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Obesity and excess accumulation of adipose tissue are known risk factors for several 
types of cancer, including breast cancer. With the incidence of obesity constantly rising 
worldwide, understanding the molecular details of the interaction between adipose  
tissue and breast tumors, the most common tumors in women, becomes an urgent 
task. In terms of lipid metabolism, most of the studies conducted so far focused on 
upregulated de novo lipid synthesis in cancer cells. More recently, the use of extracellular 
lipids as source of energy came into focus. Especially in obesity, associated dysfunc-
tional adipose tissue releases increased amounts of fatty acids, but also dietary lipids 
can be involved in promoting tumor growth and progression. In addition, it was shown 
that breast cancer cells and adipocytes, which are a major component of the stroma 
of breast tumors, are able to directly interact with each other. Breast cancer cells and 
adjacent adipocytes exchange molecules such as growth factors, chemokines, and 
interleukins in a reciprocal manner. Moreover, it was shown that breast cancer cells can 
access and utilize fatty acids produced by neighboring adipocytes. Thus adipocytes, 
and especially hypertrophic adipocytes, can act as providers of lipids, which can be 
used as a source of energy for fatty acid oxidation and as building blocks for tumor 
cell growth.
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inTRODUCTiOn

Breast cancer is the most abundant malignant tumor and the leading cause of death from cancer 
in women worldwide (1, 2). Established risk factors for breast cancer are a woman’s age, own or 
familial history of breast cancer or of precancerous lesions, genetic configuration, pregnancies and 
reproductive treatment, consumption of alcohol, and exposure to ionizing radiation (3). In addition, 
overweight and obesity are now regarded as promoting factors for breast cancer development and 
progression. This perception is based on numerous recent epidemiological and experimental studies 
with following observations: several population studies demonstrated that obesity and associated 
excess accumulation of adipose tissue are associated with an elevated risk for breast cancer, especially 
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FiGURe 1 | Adipocytes and breast cancer cells interact via several secreted factors. Adipocytes secrete bioactive lipids, adipokines, cytokines, hormones,  
and proteases/protease inhibitors priming breast cancer cells for a more aggressive phenotype. This includes increased proliferation, migration, invasion, and 
β-oxidation. Breast cancer cells induce adipocyte lipolysis resulting in the formation of cancer-associated adipocytes (CAAs), which are characterized by delipidation, 
dedifferentiation, autophagy, and altered secretion. In turn, the increased release of free fatty acids (FFA), inflammatory cytokines, and proteases from CAAs 
promotes breast cancer progression. In obesity, the adipose tissue is characterized by hypertrophy and increased infiltration of macrophages and other immune 
cells. Furthermore, adipocyte function is impaired due to hypoxia, oxidative, and ER stress leading to secretory dysfunction. The resulting elevated release of FFA, 
insulin-like growth factor-1 (IGF-1), insulin, inflammatory cytokines, and leptin, and decreased secretion of adiponectin, enhances the tumor-promoting effects of 
adipose tissue.
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in post-menopausal women (4–6) and are independent negative 
prognostic factors for mammary tumors (7–10). On a molecular 
level, several studies showed that adipocytes, which are a major 
component of the stromal environment of mammary tumors, exert 
tumor-promoting effects on breast cancer cells. Several hypotheses 
about how adipose tissue and adipocytes promote tumorigenesis 
have been described, but the molecular mechanisms that underly 
this interaction are yet to be defined in more detail.

Signaling molecules and metabolites secreted by adipose 
tissue and adipocytes, especially in the obese state, are now 
recognized as important factors for cancer progression as they 
directly or indirectly stimulate anti-apoptotic effects, cell growth, 
angiogenesis, and migration (11, 12). Mature adipocytes are 
the major cell type of white adipose tissue and are primarily 
responsible for the metabolic homeostasis of the body. Lipids are 
stored here in the form of triacylglycerol (TAG) and released as 
free fatty acids (FFA) in times of demand. Besides energy storage, 
adipocytes also play an active role in endocrine signaling to other 
tissues of the body, by secreting hormones, adipokines, cytokines, 
and growth factors (13, 14). An elevated intake of calories and a 

largely sedentary lifestyle can lead to obesity, which often results 
in dysfunctional adipose tissue. In particular, adipocytes become 
hypertrophic and store elevated amounts of TAGs along with 
higher secretion of adipokines and pro-inflammatory cytokines, 
such as tumor necrosis factor-α, IL-6, IL-8, and PAI-1 (Figure 1). 
These molecules are chemoattractants for macrophages, mono-
cytes, and other immune cells, which induce a chronic low-grade 
inflammation within the adipose tissue. As a result, lipolysis is 
initiated and adipocytes release elevated amounts of FFAs, which 
adversely affects lipid homeostasis of the entire organism and 
leads to subsequent metabolic diseases (12). The release of higher 
amounts of fatty acids could be a direct mechanism through 
which adiposity may promote cancer progression by delivering 
building blocks for the production of pro-tumorigenic signaling 
lipids (14).

Visceral obesity and increased adipose tissue mass are often 
accompanied by low levels of plasma high-density-lipoprotein 
cholesterol (HDL-C), which has been associated with breast 
cancer risk in some studies (15, 16). However, evidence for the 
relationship between plasma HDL-C and breast cancer risk 
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remains equivocal (17) and it is not clear whether low HDL-C 
causally affects tumorigenesis or merely serves as a biomarker for 
poor lifestyle and dietary habits.

Epidemiologic studies have also investigated the relationship 
between elevated plasma low-density-lipoprotein cholesterol or 
total cholesterol and cancer occurrence and prognosis. In terms 
of breast cancer onset, these studies yielded contradictory find-
ings (17, 18). However, in several recent studies, elevated plasma 
cholesterol levels were associated with a poor prognosis and 
the use of cholesterol-lowering medication (statins) increased 
recurrence-free survival of breast cancer patients (19–21). Large-
scale prospective studies, adequately controlled for confounding 
factors, are necessary to substantiate the potential beneficial 
effects of statins and other cholesterol-lowering drugs in breast 
cancer patients.

Regarding intracellular lipid metabolism, it is well known 
that several tumor cells show a hyperactivation of various lipid 
synthesis pathways, including breast cancer. Breast cancer cells 
show an increased activity of fatty acid synthase (FASN), an 
enzyme used for de novo fatty acid synthesis. In addition, breast 
cancer cells also show an upregulation of monoacylglycerol lipase 
(MAGL). The MAGL pathway controls the intracellular release 
of fatty acids and its hyperactivation is often associated with the 
aggressiveness of a tumor. Together, FASN and MAGL very likely 
promote cancer progression by synthesizing and mobilizing intra-
cellular lipids, which in turn promote tumor growth (14, 22, 23).  
Interestingly, lipidomic analyses demonstrated that the incorpo-
ration of endogenous fatty acids into membrane phospholipids 
is enhanced in mammary carcinomas as compared to normal 
human breast tissue. Furthermore, these changes in membrane 
lipid composition correlated with tumor progression, hormone 
receptor status, and patient survival, with the concentration of 
these lipids being the highest in ER-negative and grade 3 tumors 
(24). Moreover, another study showed that the ratios of specific 
monounsaturated fatty acid phosphatidylcholines compared to 
saturated fatty acid phosphatidylcholines are significantly higher 
in cancerous tissue in comparison to healthy reference sections 
(25). A different aspect of the role of lipid metabolism in cancer 
is seen in patients with late-stage cancers, who often suffer from 
cachexia. This phenomenon is characterized by the loss of both 
muscle and fat mass through catabolic mechanisms. This process 
is triggered by a marked upregulation of adipose triglyceride 
lipase (ATGL) and hormone-sensitive lipase (HSL), which break 
triglycerides into diglycerides and diglycerides into fatty acids, 
respectively. The resulting elevated levels of circulating FFA can 
be used as building blocks for cancer cell growth or tumorigenic 
signaling lipids (26). Thus, cancer cells are able to utilize FFA not 
just from de novo lipogenesis but also from exogenous fat sources. 
Intriguingly, a few recent articles described that breast cancer cells 
can access and directly use lipids from neighboring adipocytes 
(27, 28). One study even demonstrated that the predominant 
source of de novo lipid synthesis by breast cancer cells is extracel-
lular lipids, not just glucose and glutamine (27). Together, these 
studies indicate that breast cancer cells are metabolically very 
flexible and fit the current notion that metabolic reprogramming 
is an emerging hallmark of cancer cells. However, in contrast to 
endocrine and paracrine effects of adipose tissue in obesity, the 

role of extracellular fatty acids in breast cancer metabolism is a 
relatively new area of research and warrants further elucidation.

In this review, we will focus on the role of lipids from excess 
adipose tissue in obesity, from tumor-associated adipocytes or 
dietary lipids, and discuss how these extracellular fatty acids drive 
tumor growth and progression.

LiPiDS DeLiveReD TO BReAST CAnCeR 
CeLLS FUeL TUMOR GROwTH

Direct interaction of Adipocytes and 
Breast Cancer Cells
The tumor microenvironment plays an important role for its 
growth and progression since non-malignant cells of the stroma, 
such as endothelial cells, immune cells, tumor-associated 
macrophages and tumor-associated fibroblasts, deliver tumor-
promoting molecules, including chemokines, interleukins, and 
growth factors (29). In breast cancer, the interaction of breast 
tumor cells with surrounding fibroblasts, immune, endothelial, 
and mesenchymal cells is well studied. By contrast, the crosstalk of 
breast tumor cells with associated adipocytes has been addressed 
only recently. In fact, adipocytes are a major component of the 
microenvironment of mammary tumors. During early tumor cell 
invasion, breast cancer cells invade the mammary fat pad and 
exist in direct conjunction with neighboring adipocytes (30). 
Several recent studies demonstrated that this direct interaction 
with adipocytes has tumor-promoting effects (Figure 1). Breast 
cancer cells secrete, among other factors, cytokines and lypolytic 
enzymes, which affect adipocytes. In a reciprocal manner, associ-
ated adipocytes secrete adipokines, growth factors, proteases, and 
fatty acids, which stimulate tumor growth and survival (31, 32). 
In addition, a study by Dirat et al. showed that breast cancer cells 
induce lipolysis together with a phenotypic change in neighboring 
adipocytes. These fat cells, termed cancer-associated adipocytes 
(CAAs), are characterized by a fibroblast-like morphology, a sig-
nificant decrease in number and size of intracellular lipid droplets 
and loss of terminal adipocyte differentiation markers, such as 
leptin or FABP2 (Figure 1). Functionally, CAAs secrete increased 
amounts of proteases and interleukins, such as PAI-1, IL-6, and 
IL-1β, which promote tumor aggressiveness. In addition, CAAs 
were shown to deliver fatty acids, important building blocks for 
tumor proliferation (30). Using a co-culture model of ovarian 
cancer cells and omental adipocytes, Nieman and co-workers 
showed that cancer cells have the ability to take up and utilize 
fatty acids from surrounding fat cells (28). This co-cultivation 
induced lipolysis within the adipocytes and enabled a direct 
transfer of lipids to the cancer cells together with enhanced lipid 
storage and mitochondrial oxidation. Analogous co-cultivation 
of omental adipocytes with MCF-7 and MDA-MB-231 breast 
tumor cells also resulted in lipid droplet accumulation in the 
cancer cells (28). The impact of adipocyte-derived fatty acids 
on breast cancer cell progression was underscored by work con-
ducted by Balaban et al. showing that MCF-7 and MDA-MB-231 
breast cancer cells induced HSL/ATGL-dependent lypolysis in 
co-cultured adipocytes which resulted in increased cancer cell 
proliferation and migration. This effect was even more enhanced 
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when adipocytes were loaded with a mixture of oleate, palmitate, 
and linoleate beforehand of co-cultivation to mimic “obese” 
adipocytes and thereby demonstrated that an increased avail-
ability of fatty acids for mitochondrial oxidation promotes breast 
cancer cell progression (27). Together, these studies suggest a 
metabolic shift of cancer cells in adaption to the availability of 
metabolic substrates in the microenvironment. This metabolic 
shift activates alternative pathways to support tumor growth and 
survival. To date, most of the studies examining breast cancer cell 
lipid metabolism focused on glucose and glutamine metabolism 
as precursors for de novo lipogenesis. The data described above 
clearly point out that extracellular lipids are an important source 
for breast cancer cell lipid synthesis and fatty acid oxidation. 
The translational relevance of these findings is substantiated by 
a recent study by Camarda et al. (33). The authors demonstrate 
that highly aggressive triple-negative breast cancer cells, which 
overexpress the oncogenic transcription factor MYC, show sig-
nificantly increased rates of fatty acid oxidation. Pharmacological 
inhibition of fatty acid oxidation dramatically decreased energy 
metabolism and, therefore, cell and tumor growth in vitro and 
in vivo in a MYC-dependent manner. Together, these data high-
light that targeting lipid metabolism and lipid uptake should be 
considered for the development of novel therapeutic strategies in 
breast cancer.

Fatty Acids Released by Adipose Tissue  
in Obesity
Obesity is described as excess fat storage and accumulation of 
adipose tissue, which becomes deregulated. Dysfunctional 
adipocytes release increased amounts of fatty acids which accu-
mulate in non-adipose tissues, such as liver, heart, or muscle. 
Intermediates of intracellular fatty acid metabolism, such as 
ceramides or diacylglycerols (DAGs), can ultimately induce 
lipotoxicity (34). Lipotoxicity is characterized by cell cycle and 
mitochondrial deregulation, autophagy, and apoptosis. Several 
recent studies have shown that an over-production of ceramides 
or DAGs induces growth arrest and apoptosis in various cancer 
cells (35, 36). These discoveries open interesting inroads for the 
development of new lipid-based cancer treatment options. On the 
other hand, elevated levels of fatty acids can be utilized by cancer 
cells as source of energy or as building blocks for oncogenic 
lipid signaling molecules, such as lysophosphatidic acid (LPA), 
prostaglandins and sphingosine-1-phosphate (S1P) (Figure  1) 
(14). In the past few years, several studies addressed the cellular 
and molecular mechanisms linking fatty acids and cancer using 
cell culture experiments and animal models. For example, oleate, 
which is the most abundant fatty acid esterified to triglycerides in 
adipose tissue, has been explored for its potential role in cancer 
progression (37–39). A recent in vitro study points in the direc-
tion that breast cancer cells use exogenous lipids, such as oleate, 
to regulate lipid metabolism, in addition to de novo fatty acid 
synthesis (40). Moreover, the authors show that a proliferative 
effect of oleate on breast cancer cells is dependent on the fatty 
acid translocase/CD36, as silencing of CD36 mRNA expression 
significantly decreased exogenous fatty acid uptake, which turns 
CD36 into an interesting candidate for novel treatment strategies 

(40). Also recently, Shen et al. demonstrated that oleate induces 
the expression of angiopoietin-like 4 (ANGPTL4) in head and 
neck squamous cell carcinoma resulting in anoikis resistance and 
metastasis via upregulation of fibronectin (41). Notably, palmitate 
and linoleate also induced ANGPTL4 gene expression in these 
cancer cells. Moreover, the induction of ANGPTL4 expression by 
oleate was also detected in other cancer cell types, including breast 
cancer cells (41). This suggests an interesting link since Angptl4 
has been described to promote breast cancer cell invasion and 
metastasis to the lung in vitro and in vivo, respectively (42–44). 
The role of oleate was also studied with respect to metabolic adap-
tions in highly aggressive cancer cells. An in vitro study by Li and 
co-workers showed that AMPK is activated in highly metastatic 
gastric and breast cancer cells treated with oleate (45). AMPK 
promoted the rates of fatty acid oxidation and ATP synthesis in 
these cells, enabling increased cell growth and cell migration. In 
low metastatic cancer cells, oleate reduced cell proliferation and 
migration, indicating a selective tumor-promoting function of 
oleate on highly metastatic cancer cells (45). The pro-tumorigenic 
effect of oleate was also demonstrated by an independent study 
showing that the treatment with oleate promoted cell invasion 
in highly metastatic breast cancer cells, but not in low metastatic 
cancer cells (38). Addressing the potential underlying mecha-
nism, Hardy et al. showed that oleate enhanced cell proliferation 
via activation of G protein-coupled receptor 40 in highly aggres-
sive breast cancer cells (46). Moreover, oleate treatment of breast 
cancer cells resulted in long-term survival in serum-free media, 
which was associated with enhanced intracellular lipid droplet 
formation and upregulation of lipolysis (47). In contrast to the 
tumor-promoting effects of oleate, palmitate, which is the most 
abundant circulating saturated fatty acid in the human circula-
tion, exhibited inhibitory effects in in vitro studies (48, 49). For 
example, the treatment of breast cancer cells with palmitate 
mediated the inhibition of cell proliferation and induction of 
apoptosis. Interestingly, oleate antagonized the proapoptotic 
function of palmitate in these experiments (49).

Together, these data indicate that the effects of fatty acids on 
breast cancer progression are complex and depend on the fatty 
acid subtype, the combination thereof, and the specific breast 
cancer subtype. More future studies are warranted to uncover the 
detailed link between obesity, fatty acids, fatty acid metabolism 
intermediates, and breast cancer progression.

Cholesterol Metabolism and Breast 
Cancer
Changes in cholesterol and lipid metabolism (often due to 
poor diet or obesity) have been extensively studied as risk fac-
tors for various malignancies, including breast cancer. Several 
epidemiological studies investigated the relationship between 
cholesterol and the risk of breast cancer, with inconsistent results 
(17). However, Li and co-workers demonstrated in a more recent 
meta-analysis study that dietary cholesterol was associated with 
an increased risk of breast cancer (50). Evidence for the role 
of elevated plasma cholesterol in promoting breast cancer was 
also obtained in recent experimental studies. The induction of 
hypercholesterolemia in mice resulted in enhanced breast cancer 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


5

Blücher and Stadler Fatty Acids and Breast Cancer Progression

Frontiers in Endocrinology | www.frontiersin.org October 2017 | Volume 8 | Article 293

growth, suggesting tumor-promoting effects of hypercholester-
olemia (51, 52). Moreover, the primary oxysterol metabolite of 
cholesterol, 27-hydroxycholesterol (27-OHC), was identified to 
promote growth and metastasis in vivo (53, 54). Higher levels of 
27-OHC were also detected in human estrogen receptor-positive 
breast tumors as compared to adjacent normal breast tissue (55). 
In addition, 27-OHC was also described to play a crucial role in 
mediating resistance of estrogen receptor-positive breast cancer 
to specific endocrine therapies (56, 57). Together the data show 
that alterations in lipid and cholesterol metabolism might be 
important factors in promoting breast cancer progression. To 
fully understand how obesity and associated changes in lipid 
metabolism affect breast cancer biology is going to be one of the 
demanding but irremissible tasks in battling breast cancer.

The Role of Omega-3 and Omega-6 
Polyunsaturated Fatty Acids (PUFAs)  
in Breast Cancer
The impact of FFA and specific components, such as saturated, 
monounsaturated, and PUFAs, were studied in several human 
diseases, including cancer. Much of the data implicate that satu-
rated fatty acids and monounsaturated fatty acids elevate cancer 
risk, whereas specific PUFAs (omega-3 PUFAs) exhibit anticancer 
effects (58–61). Still, since not all of the studies conducted so far 
showed consistent results, more detailed analyses are warranted. 
Particularly with regard to breast cancer, the contribution of 
dietary fatty acids depends on diverse factors, e.g., breast cancer 
subtype, a woman’s menopausal status, fatty acid species, and 
intake ratios (62).

The two major groups of PUFAs, omega-3 and omega-6 
PUFAs, are essential fatty acids, which must be ingested as 
part of a diet. Omega-3 PUFAs, such as eicosapentaenoic acid 
and docosahexaenoic acid are precursors for the production of 
anti-inflammatory eicosanoids and inflammation resolving deri-
vates, such as resolvins and protectins (63). On the other hand, 
eicosanoids resulting from the omega-6 PUFA–arachidonic acid 
(AA) axis are predominantly involved in the initiation and main-
tenance of inflammation (63). In recent years, epidemiologic 
studies have explored the role of omega-3 and omega-6 PUFAs 
on cancer risk and reported that consumption of western diets 
with a low omega-3:omega-6 ratio is associated with a higher 
risk of several cancer types (64). Notably, an elevated intake of 
omega-3 PUFAs as well as a higher dietary intake ratio of omega-
3:omega-6 PUFAs correlated with reduced breast cancer risk in 
obese women, but there was no such association in overweight 
or normal weight women (65). Thus, this study suggests a link 
between obesity, omega-3-PUFAs intake, and breast cancer risk. 
Several mechanisms have been proposed for the anti-tumor 
effects of omega-3 PUFAs, including the alteration of the cell 

plasma membrane composition, the inhibition of AA-derived 
synthesis of inflammatory eicosanoids, and alteration of gene 
expression of genes known to be involved in cell proliferation and 
apoptosis (62). Especially in connection with obesity, omega-3 
PUFAs might be a useful tool in reducing obesity-associated 
inflammation and related tumor risk (66, 67).

In conclusion, these studies support the interesting notion 
that PUFAs, especially omega-3 PUFAs, are linked to reduced 
breast cancer risk, in particular by decreasing pro-tumorigenic 
inflammation. However, more clinical studies are needed to fully 
understand the role of omega-3 and omega-6 PUFAs in obesity-
associated breast cancer.

SUMMARY

Obesity is now recognized as an important risk factor for breast 
cancer development and progression. Several mechanisms have 
been suggested to explain this association, including inflamma-
tory signaling, chemokines, adipokines, and insulin. In addition, 
more recent studies demonstrated that extracellular lipids play an 
important role in promoting breast cancer growth and progres-
sion by serving as substrates for activated fatty acid oxidation or 
as building blocks for oncogenic lipid signaling molecules. Breast 
cancer cells may obtain extracellular lipids through deregulated 
adipose tissue, by dietary intake or by directly interacting with 
adipocytes of the tumoral stroma. Emerging evidence clearly 
indicates that breast tumor cells are able to adapt to their 
metabolic environment in a very flexible manner. Targeting the 
utilization of extracellular lipids in breast tumor cells may open 
up new avenues for breast cancer treatment.
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