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Obesity, diabetes, and associated metabolic diseases have become global epidemics. 
Obesity results from excess accumulation of white fat, while brown and its related beige 
fat function to dissipate energy as heat, thus counteracting obesity and its related met-
abolic disorders. Understanding the regulatory mechanisms for both white and brown 
adipogenesis provides new insights for prevention and treatment of these metabolic 
diseases. In addition to traditional gene transcription and translation, microRNA (miRNA) 
represents a new layer of regulatory mechanism in many biological processes and has 
attracted a great deal of research interests in exploring their roles in physiological and 
pathophysiological conditions. This review focuses on the recent advances of regulating 
brown adipogenesis and energy metabolism by miRNAs, aiming to delineate the regula-
tory principles of miRNAs on this unique aspect of energy homeostasis.

Keywords: microRnA, adipose tissue, brown, non-coding RnAs, uncoupling protein 1, adipogenesis, gene 
expression regulation

inTRODUCTiOn

Obesity has become a global epidemic and major contributor to metabolic syndrome and disorders 
such as type 2 diabetes, cardiovascular disease, Alzheimer’s disease, and many cancers. There are 
two types of adipose tissues in human body: white adipose tissue (WAT) and brown adipose tissue 
(BAT). WAT is specialized to store excess energy in the form of triglycerides and plays a pivotal 
role in the regulation of energy homeostasis. In addition, WAT is the biggest endocrine organ in 
the body and secretes several adipocyte-derived hormones, such as adiponectin (1), leptin (1, 2), 
resistin (3), and others, which regulate insulin sensitivity, appetite, glucose, and lipid metabolism. 
BAT, on the other hand, is the key site for non-shivering thermogenesis and has a unique capacity to 
dissipate excess fuel energy as heat. BAT has high mitochondrial density and expresses uncoupling 
protein 1 (UCP1). UCP1 is a proton channel, localized to the inner mitochondrial membrane that 
allows protons in the mitochondrial intermembrane space to reenter the mitochondrial matrix 
without generating ATP. BAT-mediated thermogenesis plays a crucial role in thermostatic regula-
tion, particularly when facing environmental changes such as cold and diet. In addition, BAT 
possesses an enormous capacity for glucose uptake and plays an important function in both lipid 
and glucose metabolism (4). Functional BAT has long thought to exist only in newborns but was 
recently rediscovered in adult humans (5–7). In addition to classical BAT, cold exposure, exercise 
training and other types of stimulation induce the formation of a type of brown-like adipocytes 
(known as beige or brite adipocytes) within WAT (a process called “browning” or “beiging” of 
WAT) (8, 9), which expresses UCP1 and has thermogenic capacity comparable to BAT. Because 
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FiGURe 1 | miRNAs involved in brown and beige fat development and function. Several miRNAs positively or negatively regulate brown fat lineage determination 
and differentiation, as well as beige fat development.
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BAT counteracts energy storage in WAT by promoting energy 
expenditure, enhancing the development and activity of BAT 
and beige fat has become an attractive potential strategy to 
prevent and treat human obesity.

DeveLOPMenTAL ORiGin OF BROwn 
AnD BeiGe FAT

Adipocyte differentiation is a coordinated process regulated by 
a series of transcriptional cascades consisting of both positive 
and negative regulators. In addition to general adipogenic 
regulators, brown adipocytes require specific brown fat lineage 
commitment factors. All these regulators are expressed in a 
temporal manner along with brown adipocyte differentiation 
process. Classical interscapular BAT is developed from precur-
sors in the embryonic mesoderm that give rise to both BAT and 
skeletal muscle cells. These multipotent precursor cells express 
transcription factors such as paired box 7 (10), engrailed-1 (11), 
and myogenic factor 5 (MYF5) (12). Lineage tracing experi-
ments have shown that the majority of beige adipocytes in the 
subcutaneous white fat depot (scWAT) come from a develop-
mentally distinct lineage that lack MYF5 expression (12).

Transition of adipocyte precursors (preadipocytes) to mature 
adipocytes is orchestrated by a cascade of transcription regula-
tors such as peroxisome proliferator-activated receptor gamma 
(PPARγ) and members of the CCAAT/enhancer-binding protein 
family (C/EBPs) (13). In addition to general regulators of adipo-
genesis essential for both brown and white adipocyte develop-
ment, the expression of thermogenic gene program in brown/
beige adipocytes is regulated by additional transcriptional regula-
tors such as peroxisome proliferative activated receptor gamma 

coactivator 1 alpha (14), PR domain containing 16 (PRDM16) 
(15), forkhead box C2 (16), and others.

MicroRnAs (miRnAs) ROLeS in Fine-
TUninG OF Gene eXPReSSiOn

MicroRNAs are a class of short non-coding RNAs consisting 
of 22 nucleotides and represent a new layer of fundamental 
regulatory mechanism for transcription and translation (17). 
miRNAs are key regulators of diverse biological processes, such 
as proliferation and differentiation and are also involved in the 
pathophysiology of many diseases (18). In general, miRNAs 
function as negative regulators of gene expression. They are 
usually transcribed by RNA polymerase II as primary miRNAs  
(pri-miRNAs), and then processed by Drosha RNAse III 
endonuclease and microprocessor complex subunit DGCR8 to 
generate precursor miRNAs (pre-miRNAs) that are about 60–70 
nucleotides long. Following Exportin-5-mediated transport to 
the cytoplasm, pre-miRNAs are cleaved by a Dicer complex 
to generate the miRNA/miRNA* double strand. Eventually, 
mature miRNAs will be loaded into the miRNA-induced silenc-
ing complex where they target and bind to the 3′ UTR of specific 
genes, leading either to mRNA degradation or translational 
repression (19).

Over the past few years, the role of miRNAs in the regula-
tion of different biological processes has become evident. 
Numerous studies have pointed to the significance of miRNAs 
in the regulation of adipose tissue development and function.  
In this review, we discuss the multiple roles of miRNAs in brown 
and beige fat biology (Figure  1). In addition, we discuss the 
newly discovered function of secreted miRNAs as metabolic 
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messengers, enabling communication between different tissues 
and organs in the body.

Normal miRNA processing has been shown to be essential 
for the maintenance of brown and WAT function. Aging results 
in a global downregulation of mature miRNAs in WAT, which 
is attributed to decreased expression of miRNA processing 
enzymes, mainly Dicer. This massive loss of miRNAs could 
be largely prevented by caloric restriction, which is known to 
expand lifespan in mice and many other species by up to 60% 
(20). Mice lacking Dicer expression in adipose tissue displayed 
an abnormal fat accumulation in the interscapular fat depot and 
decreased mass of the subcutaneous and intra-abdominal fat 
depots, resembling HIV-associated lipodystrophy phenotype. 
This was accompanied by whitening of BAT and resulted in 
severe insulin resistance and dyslipidemia (21, 22). Consistently, 
partial reduction of Dicer expression in BAT, by deleting only 
one copy of the gene, impaired BAT thermogenic function 
and exacerbated the effects of high fat diet-induced obesity on 
glucose metabolism (23). These observations clearly showed 
that Dicer function is essential for development of WAT and 
maintaining BAT identity and function. However, recent studies 
have provided strong evidence for miRNA-independent roles 
of Dicer (24, 25). The earliest hints supporting this came from 
studies showing different phenotypes of Dicer- and Drosha-
deficient cells. Therefore, to precisely elucidate the significance 
of miRNA biogenesis in adipose tissue development, additional 
animal models lacking other key miRNA processing enzymes 
would be crucial.

miRnAs AS ACTivATORS OF BROwn 
ADiPOGeneSiS

miR-193b-365 Cluster
miR-193b and miR-365 are BAT-enriched miRNAs conserved 
in both humans and mice (26). In mice, they are located within 
a 5-kb distance on chromosome 16 and are transcribed as a 
bicistronic pri-miRNA (27). Chromatin immunoprecipitation 
experiments showed the binding of PPARα to the PPARα/
RXR binding elements on the promoter region of this cluster. 
Blocking miR-193a/b and miR-365 inhibited brown adipocyte 
differentiation in vitro and resulted in a marked reduction in 
expression of key adipogenic genes including adiponectin, 
Cebpα, Fabp4, and Pparγ, which is accompanied by a greater 
decrease in thermogenic genes such as Ucp1, Pparα, Ppargc1α, 
Dio2, Prdm16, and Cidea. These data suggest that miR-193b 
and miR-365 function is required for general adipogenesis 
pathways in addition to playing a role in development of brown 
adipocytes. miR-193b promotes induction of adipogenic ver-
sus myogenic fate, possibly by direct targeting and suppression 
of an adipogenesis inhibitor, Runx1t1, and two pro-myogenic 
genes, Cdon and Igfbp5. The physiological significance of these 
observations was later challenged by in  vivo studies demon-
strating the normal development and function of BAT in 
miR-193b KO mice. The discrepancy between the in vitro and 
in vivo findings might be partially explained by the compensa-
tory downregulation of miR-133a, which acts as an inhibitor  
of brown adipogenesis (28) in BAT of miR-193b KO mice.

miR-328
To search for the individual miRNAs that regulate aging and 
obesity-associated decline in BAT function, Oliverio et al. inte-
grated the expression of miRNAs in a mouse model of premature 
aging, long-lived Ames dwarf mutants, and diet-induced obese 
(DIO) mice. They identified miR-328 as a possible regulator of 
BAT function as its expression was induced in the BAT of the 
Ames dwarf mice and was decreased in the BAT of aging and 
DIO models (23). Loss of miR-328 resulted in the downregula-
tion of BAT-selective genes such as Ucp1, Prdm16, Ppargc1α, 
Cidea, and Cebpα. Interestingly, the seed sequence of miR-328 
is similar to that of miR-193b, another BAT-enriched miRNA 
described above, suggesting that they might share their target 
genes. Similar to miR-193b, miR-328 promotes brown adipo-
cytes’ differentiation, possibly by suppressing the expression of 
muscle lineage regulators. Mechanistically, miR-193b and miR-
328 target Bace1 (beta-site amyloid precursor protein-cleaving 
enzyme 1), a muscle enriched gene that promotes myogenesis 
and inhibit brown fat commitment. Consistent with its function 
as a negative regulator of BAT differentiation and function, Bace1 
expression was induced in BAT of DIO mice and reduced by 
cold exposure. Moreover, inhibition of Bace1 enzymatic activity 
enhanced the expression of brown adipocyte markers in BAT and 
subcutaneous WAT.

miR-378
miR-378 genomic locus is positioned in the sense strand of the 
first intron of Ppargc1β, which is highly expressed in brown fat 
and is one of the key transcriptional regulators of mitochon-
drial biogenesis. Ectopic overexpression of miR-378 under 
the control of the aP2 promoter leads to expansion of BAT in 
mice, accompanied by a reduced mass of WAT depots. The BAT 
expansion is mainly the result of the enhanced differentiation 
of brown preadipocytes, and not an increase in cell size. In this 
model, BAT expansion prevented genetic and diet-induced 
obesity. Phosphodiesterase Pde1b is shown to be a direct target 
of miR-378 in BAT. miR-378-mediated downregulation of Pde1b 
enhances brown adipocyte differentiation by regulating cAMP 
turnover in BAT (29). miRNA profiling of abdominal subcutane-
ous adipose tissue from gastrointestinal cancer patients with or 
without cachexia identified upregulation of miR-378 in patients 
with cachexia. Overexpression of miR-378 catecholamine stimu-
lated lipolysis in human adipocytes, suggesting that it may play 
a role in elevated lipolysis that results in adipose tissue loss in 
cancer cachexia (30).

miR-30b/c
In addition to their function in regulation of adipogenesis  
(31), members of the miR-30 family have been shown to play a 
role in regulation of the thermogenic gene program in brown  
and beige fat (32). miR-30b is expressed in both human and 
mouse BAT (26). miR-30b and miR-30c expression is induced 
in BAT and subcutaneous WAT in response to cold exposure, 
β3-adrenergic receptor activator CL-316,243, non-selective 
β-adrenergic receptor activator isoproterenol or the cAMP inducer 
forskolin. Overexpression of miR-30b and miR-30c induced 
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Ucp1 expression in BAT and subcutaneous WAT, both in vitro 
and in vivo. The positive effect of miR-30b/c on UCP1 expression 
seems to be mediated by targeting receptor-interacting protein 
140 (Rip140). Rip140 is a transcriptional corepressor for nuclear 
receptors and is involved in the silencing of Ucp1 expression  
in white adipocytes through recruitment of chromatin remod-
eling enzymes, which enhance histone deacetylation and meth-
ylation of the Ucp1 enhancer and promoter (33).

miR-455
miR-455 was identified as a marker of BAT, acting downstream of 
BMP7 and cold-induced pathways to promote brown adipocyte 
lineage commitment (34). In both rodents and humans, miR-
455 is selectively expressed at higher levels in BAT compared 
with WAT, miR-455 overexpression promotes brown adipocyte 
differentiation in committed brown and white preadipocytes 
and in non-committed multipotent progenitor cells in vitro by 
inducing the expression of key regulators of adipogenesis such 
as Pparγ, Cebpα, and Cebpδ, and important brown adipocyte 
markers Ucp1, Ppargc1α, Prdm16, and Cidea. Consistent with 
the in  vitro findings, mice overexpressing miR-455 in adipose 
tissue using an aP2 promoter-driven transgene (FAT455 mice) 
exhibited an enhanced thermogenic capacity in response to 
cold or norepinephrine stimulation, which resulted from 
elevated Ucp1 expression in both BAT and subcutaneous WAT 
depots. As commonly seen in mouse models with higher energy 
expenditure, FAT455 mice showed an increase in food con-
sumption. Under pair-fed condition, FAT455 mice were more 
resistant to weight gain and had improved insulin sensitivity 
and glucose tolerance compared to their wild-type littermates. 
miR-455 directly targets Runx1t1 and Necdin, both of which 
act as inhibitors of white and brown adipogenesis. In addition, 
miR-455 targets HIF1an. HIF1an is an asparaginyl hydroxylase 
enzyme regulating the activities of multiple cellular pathways 
through hydroxylation of Asn residues in substrates. In brown 
preadipocytes, HIF1an directly interacts with the AMPKα1 iso-
form and inhibits AMPK activity, at least in part, via asparaginyl 
hydroxylation. Therefore, miR-455 overexpression suppresses 
HIF1an expression, leading to removing an inhibitory signal of 
AMPK and allowing AMPK to exert its full function. Activated 
AMPK in turn triggers Ppargc1α phosphorylation, which could 
eventually enhance its transcriptional activity and result in 
promotion of brown adipogenesis.

miR-32
miR-32 is a BAT-enriched miRNA, recently identified to be 
located in close proximity of a BAT specific super enhancer 
(35). miR-32 expression in BAT is induced by cold exposure, 
and it regulates the thermogenic gene program. Inhibition of 
miR-32 in mice using an antisense oligo (ASO) impaired the 
activation of thermogenic response upon cold challenge and 
reduced energy expenditure. The compromised thermoregula-
tory capacity was due to both lower UCP1 induction in BAT and 
reduced recruitment of beige cells in scWAT. Mice injected with 
miR-32 ASO failed to upregulate FGF21 expression in BAT in 
response to cold exposure. Thus, miR-32 inhibition resulted in 
decreased serum FGF21 levels, which led to reduced browning 

of scWAT upon cold exposure. Transducer of ErbB-2.1 (Tob1) 
was identified as a direct target of miR-32. Tob1 repression 
by miR-32 results in activation of p38 MAP kinase signaling 
and ATF2 transcription factor to elevate FGF21 expression in 
BAT. Secreted FGF21 from BAT communicates with scWAT to 
promote browning of this depot in response to prolonged cold 
challenge.

miRnAs AS inHiBiTORS OF BROwn 
ADiPOGeneSiS

miR-27
miR-27 negatively regulates white and brown adipogenesis 
in mice (36–38) and humans (39, 40). Expression of miR-27a 
and miR-27b was downregulated in BAT and scWAT of mice 
in response to cold exposure. Inhibition of miR-27 in brown 
preadipocytes enhanced the expression of multiple key tran-
scription factors including Pparα, Pparγ, Prdm16, and Ppargc1α  
and facilitated the differentiation toward Ucp1 expressing adipo-
cytes. Conversely, miR-27 overexpression reduces the expression 
of Prdm16 and Ucp1 during brown and beige adipogenesis.  
In vitro luciferase assay results demonstrated that miR-27 directly 
targets the 3′ UTR of both Prdm16 and Pparα, suggesting that 
the inhibitory effect of miR-27 on brown adipogenesis might  
be through modulation of these factors.

miR-34a
miR-34a was identified as a negative regulator of brown and 
beige formation in obese mice. Expression of miR-34a was posi-
tively associated with BMI in human (41) and is upregulated in 
DIO mice (42). Lentiviral-mediated knockdown of miR-34a in 
DIO mice promotes the browning of multiple white fat depots 
including perirenal WAT and gonadal WAT, as well as scWAT, 
and protects mice from the detrimental metabolic effects of 
high fat diet. Mechanistically, miR-34a targets FGFR1 and 
therefore attenuates FGF21 responsiveness and downstream 
signaling in adipose tissue. SIRT1 is another direct target of 
miR-34a that plays a critical role in transcriptional regulation 
of several brown and beige fat markers through deacetylation 
of Ppargc1a. Given that FGF21 signaling has also been linked to 
modulation of Ppargc1a activity, miR-34a is likely to negatively 
regulate the expression of browning genes in obesity through 
suppression of Ppargc1a transcriptional activity. Interestingly, 
the beneficial effects of miR-34a inhibition go beyond its 
browning effects, as it also improves FGF21 signaling in the 
liver, which contributes to improved overall metabolism and 
decreased adiposity.

miR-133
miRNA microarray analysis of BAT from mice exposed to  
cold for 24 h identified miR-133 as one the most downregulated 
miRNAs after cold exposure. miRNA-133 is highly enriched 
in cardiac and skeletal muscle lineages. It was shown that 
miRNA-133 negatively regulates brown adipogenesis through 
suppression of Prdm16. Inhibition of miRNA-133 in brown 
and beige preadipocytes increases Prdm16, Pparγ, and Pparα 
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expression and results in the elevation of Ucp1 expression after 
differentiation. Downregulation of miR-133 by β-adrenergic 
stimulation was suggested to be mediated by the transcriptional 
factors from the Mef2 family, Mef2c, Mef2a, and Mef2d (28). 
miR-133a and miR-133b are also expressed in multipotent 
satellite cells in adult skeletal muscle and are involved in lineage 
commitment and fate decision between myogenic and brown 
adipose lineages, primarily by targeting Prdm16. Inhibition 
of miR-133 resulted in the formation of metabolically active 
brown adipocytes in regenerating tibialis anterior muscles, 
which in turn promotes energy expenditure and protects mice 
against DIO (43).

miR-155
miR-155 is highly expressed in preadipocytes isolated from the 
stromal-vascular fraction of BAT, and its expression is dramati-
cally reduced in differentiated brown adipocytes (44). miR-155 
targets adipogenic transcription factor Cebpβ, and therefore 
suppresses the development of adipogenic and thermogenic 
programs. Cebpβ also directly binds to the distal site E in the 
miR-155 regulatory region, and negatively regulates miR-155. 
Therefore, miR-155 and Cebpβ form a double-negative feedback 
loop, which ensures efficient induction of Cebpβ upon adipo-
genic induction. Overexpression of miR-155 in brown preadi-
pocytes suppresses adipogenic differentiation and induction of 
the thermogenic program in brown adipocytes. Consistently, 
it was found that miR-155 is a downstream effector of TGFβ1 
signaling, which is known to block adipogenesis in vitro (45) 
and in vivo (46) through modulating the transcriptional activity 
of C/EBPs (47). In vivo overexpression of miR-155 selectively 
impaired brown fat development, while WAT was not affected. 
Conversely, loss of miR-155 enhanced the thermogenic capac-
ity of BAT and resulted in elevated levels of scWAT browning 
in cold (44).

BAT AS An enDOCRine ORGAn 
SeCReTinG miRnAs

In addition to the well-known function of BAT in non-shivering  
thermogenesis and energy expenditure, recent studies have 
established BAT as an endocrine organ that secretes several 
“batokine” (48–54) and “lipokine” (55, 56) molecules, which 
mediate the cross-talk between different tissues in the body. 
More recently, using the adipose tissue-specific Dicer KO 
mouse model (ADicer KO), it was shown that brown and 
WAT contribute a major fraction of circulating exosomal 
miRNAs. Importantly, elevated FGF21 expression observed 
in the liver of ADicer KO mice can be lowered by the injection 
of exosomes from the serum of wild-type donors. Adenoviral 
delivery of hsa-miR-302f to the BAT of mice resulted in sup-
pression of a miR-302f 3′ UTR reporter in liver (57). These 
observations suggest that BAT-derived miRNAs modulate 
gene expression in the liver, and potentially in other organs, 
as well.

miR-99b level was strongly reduced in circulating exosomes 
of ADicer KO mice and was restored by BAT transplantation. 

Treatment with exosomes from ADicer KO mice reconstituted 
with miR-99b dramatically reduced FGF21 expression in liver, 
indicating that adipose tissue-derived exosomal miR-99b 
regulates FGF21 expression in liver.

It has been shown that in  vitro and in  vivo activation of 
brown adipocytes results in increased release of exosomes (58). 
Exosomes released by cold-activated brown fat displayed a 
unique miRNA profile with higher levels of miR-34c* and lower 
levels of miR-92a compared with the brown fat of control mice 
maintained at room temperature. Interestingly, cold acclima-
tion in humans lowered the exosomal miR-92a abundance in 
serum, and the level of miR-92a in human serum was shown 
to be inversely correlated with BAT activity. Based on this, 
exosomal miR-92a might serve as a biomarker for BAT activity 
in humans (Figure 2).

COnCLUDinG ReMARKS

Obesity is a major contributor to metabolic syndrome and 
disorders such as type 2 diabetes and cardiovascular diseases. 
Rediscovery of functional brown fat in adult humans has 
opened new avenues for utilizing its prominent capacity for fuel 
consumption and energy expenditure to combat obesity and its 
comorbidities (5–7). Investigation of therapeutic approaches 
focusing on BAT and its thermogenic capacity has gained consid-
erable interest in the last several years. In addition to improving 
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energy balance, activated BAT improves insulin sensitivity in 
both humans and mice (59, 60).

Due to their key roles in the regulation of gene expression 
networks, miRNAs are now considered a novel class of thera-
peutic targets. The recent trials for the application of miRNA 
mimics or inhibitors as drugs in humans have strengthened 
the idea of using miRNA-based therapeutics in humans for a 
range of diseases (61, 62). Some of the associated challenges 
that need to be overcome before establishing miRNA-based 
drugs include optimizing the tissue-specific delivery meth-
ods, characterizing and minimizing the off-target effects, 
and evaluating the toxicity and immunological responses. 
Therefore, we foresee that in the near future antagonizing or 
restoring specific miRNAs will be used as novel therapeutic 
strategies to target human BAT and WAT, and such therapies 

will benefit metabolism by improve energy expenditure and 
fuel homeostasis.
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