of plasma glucose and insulin secretion, indi-
cating that stimuli or insults induced during the growth of 
brain during the perinatal period may play a major role in the 
pathogenesis of diabetes. Thus, hormonal and/or nutritional 
factors acting during the perinatal period and early childhood 
may have lifetime consequences and program the develop-
ment of insulin resistance, obesity and type 2 DM in later life 
(300–303). In experimental animals, VMH lesion may induce 
hyperphagia and excessive weight gain, fasting hyperglyce-
mia, hyperinsulinemia, hypertriglyceridemia, and impaired 
glucose tolerance, all features of metabolic syndrome. In these 
animals, intraventricular administration of antibodies to 
neuropeptide Y (NPY) abolished hyperphagia. STZ-induced 
diabetic animals have increase in NPY concentrations in 
their paraventricular, VMH and lateral hypothalamic area, 
whereas VMH-lesioned rats show decreased concentrations 
of norepinephrine and dopamine in the hypothalamus. By 
contrast, long-term infusion of norepinephrine and serotonin 
into the VMH impaired pancreatic islet cell function. These 
abnormalities in the hypothalamic neurotransmitters revert 
to normal after insulin therapy, indicating that dysfunction 
of VMH impairs pancreatic β-cell function and induces 
metabolic abnormalities that are consistent with type 2 DM 
(304–308). It is true that other hypothalamic nuclei also play 
a significant role in energy homeostasis, obesity, and type 2 
DM (309–313). In this context, it is noteworthy that several 
hypothalamic peptides and monoamines modulate inflamma-
tion (313).

HypotHaLaMiC peptides and 
neUrotransMitters as 
iMMUnoModULators and 
reGULators oF inFLaMMation

dopamine
Several studies suggest that dopamine has anti-inflammatory 
actions. For instance, apart from being a neurotransmitter dopa-
mine induced polymorphonuclear leukocyte (PMNL) apoptosis 
and modulated its function (314), reduced PMNL migration, 
suppressed PMNL CD11b/CD18 and E-selectin and ICAM-1 
expression, and interaction between PMNLs and the endothe-
lium. In addition, studies suggested that dopamine induced 
splenocyte apoptosis, decreased splenocyte proliferation and 
IL-2 and IFN-γ release in mice (313, 315). Obese subjects have 
decreased dopamine receptors and decreased dopamine levels in 
the brain (316) and are considered to have “reward deficiency 
syndrome.” A decrease in the dopamine receptor number or con-
tent in the brain of obese subjects is in support of the observation 
that low-grade inflammation may occur in the hypothalamus and 
cause its dysfunction that ultimately lead to the development of 
type 2 DM and metabolic syndrome (313).

serotonin
Like dopamine, serotonin and its precursor, 5-hydroxy-l-trypto-
phan, suppressed T-cell-dependent, humoral, hemolytic, primary 
immune response in mice, reduced thymus weight (317) and rats 
immunized with sheep red blood cells showed decreased sero-
tonin content in the ventral part of the anterior hypothalamus 
(317), suggesting that serotonin also has anti-inflammatory and 
immunosuppressive actions (318). Serotonin was found to inhibit 
oxidative burst of human phagocytes and myeloperoxidase 
activity in a dose-dependent fashion (319). Serotonin inhibited 
TNF and IL-12 production but increased that of IL-10, NO, and 
PGE2 and these actions seem to be mediated through PGE2 
(320). Serotoninergic receptors (5-HTR) are expressed by several 
inflammatory cell types, including DCs. Serotonin increased 
IL-6 production, induced maturation of DCs that enabled them 
to secrete high amounts of IL-10, and favored the outcome of 
a Th2 immune response both in  vitro and in  vivo (321). Thus, 
serotonin is a potent regulator of immune response and has 
pro-inflammatory actions and has a modulatory influence on 
mast cells (322). On the other hand, as shown in Figure 9, we 
noted that serotonin has cytoprotective actions at least against 
STZ-induced toxicity to RIN (pancreatic β) cells in vitro and it 
is possible that it may have similar action in an in vivo situation 
too. The modulatory influence of serotonin on immune response 
and inflammation may depend on the context and dose of the 
serotonin produced at the target tissue.

serotonin reGULates insULin 
seCretion and enHanCes β CeLL 
proLiFeration

The gut is rich in ECs, which release serotonin in response to  
food in the lumen that enters the circulation leading to an 
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increase in the level of free serotonin in the blood that activates 
its receptors. High-fat diet fed rats showed increased levels of 
serotonin compared to the control while serotonin reuptake 
transporter (SERT)-dependent uptake of serotonin was reduced 
due to the upregulation of 5-HT synthesis genes and decreased 
reuptake and increased numbers and/or serotonin content of EC 
cells in the ileum (323). By contrast, a significant decrease in the 
total number of EC cells per crypt, a reduction in the levels of 
serotonin with no change in SERT-dependent uptake of serotonin 
and a lack of change in SERT protein levels associated with no 
change in tryptophan hydroxylase 1 mRNA was reported to 
occur in high-fat diet fed rats compared to the control in rat colon 
(324). This suggests that high-fat diet (HFD) leads to decreased 
serotonin availability in colon in response to HFD. This diametri-
cally opposite changes in the levels of serotonin in different parts 
of the gut in response to HFD is rather surprising and suggests 
that serotonin may have a role in obesity and type 2 DM. This 
is supported by the observation that 5-HT receptor is involved 
in glucose regulation. Several 5-HT-receptor agonists, including 
selective serotonin reuptake inhibitors, which increase serotonin 
levels in the synaptic cleft, induce hyperglycemia (325–329). It 
is noteworthy that serotonin is present specifically in the pan-
creatic β cells and is secreted along with insulin in response to 
increase in blood glucose (330–335). Serotonylation, wherein 
serotonin covalently binds to the GTPase, is known to regulate 
insulin secretion. Lack of transglutaminase, which is essential 
for Serotonylation, leads to glucose intolerance (336). Mice that 
lacked peripheral tryptophan hydroxylase (Tph1 2/2), which is 
essential for serotonin synthesis (Tph 1 −/−), developed diabetes 
and showed impaired insulin secretion, abnormalities that were 
restored to normal by administration of 5-hydroxytryptophan, 
the precursor of serotonin, that increased intracellular serotonin, 
bypassing the rate-limiting step (335, 337). Thus, 5-HT (sero-
tonin) regulates insulin secretion (338). In addition, serotonin 
stimulates β cell proliferation (157). These results suggest that 
serotonin is not only needed for insulin secretion but also for β 
cell expansion when the need arises.

Smell of food increases appetite by enhancing dopamine 
release. Serotonin released during the consumption of food 
inhibits dopamine release by activating 5-HT2C receptors on 
dopamine-producing cells, and thereby serotonin decreases 
appetite. There is evidence to the involvement of serotonin, 
noradrenaline, and dopamine pathways in obesity and glucose 
homeostasis (339). Studies indicated that serotonin (5-HT) 
receptor 2A (5-HT2A), and 2C (5-HT2C) have a role in the regu-
lation of appetite and energy homeostasis (340). Transcripts of 
the serotonin receptor are present in the hypothalamus, includ-
ing in the paraventricular nucleus, lesions of which can result 
in obesity (341). Similarly, drugs that block 5-HT2C receptors 
can facilitate weight gain (342), especially those who have low 
number of receptors (340). Serotonin release in the ventromedial 
nucleus is at peak in the morning, when the motivation to eat is 
strongest (343). These results suggest (157, 323–342) that sero-
tonin plays not only a critical role in the pathobiology of obesity 
and type 2 DM but also interacts with other hypothalamic neuro-
transmitters, such as dopamine to regulate food intake, appetite, 
satiety, and β cell function, and these neurotransmitters regulate 

immune response, inflammation, and appetite and food intake 
and, thus, participate in the pathobiology of obesity and type 2 DM 
as discussed briefly below and summarized elsewhere (313, 344).

neuropeptide y
Both sympathetic ganglia and leukocytes expressed high 
amounts of NPY mRNA and peptide. Leukocyte NPY expression 
was found to be much less during acute allograft rejection, an 
indication that it (NPY) could have a role in immune response 
and inflammation (345). Granulocyte accumulation into 
carrageenan-induced air pouch, phagocytosis, and peroxide 
production by leukocytes were inhibited, whereas NO genera-
tion was increased by NPY (346), indicating that NPY has anti-
inflammatory actions. All these actions of NPY are mediated by 
its Y1 receptor. There seems to be an age-dependent modulation 
of inflammatory process by NPY (347).

Studies suggested that NPY increases nNOS (neuronal nitric 
oxide synthase) and, thus, modulates oxidative stress and sub-
sequent inflammation, suggesting the close interaction among 
NPY, NOS, and pro-inflammatory cytokine TNF-α (348). It is 
noteworthy that gastrin-releasing peptide (GRP), NPY, soma-
tostatin, and vasoactive intestinal peptide (VIP) stimulated the 
production of IL-1β in old subjects, and NPY, somatostatin, and 
VIP in young ones, whereas GRP, NPY, and VIP enhanced IL-6 
production in young and old people. The TNF-α production 
was stimulated by NPY and somatostatin in young subjects and 
by NPY, somatostatin and VIP in old subjects, GRP decreased 
production of TNF-α in young persons. GRP in old subjects 
and VIP in young and old subjects stimulated LPS-induced 
IL-6 production by whole blood cells, whereas GRP and VIP 
suppressed LPS-induced TNF-α production in the young (348). 
These results suggest that neuropeptides have immunomodula-
tory actions in addition to their role in the control of appetite 
and food intake (313).

Ghrelin
Human T  lymphocytes and monocytes express ghrelin, an 
orexigenic peptide produced by the gut and acts on the growth 
hormone secretagogue receptor (GHS-R), was found to inhibit 
expression of IL-1β, IL-6, and TNF-α (313). Ghrelin suppressed 
and leptin enhanced human T  lymphocyte GHS-R expression 
and, thus, have opposite actions on inflammation. Ghrelin has 
anti-inflammatory while leptin has pro-inflammatory action, 
suggesting a close relationship between energy metabolism and 
immune system (349, 350).

Tumor necrosis factor-α, a pro-inflammatory molecule, is 
known to play a role in depression, schizophrenia, and other 
psychiatric disorders and can cause anorexia in patients with 
cancer and tuberculosis. By contrast, ghrelin controls eating 
behavior by regulating the expression of orexigenic peptides in 
the hypothalamus and increases food intake and bodyweight.  
In general, weight loss increases ghrelin levels. In addition 
to its anti-inflammatory actions, ghrelin has antidepressant 
and anxiolytic actions (351–353). It is noteworthy that ghrelin 
downregulates pro-inflammatory cytokines in sepsis through 
activation of the vagus nerve (353), indicating that acetylcho-
line (Ach), the principal neurotransmitter of vagus, has potent 
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anti-inflammatory actions (354, 355). This implies that TNF-α 
and ghrelin have opposite effects in the hypothalamic regulation 
of eating behavior, modulation of the immune response and the 
state of mental health and Ach suppresses TNF-α production. 
Similarly, hypothalamic monoamines serotonin, dopamine, and 
ACh and NPY, BDNF and melanocortins, not only modulate 
eating behavior but also participate in the regulation of immune 
response and inflammation (313, 350).

Melanocortin
The proopiomelanocortin (POMC) gene transcribed by the 
anterior pituitary, hypothalamic arcuate nucleus (ARC) neurons, 
and cells of the dermis and the lymphoid system leading to the 
formation of N-terminal peptide, joining peptide, ACTH and 
lipotropin. Hypothalamus produces α-, β-, and γ-MSH but 
not ACTH. Melanocortin peptides act through five G-protein-
coupled seven transmembrane domain receptors (melanocortin 
receptor type 1 [MC1R–MC5R]) and, thus, control food intake 
and energy balance by its (especially α-MSH) anorectic actions. 
By contrast, NPY and AgRP are orexigenic peptides and AgRP 
antagonizes the actions of MC3R and MC4R. NPY/AgRP 
neurons increase food intake and decrease energy expenditure, 
while POMC neurons have opposite actions. Leptin receptor is 
expressed on the arcuate neurons and during fasting both leptin 
levels and POMC mRNA are decreased with a concomitant 
increase in AgRP mRNA in the hypothalamus. POMC and AgRP 
have significant projections arising from ARC to several hypo-
thalamic regions, including the lateral hypothalamus and the 
PVN. Lateral hypothalamus contains the melanin-concentrating 
hormone, whereas PVN contain thyrotropin-releasing hormone 
(TRH) through which melanocortin peptides exert their effects. 
Melanocortins have anti-inflammatory actions by their direct 
effects on the cells of the immune system and by affecting the 
function of resident non-immune cells and suppressing NF-kB 
activation, expression of adhesion molecules, and chemokine 
receptors, and by inhibiting the production of pro-inflammatory 
cytokines and other mediators (313, 356, 357). Thus, there is a 
very close, intricate and positive and negative feedback regula-
tory control among various hypothalamic neurotransmitters 
and neuropeptides that ultimately control appetite, satiety, food 
intake, inflammation, immune response, and energy homeosta-
sis (313, 358).

acetylcholine
Several studies showed that ACh, the principal vagal neurotrans-
mitter, has potent anti-inflammatory actions by its action on 
the α7 subunit-containing nicotinic ACh receptor (α7nAChR) 
(359–361). In addition, ACh has a modulatory influence on the 
production and actions of several hypothalamic monoamines 
and peptides, such as serotonin, dopamine, NPY, BDNF, and 
melanocortins. Thus, ACh is an important regulator of energy 
homeostasis and inflammation.

adrenaline and noradrenaline
Subjects with stress hyperglycemia and type 2 DM are known 
to have enhanced levels of noradrenaline and adrenaline and 
diminished levels of serotonin and its metabolites in the brain, 

and augmented production and release of catecholamines from 
their circulating phagocytes. Furthermore, sympathetic activa-
tion is known to be associated with type 2 DM and metabolic 
syndrome and enhanced risk of cardiovascular disease. Type 
2 DM is associated with an increase in the markers of inflam-
mation and associated with cardiac sympathetic predominance 
(319, 362). Adrenaline and noradrenaline are pro-inflammatory 
in nature that supports the existence of low-grade systemic 
inflammation in metabolic syndrome that could be attributed to 
enhanced sympathetic activity. Since under normal physiological 
conditions, a balance is maintained between sympathetic and 
parasympathetic tones these results imply that type 2 DM and 
metabolic syndrome will be associated with decreased levels 
of plasma or tissue and leukocyte ACh levels, which have anti-
inflammatory action with a concomitant increase in the produc-
tion and release of catecholamines that ultimately results in 
sympathetic over-activity. It is interesting that Ach enhances eNO 
generation (363); PUFAs enhance Ach levels in the brain (364), 
augment insulin action (365, 366), and stimulate eNO generation 
(367, 368); insulin restores and protects Ach in intestinal colonic 
interstitial cells of Cajal in type 2 DM (369) and both insulin 
and Ach have anti-inflammatory actions (224, 225, 359–361), 
which suggests a close interaction(s) among neurotransmitter 
Ach, eNOS, pancreatic β cell insulin, and cell membrane lipid 
component PUFAs (313, 358). Thus, neurotransmitters (such 
as Ach and serotonin), chemical mediators (such as IL-6 and 
TNF-α), insulin and gases (such as NO) link peripheral (plasma 
glucose levels) events to central centers (hypothalamus) by 
a finely tuned yet complex set of molecules and mechanisms  
(see Figures 10 and 11).

GLp-1 ModULates inFLaMMation

Incretins: GLP-1 and gastric inhibitory peptide (GIP), secreted 
by the intestinal L-cells, enhance insulin release after eating 
much before blood glucose levels are elevated. The enzyme 
dipeptidyl peptidase (DPP)-4 inactivates both GLP-1 and GIP. 
GLP-1 enhances insulin secretion in a glucose-dependent man-
ner decreases glucagon secretion, and can increase β-cell mass. 
GLP-1 also suppresses acid secretion and gastric emptying and, 
thus, ultimately decreases food intake and enhances insulin 
sensitivity. Furthermore, GLP-1 is an immunomodulator and 
anti-inflammatory molecule.

Both astrocytes and microglia show GLP-1 binding and GLP-1 
receptor mRNA expression and GLP-1 treatment produces mor-
phological changes in microglia. GLP-1 suppressed LPS-induced 
IL-1β mRNA expression, and augmented cAMP concentration 
and cAMP response element-binding protein phosphorylation in 
astrocytes, implying that GLP-1 modulates inflammation (370).

Glucagon-like peptide-1 increased β-cell proliferation three-
fold in cytokine-treated cultures and restored to normal cytokine-
reduced islet cell ERK1/2 activation and β-cell proliferation (371). 
These results suggest that GLP-1 has anti-inflammatory actions 
and can enhance β cell proliferation and, thus, preserves insulin-
secreting ability of β-cells. DPP-4 inhibitor, sitagliptin, prolongs 
islet graft survival by inhibiting migration of splenic CD4+ 
T cells (372, 373).
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Leptin
As already discussed above, leptin has pro-inflammatory actions. 
Leptin stimulates peripheral blood mononuclear cells and 
increases their IL-6 and TNF-α production (374). Leptin triggers 
apoptosis of hypothalamic neurons and reduces synaptic inputs 
in the ARC and lateral hypothalamus by activating inflammatory 
pathways (375–377). Based on these pieces of evidence, it is 
proposed that high-fat diet-induced increase in leptin aggravates 
inflammation that may result in apoptosis of hypothalamic nuclei 
leading to the onset of type 2 DM.

Cholecystokinin (CCK)
The peptide hormone CCK is produced by the gut, brain, and 
pancreatic β-cells that has actions on digestion, satiety, and 
insulin secretion. Deletion of CCK reduces β-cell mass expansion 
and increases apoptosis, suggesting that CCK has cytoprotective 
actions. Transgenic mouse that expresses CCK in the β-cell 
in the lean state showed increased β-cell area even in old age, 
resisted STZ-induced diabetes and had reduced β-cell apoptosis. 
CCK overexpression protected β cells from cytokine-induced 
apoptosis (378). These results imply that gut peptides such as 
CCK regulate β cell mass and CCK receptor agonists may prevent 
obesity and diabetes. Furthermore, GLP-1 that is secreted by islet 
α cells also protects β-cells from apoptosis via cAMP-mediated 
mechanisms. GLP-1 stimulates β-cell CCK production and 
secretion via cAMP-modulated transcription factor and cAMP 
response element-binding protein (CREB) that are needed for 
CCK expression. It is interesting that CCK regulation by cAMP 
does not require glucose or insulin. β-cell cytoprotective action 
of GLP-1 against cytokine-induced apoptosis seems to be par-
tially dependent on CCK receptor signaling (379). Thus, GLP-1 
secreted by islet α cells stimulates CCK synthesis and secretion in 
a paracrine manner via cAMP and CREB, whereas both GLP-1 
and CCK protect β-cells from apoptosis.

Dietary fat stimulates CCK receptors that suppress inflam-
mation by stimulating the efferent vagus nerve and nicotinic 
receptors to inhibit IL-6 and TNF-α production and decreases 
bacterial translocation due to increased permeability of the gut 
mucosa. This anti-inflammatory action of CCK needs an intact 
vagus nerve, suggesting the existence of a neuroimmunologic 
pathway regulated by nutrition (380, 381). Thus, CCK is needed 
to prevent inflammation induced by high-fat diet.

roux-en-y-gastric bypass (ryGB) and 
Brain and Gut
In this context, it is noteworthy that fasting glucose, insulin, 
ghrelin, and PYY were significantly decreased and free fatty 
acids (FFAs) was elevated postoperatively in obese non-diabetic 
patients after RYGB surgery. Insulin sensitivity increased fol-
lowing surgery. In these subjects, postprandially an increase in 
C-peptide, GLP-1, GLP-2, PYY, CCK, and glucagon (in response 
to the mixed meal) occurred, whereas total and active ghrelin, 
leptin, and gastrin decreased with no change for GIP, amylin, 
pancreatic polypeptide, and somatostatin. Thus, after RYGB, an 
increase in insulin secretion and insulin sensitivity occurred 
and intestinal hormones changed in the direction of reducing 
hunger (382). By contrast, when similar study was performed in 

those with type 2 DM and age- and BMI-matched controls who 
underwent RYGB, mucosal biopsies taken during surgery and 
enteroscopy done after 10 months after surgery showed that the 
density of cells that secrete GLP-1, CCK, and GIP increased after 
RYGB, which explains amelioration of diabetes and increase 
in insulin sensitivity after weight loss surgery (since GLP-1, 
CCK, and GIP have anti-inflammatory and insulin-sensitizing 
actions).

Previously, we showed in an animal model of obesity that 
underwent RYGB surgery α-MSH in arcuate, parvocellular 
parts of paraventricular nucleus (pPVN) and magnocel-
lular parts of PVN (mPVN) increased compared with obese 
controls. 5-HT-1B-receptor in pPVN and 5-HT-1B-receptor 
in mPVN increased in RYGB compared with obese controls. 
These results suggest that RYGB induced weight loss could be 
due to hypothalamic downregulation of NPY and upregulation 
of α-MSH and serotonin (383). In obese patients with type 
2 DM, RYGB not only normalizes glycemic control but also 
leads to food reward-related brain activation patterns that are 
different from those of obese patients with less-well-controlled 
type 2 DM and without bariatric surgery (384). These results 
indicate that some very specific changes occur in hypothalamus 
and other areas of brain about food reward processing espe-
cially in hypothalamic neurotransmitters and peptides and gut 
hormones implying a close cross talk between gut and brain 
(385, 386). It has not been shown but likely that RYGB may 
restore the synthesis and action of BDNF, and EFA metabolism, 
and enhance the formation of AA, EPA, and DHA and their 
anti-inflammatory metabolites: LXs, resolvins, protectins, and 
maresins to normal.

These pieces of evidence suggest that hypothalamic monoam-
inergic and peptide molecules and gut peptides regulate appetite, 
satiety and food intake, and immune response and inflammation. 
Thus, obesity, insulin resistance, type 2 DM, and metabolic syn-
drome are closely related to inflammation (313, 358).

HypotHaLaMiC inFLaMMation 
oCCUrs in oBesity and type 2 dM

High-fat diet has been shown to induce hypothalamic inflam-
mation due to an HFD-induced increase in TNF-α that produces 
dysfunction of VMH neurons, leptin resistance, and defective 
regulation of energy homeostasis. Intracerebroventricular 
injections with antibodies against TLR-4 or TNF-α led to 
reversal of these abnormalities and improved insulin signaling 
in the liver and restored liver glucose production to normal. 
Vagotomy abrogated these beneficial effects. These results 
emphasize that hypothalamic inflammation that is seen in 
obesity and type 2 DM (387–389) is dependent on parasym-
pathetic signals of the vagus nerve (359–361, 389). In fact, in 
a recent study, we observed that even in STZ-induced type 2 
DM Wistar rats hypothalamic neuronal damage can be seen 
(see Figure 12).

On the other hand, PUFAs are neuroprotective by decreas-
ing TNF-α production (390, 391), though some studies did 
not support this contention (392, 393). This discrepancy in 
the results is due to changes in the local production of various 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FiGUre 12 | Continued

26

Das Bioactive Lipids in DM

Frontiers in Endocrinology | www.frontiersin.org August 2017 | Volume 8 | Article 182

metabolites of PUFAs, such as prostaglandin E2 (PGE2), PGI2 
and LXs, resolvins, protectins, and maresins (394). For instance, 
it is known that PGE2, formed from AA, suppresses IL-6 and 
TNF-α production yet it is pro-inflammatory in nature, whereas 
indomethacin, an anti-inflammatory compound, caused an 
increase in the TNF-α production by macrophages from experi-
mental mice on high n-3 diet (394). On the other hand, LXs, 
resolvins, and protectins formed from AA, EPA, and DHA not 
only suppress IL-6 and TNF-α production but also have anti-
inflammatory and wound healing actions (93, 98, 394–396). 

These paradoxical results suggest that the final outcome of AA, 
EPA, and DHA supplementation depends on the balance between 
pro- and anti-inflammatory molecules formed from them. Thus, 
the activities of COX and 5-, 12-, and 15-lipoxygnease enzymes 
and their expression in the target tissues determine what action 
is derived from the supplementation of various PUFAs. This 
implies that concentrations of TNF-α increase/decrease depends 
on the local levels of PUFAs and their metabolites. But, in gen-
eral, decreased concentrations of PUFAs may enhance TNF-α 
production and this may produce neuronal damage leading to 
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the onset of hypothalamic dysfunction and obesity and type 2 
DM (313, 358).

The brain is rich in PUFAs (DHA > AA > EPA), which consti-
tute as much as 30–50% of the total fatty acids in the brain. Hence, 
in the presence of inadequate concentrations of PUFAs especially, 
during the critical period of brain growth from the third trimester 
of pregnancy to two-year post-term, TNF-α concentration are 
likely to be high. This increase in TNF-α may damage VMH 
neurons and lead to the development of type 2 DM in adult life, 
indicating a significant role for TNF-α in the pathogenesis of type 
2 DM. Thus, TNF-α has two important actions: (1) induction of 
peripheral insulin resistance and (2) induces apoptosis or inter-
feres with the action of VMH and other hypothalamic neurons 
(313, 358).

It is interesting to note that insulin has anti-inflammatory 
actions and suppresses TNF-α production (253–258, 397); 
exercise enhances endogenous production of BDNF and LXA4 
that possess antidiabetic actions; insulin receptors are present in 
the hypothalamus; insulin and BDNF and several hypothalamic 
peptides interact with each other; and BDNF and LXA4 enhance 
each other’s production. These positive and negative feedback 
regulations and interaction(s) among cytokines, insulin, hypo-
thalamic peptides, BDNF, and PUFAs and their metabolites 
highlights the complexity of pathobiology of obesity and type 2 
DM and the role of various tissues (hypothalamus, adipose tissue, 
muscle, liver, and immune system) in their pathobiology. This 
may also explain as to why exercise is such a potent regulator 
of obesity and type 2 DM since, regular and adequate exercise 
enhances production of BDNF and lipoxinA4 (101, 104, 263, 
358, 389), two potent anti-obesity and antidiabetic endogenous 
molecules and regulators of inflammation. These actions seem to 
be independent of the energy expenditure property of exercise.

insULin and insULin reCeptors in 
tHe Brain and type 2 dM

Insulin regulates food intake, neuronal growth, and differentia-
tion and synaptic plasticity in the central nervous system by its 
ability to modulate release and action of various neurotransmit-
ters. All features of type 2 DM, such as obesity, insulin resistance, 
and hyperinsulinemia, have been shown to occur in mice with 
neuron-specific disruption of the insulin-receptor gene (NIRKO) 
without any disturbance in brain development (398). These pieces 
of evidence suggest that in instances where there is a decrease 
in insulin receptor number and/or defects in insulin receptor 
function in the brain may lead to the development of type 2 DM. 
Inhibition of food intake can be induced by intraventricular injec-
tion of insulin by its action on the hypothalamic NPY network.

It is known that insulin augments the activity of Δ6 and Δ5 
desaturases (see Figure 4) and, thus, enhances the formation of 
AA, EPA and DHA, the precursors of LXs, resolvins, protectins, 
and maresins. PUFAs enhance insulin action by increasing the 
number of insulin receptors by increasing cell membrane fluidity. 
In addition, both insulin and PUFAs enhance eNO formation, 
which could carry messages (probably via RBCs that carry NO) 
from VMH neurons to the pancreatic β-cells and, thus, regulate 
their insulin secretion. This indicates that presence of appropriate 
amounts of insulin and insulin receptors in the brain is essential 
to regulate appetite, obesity (BMI), maintain normoglycemia, 
and suppress inappropriate inflammation (313, 358, 398).

Thus, factors that regulate insulin action in the brain have a 
significant role in the control of type 2 DM that is supported by 
the observation that hypothalamus is rich in insulin receptors. 
Hence, development of drugs that bind to brain insulin receptors 
may decrease appetite, and reduce obesity and plasma glucose 
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type 2 DM in Wistar rats. Protocol of the study: after 7 days of 
acclimatization, type 2 DM was induced by intraperitoneal administration of 
STZ 175 mg/kg of body weight, which is considered as day 1 of the study. 
LXA4 60 ng/animal was given intraperitoneally on day 1 (the day STZ was 
administered) and daily for 5 days [these data are taken from Ref. (420)]. 
These studies were approved by Institutional Animal Ethics committee.  
(a) Plasma glucose levels: plasma glucose was estimated once in 10 days till 
day 30, the day study was concluded. All values are expressed as 
mean ± SEM. aP ≤ 0.05 compared to control values of day 10. bP ≤ 0.05 
compared to control values of day 20. cP ≤ 0.05 compared to control values 
of day 30. dP ≤ 0.05 compared to STZ values of day 10.eP ≤ 0.05 compared 
to STZ values of day 20. fP ≤ 0.05 compared to STZ values of day 30. 
*P ≤ 0.05 compared to untreated control. #P ≤ 0.05 compared to STZ 
control. (B) Plasma insulin levels measured on day 30 of the study: all values 
are expressed as mean ± SEM. *P ≤ 0.05 compared to untreated control; 
#P ≤ 0.05 compared to STZ.
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levels. It was reported that infusion of oleic acid (18:1 n-9) into 
the third ventricle decreases plasma insulin and glucose levels 
(399) by augmenting hepatic insulin action by activating KATP 
channels in the hypothalamus and suppressing hypothalamic 
NPY expression, the pieces of evidence that imply that PUFAs 
control food intake by their action on hypothalamus.

BdnF in obesity and type 2 dM
There is considerable evidence to suggest that BDNF that is pre-
sent in many tissues acts on hypothalamus, gut, and pancreatic β 
cells to regulate food intake and energy homeostasis (400–403). 
Systemic and intracerebroventricular administration of BDNF 
lowered blood glucose, decreased body weight, reduced hepato-
megaly, and liver glycogen content in experimental animals with 
obesity and diabetes (403). Even BDNF administration once or 
twice per week is sufficient to lower blood glucose concentra-
tions and hemoglobin A1c (HbA1c) (404). BDNF regulates energy 
expenditure by activating sympathetic nervous system and its 
intracerebroventricular administration lowered blood glucose 
levels, enhanced insulin content in the pancreas, increased 
uncoupling protein-1 mRNA expression and augmented ther-
mogenesis in db/db mice, events that can nullify or reverse DM 
and metabolic syndrome (404). These results coupled with the 
observation that serum BDNF levels are lower in type 2 DM 
(405) and that hyperglycemia, but not insulin, inhibited BDNF 
output from brain lends support to the argument that BDNF has 
a significant role in type 2 DM. Reports that plasma BDNF levels 
could be higher in some with obesity and DM can be attributed 
to the presence of resistance to the actions of BDNF or due to 
different methods employed in these studies. BDNF suppresses 
appetite and is expressed in VMH. Stress hormone corticosterone 
can suppress the expression of BDNF that may lead to atrophy 
of the hippocampus, which could be attributed to the absence 
of neurotrophic actions of BDNF (406, 407). This may explain 
the involvement of BDNF not only in obesity and type 2 DM but 
also its role in depression and Alzheimer’s disease (404, 405).  
In a recent study, we noted that BDNF enhances the synthesis and 
secretion of LXA4, a potent anti-inflammatory molecule. Thus, it 
is likely that when BDNF levels are low, it could lead to decreased 
production of LXA that, in turn, initiates and augments local 
inflammatory circuit. We also noted that LXA4 augments BDNF 
synthesis suggesting that cellular content of AA, the precursor of 
LXA4, has a regulatory role in the control of inflammation partly, 
by regulating BDNF and LXA4 concentrations. Hence, cellular 
content of AA and other PUFAs and the activity of desaturases 
(Δ6 and Δ5) and COX and 5-, 12-, and 15-lipoxygeanses that 
regulate the formation of LXs, resolvins, protectins, and maresins; 
and other eicosanoids that influence inflammation are likely to 
play a critical role in the pathobiology of obesity and type 2 DM 
(101, 104, 263, 358, 389, 394).

insulin, Melanocortin, and BdnF
In addition to its action on glucose metabolism and fatty acid 
synthesis following its binding to its receptor and translocation 
of Glut-4 transporter, insulin release itself is stimulated by food 
intake, ACh, and CCK, while norepinephrine (noradrenaline) 
inhibits its action that is responsible for stress hyperglycemia.

Insulin acts as an adiposity signal by acting on the ARC of 
hypothalamus (408). Insulin enhances POMC synthesis that, 
in turn, acts on melanocortin receptors MC3R and MC4R 
of hypothalamic nuclei (409). These melanocortin receptors 
regulate energy balance. BDNF is expressed by VMH neurons 
and both nutrition and MC4R regulate its (BDNF) expression. 
For instance, absence of MC4R reduces the expression of BDNF 
receptor TrkB to a quarter of its normal amount. These animals 
also show hyperphagia and weight gain on higher-fat diets. 
BDNF infusion into the brain decreased hyperphagia and weight 
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gain when fed high-fat diet. These pieces of evidence suggest that 
MC4R signaling regulates BDNF expression and BDNF may 
function as one of the mediators of actions of MC4R, though 
this has been disputed (406, 410). It is noteworthy that LXA4 
regulates BDNF synthesis and secretion. It is likely (but needs to 
be confirmed) that resolvins, protectins, and maresins may also 
have a regulatory role on BDNF synthesis. Since, synthesis of 
LXs, resolvins, protectins, and maresins depends on the release 
of PUFAs from the cell membrane phospholipids, cell membrane 
integrity, and their PUFA content is yet another critical factor in 
the regulation of synthesis and action of BDNF. Furthermore, 
cell membrane fluidity is an important factor that regulates 
the expression and affinity of receptors on cell membranes  
(294, 358). This, in turn, depends on the cell membrane content 
of various PUFAs: higher the PUFA content higher the fluidity 

of the membrane and higher the expression and affinity of the 
receptors to their respective peptides/hormones. These results 
imply that PUFAs and their metabolites, BDNF concentrations 
and expression and affinity of various hypothalamic neurotrans-
mitters to their receptors are interconnected that ultimately 
regulates appetite, satiety, and hunger by influencing the actions 
of various peptides, including insulin, melanocortin, BDNF, and 
the onset or amelioration of type 2 DM (see Figure 12). PUFAs 
and their metabolites by their regulatory role in inflammation 
and immune response is yet another layer of complexity in the 
pathobiology of type 2 DM.

Ghrelin, Leptin, and BdnF
Ghrelin, a gut hormone, is produced by the fundal epithelial cells 
of the stomach, placenta, kidney, pituitary, and hypothalamus. 

Alloxan, STZ, HFD

Dietary
LA & ALA

∆6 and ∆5 Desaturases

AA, EPA, DHA

Lipoxins, Resolvins, 
Protectins, Maresins

Inflammation↓

Insulin resistance↓

ROS, lipid peroxides↓

β cell and Neuronal 
apoptosis ↓Cytoprotection↑

NAFLD↓

Gut Microbiota

Hyperlipidemia↓

NO, PPARs, GPRs↑

Type 1 and type 2 DM

Gene 
expression

Exercise

BDNF, Iresin

Brain

Liver

Exercise

(−)

(+)

(+)

(−)

FiGUre 14 | Scheme showing actions of polyunsaturated fatty acid and their anti-inflammatory products: lipoxins (LXs), resolvins, protectins, and maresins on 
various factors that have a role in the pathobiology of type 1 diabetes mellitus (type 1 DM) and type 2 diabetes mellitus (type 2 DM). (−) indicates inhibition of action 
or negative control. (+) indicates increase in action or synthesis or positive control. Exercise enhances the formation and action of brain-derived neurotrophic factor 
(BDNF), LXs, resolvins, protectins, and maresins and suppress inflammation and reduces insulin resistance. BDNF, LXs, resolvins, protectins and maresins suppress 
inflammation, reduce insulin resistance, and protect pancreatic β cells from the cytotoxic action various endogenous and exogenous cytotoxic molecules/agents. 
Alloxan, streptozotocin, and high-fat diet suppress the activities of desaturases and reduce the formation of LXs, resolvins, protectins, and maresins and their 
precursors and the formation and action of BDNF (for details see text).
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Ghrelin increases food intake and it enhances growth hormone 
secretion. Ghrelin acts on ARC of hypothalamus (411). Glucose 
utilization rate of white and brown adipose tissue is increased by 
ghrelin administration that can lead to an increase in body weight 
(412). Plasma glucose, insulin, ACh leptin, BDNF, and various 
neurotransmitters and peptides are some of the factors that have 
a regulatory role in its secretion and action (413–415).

Leptin, which is produced by several tissues including white 
adipose tissue, stomach, mammary gland, placenta, and skeletal 
muscle, has actions such as insulin and regulates appetite and 
obesity (416). Leptin acts on the hypothalamus to suppress 
NPY, increase POMC and corticotrophin-releasing hormone 
and TRH, and reduce MCH and orexins. In addition, leptin and 
BDNF interact with each other suggesting that BDNF may, at 
least, partially regulate leptin action (416–418).

BdnF in obesity and type 2 dM
Thus, BDNF regulates energy homeostasis and plays a significant 
role in the pathobiology of type 2 DM by interacting with leptin, 
ghrelin, insulin, NPY, melanocortin, serotonin, dopamine, and 
other neuropeptides, neurotransmitters, PUFAs and LXA4, and 
gut hormones. BDNF can prevent exhaustion of the pancreatic β 
cells, especially in diabetic mice and, thus, able to restore the level 
of insulin-secreting granules in β cells (313, 358, 389, 419). BDNF 
administration can ameliorate diabetes in experimental animals 
(419). This suggests that methods designed to deliver BDNF in 
appropriate amounts may form a new approach to prevent or 
manage type 2 DM.

How these apparently disparate events and molecules can be 
integrated to the role of PUFAs in type 2 DM?

ConCLUsion: pUFas and tHeir 
MetaBoLites in dM

Based on the preceding discussion that PUFAs and their metabo-
lites, hypothalamus and their peptides and neurotransmitters, 
BDNF, insulin receptors in the brain, gut peptides/hormones, 
cytokines, and gut microbiota play a role in obesity and DM, it is 
evident that all these factors/events are interrelated.

In a series of previous studies, we showed that oral feed-
ing of oils rich in ω-3 EPA and DHA and ω-6 GLA and AA 
or pure FFAs (GLA, AA, EPA, and DHA) prevent apoptosis 
of insulin-secreting rat insulinoma (RIN5F) cells in  vitro and 
alloxan-induced type 1 DM and STZ-induced type 1 and 
type 2 DM in experimental animals (15–18, 137, 420). This 
beneficial action of PUFAs against chemical-induced type 1 
and type 2 DM is not abrogated by COX and LOX inhibitors, 
suggesting that fatty acids themselves are active and/or their 
anti-inflammatory LXs, resolvins, protectins, and maresins may 
have antidiabetic actions [see Figures  6–8 and Ref. (15–18, 
137, 420)], while pro-inflammatory PGs, LTs, and TXs are inef-
fective (131, 132). Our recent studies showed that fish oil (a rich 
source of EPA and DHA) altered the growth of Helicobacter, 
Clostridiales, Sphingomonadales, Firmicutes, Pseudomonas 
species, and several other bacteria (421). These results are 
interesting because it is known that Firmicutes play a significant 

role in obesity, the precursor of type 2 DM (422, 423). Ghosh 
et al. (423) showed that n-6 PUFAs enriched the gut microbiota 
with Enterobacteriaceae, Segmented Filamentous Bacteria, and 
Clostridia species that are associated with or induce inflamma-
tion, whereas addition of n-3 PUFAs to a high n-6 PUFA diet 
reversed these inflammation-inducing microbial growths and 
enriched the gut with the beneficial microbes like Lactobacillus 
and Bifidobacteria. But, it is not known whether LXs, resolvins, 
protectins, and maresins have such influence on gut microbiota 
though they have been shown to alter growth of E. coli, partly 
by acting on neutrophils (424, 425). It is important to study 
whether PUFAs, LXs, resolvins, protectins, and maresins can 
influence Treg and Teff functions.

Arachidonic acid, EPA, and DHA are present in significant 
amounts in the brain. Plasma concentrations of PUFAs are low 
in patients with type 1 and type 2 DM (127, 244, 358). Expression 
of insulin and other receptors and the affinity of the respective 
proteins/hormones/peptides are altered depending on the cell 
membrane fluidity. Cell membranes that contain high amounts 
of PUFAs are more fluid and so the number of insulin receptors 
and their affinity to insulin will be higher that would ultimately 
reduce insulin resistance (294, 358, 426–429). These results 
imply that presence of adequate amounts of PUFAs enhance 
the action of insulin and BDNF on their target cells. In view of 
this, it is proposed that a combination of PUFAs and BDNF may 
prevent DM.

It is interesting that AA and LXA4 prevented both alloxan-
induced type 1 DM and type 1 and type 2 DM induced by STZ 
[see Figure 13, results with LXA4 only are shown (137, 420)]. 
LXA4 treatment decreased plasma TNF-α level. Expression 
of genes Pdx1 and IKB were increased while that of NF-kB 
was decreased in pancreatic tissue in LXA4-treated animals, 
suggesting that anti-inflammatory action is one of the mecha-
nisms by which LXA4 can prevent type 2 DM. In addition, 
the expressions of lipocalin-2 and NF-kB were decreased, 
whereas that of IKB was enhanced in LXA4-treated animals 
in adipose tissue (420). It is worth noting that alloxan STZ 
and HFD inhibit the activity of both Δ6 and Δ5 desaturases 
and enhance concentrations of pro-inflammatory PGE2 and, 
thus, induce insulin resistance, the hallmark of obesity, type 2 
DM and metabolic syndrome [unpublished data, see Figure 4, 
and Ref. (53, 101, 358, 366)]. It is likely that HFD increases 
pro-inflammatory PGE2, decrease the activities of desaturases 
resulting in a deficiency of AA, EPA, and DHA, the precursors 
of LXs, resolvins, protectins, and maresins, and a concomitant 
decrease in BDNF production (since LXA4 and PUFAs enhance 
the production of BDNF and so a deficiency of LXA4 and AA, 
EPA, and DHA results in decreased formation of BDNF) that 
will tilt the balance more in favor of pro-inflammatory status 
resulting in insulin resistance, dysfunction of pancreatic β cells, 
and finally development of type 2 DM and when destruction of 
β cells occurs leads to type 1 DM. Since PUFAs are also able to 
alter gut microbiota (421, 422), neurotransmitter release, and 
action [especially that of ACh (313, 350, 430, 431)], enhance 
BDNF synthesis and secretion [unpublished data (431)], and 
LXA4 enhances BDNF secretion and vice  versa, modulate 
immune response and suppress IL-6 and TNF-α synthesis  
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(92, 93, 98, 389–391, 394–396), gut hormone release (including 
that of GLP-1) (432–434), and finally may alter gene expres-
sion as well (277, 435–438). These and other pieces of evidence 
(439–441) as discussed above attest to the interesting possibility 
that PUFAs (especially AA) and their metabolites (especially 
LXA4) may play a significant role in the pathogenesis of both 
type 1 and type 2 DM (see Figure 14). Hence, it is worthwhile 

to explore novel methods of delivery of these molecules in the 
prevention and management of DM.
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