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The molecular events leading to gastroenteropancreatic neuroendocrine tumor (GEP-
NET) formation are largely unknown. Over the past decades, systemic chemothera-
pies have been replaced by therapies directed at particular molecular targets such 
as the somatostatin receptors, mTOR complexes or proangiogenic molecules. These 
approaches have demonstrated some success in subtypes of this heterogeneous 
tumor group, but responses are still widely varied. This review highlights the clinical tri-
als ongoing for neuroendocrine tumors (NETs) and includes emerging immunotherapy, 
which holds great promise for NETs based on successes in other tumor types. Current 
avenues of preclinical research, including Notch and PI3K/AKT, will lead to additional 
targeted therapies based on genome-wide studies that have cast a wide net in the 
search for driver mutations. Future preclinical and clinical investigations are required 
to identify those mutations predictive of therapeutic response or disease progression. 
Results of current clinical trials outlined here will better inform patient management 
with respect to agent selection, timing, duration and combination therapy in the treat-
ment of NETs.

Keywords: neuroendocrine tumor, Notch, small intestinal NeT, pancreatic neuroendocrine tumor, carcinoid

iNTRODUCTiON

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are clinically and biologically hetero-
geneous, resulting in widely varied clinical outcomes and challenges when establishing guidelines 
for tumor characterization and patient management. Over the past decade, significant effort has 
been expended to standardize the classification system used for these tumors in the clinical setting 
(1, 2). In 2010, guidelines published by the World Health Organization (WHO) recommended 
categorization of GEP-NETs based on clinical behavior, histopathological features and prolifera-
tion rate (3). These guidelines defined “neuroendocrine” as neoplastic cells that express markers of 
neural lineage (synaptophysin and chromogranin A). The term “neuroendocrine neoplasm (NEN)” 
was adopted which includes all tumors or carcinoma that derives from neuroendocrine cells. This 
led to the establishment of three morphologically distinct groups: (1) well-differentiated NENs, 
(2) poorly differentiated NENs [also called neuroendocrine carcinoma (NECs)], and (3) mixed 
adenoneurocarcinoma (MANECs). Well-differentiated NENs were further subdivided based on 
proliferative activity into either G1 (≤2% Ki67 index and mitoses <2/10 high-power field) or G2 
(3–20% Ki67 index and mitoses 2–20/10 high-power field). All poorly differentiated NECs are G3 
(>20% Ki67 index and >20/10 high-power field). MANECs were defined as having >30% of each 
component in the tumor and were defined as NEC G3 containing non-neuroendocrine components 
(typically adenocarcinoma) (3).
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TAble 1 | WHO2017 grading criteria for pancreatic neuroendocrine neoplasms 
(NENs).

panNeNs panNeCs

Grade G1 G2 G3 G3
Ki67 index <3% 3–20% >20% >20%
Mitotic index <2/10 hpf 2–20/10 hpf >20/10 hpf >20/10 hpf

immunohistochemistry
P53 Weak <20% Weak <20% Weak <20% Strong
RB1 loss − − − Strong
Islet 1 + + + −
SSTR2A + + + −a

DAXX/ATRX loss − − − +

hpf, high power fields.
aIn 80% of panNECs.
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In recent months, the WHO2017 grading system was pub-
lished which modifies the original WHO2010 classification for 
pancreatic NETs in several important ways (4). First, clinical 
practice noted a group of tumors that was discordant with 
their grade based on established criteria—meaning tumors that 
exhibited Ki67 indices of >20% even though they were well dif-
ferentiated. Despite this discordance, these tumors were often 
classified as G3, yet behaved clinically as well-differentiated 
G1/2 tumors in that they had poor responses to platinum-based 
chemotherapy, surgery resulted in favorable outcomes, and 
these tumors responded well to somatostatin analogs, mTOR 
inhibitors, and alkylating agents such as temozolomide (5–7). 
This resulted in the generation of a new category called panNET 
G3 to account for these tumors. Second, the Ki67 index cutoff 
value was raised to 3% instead of 2% for pNET G1/2 distinc-
tion. Third, the MANEC classification was too narrow in that it 
assumed that the non-neuroendocrine component was glandular 
in nature, when in fact it can also be well-differentiated tumor 
such as pNET G1/2. Therefore, the term “mixed neuroendocrine 
non-neuroendocrine neoplasm” (MiNEN) was adopted (8). The 
WHO2017 grading recommendations are found in Table 1.

Staging for NETs has undergone repeated revision by groups 
in the US and Europe in attempt to gain consensus within the field 
and to accurately develop informative, prognostic, and biological 
classifications to aid in patient management, study comparisons, 
and to direct future clinical trial design (9, 10). A recent study of 
pancreatic NETs proposed amended guidelines that are a fusion 
of two of the most widely used staging criteria: the American 
Joint Commission on Cancer (AJCC; primarily used in North 
America) and the European Neuroendocrine Tumor Society 
(ENETS; primarily used in Europe) (11). This study addressed 
shortcomings in both systems and proposed a modified ver-
sion, mENETs that uses the standard TNM classification from 
ENETS while incorporating the AJCC staging definitions (11). 
This mENETs system was tested on data from the SEER database 
and found to be more appropriate than either system alone for 
pancreatic NETs (11). In addition, guidelines for the surgical 
management of small bowel NETs were released recently by the 
North American Neuroendocrine Tumor Society (NANETS) 
(12), as were guidelines for medical management and follow-up 
surveillance of patients with GEP-NETs (13, 14).

The incidence of GEP-NETs is 2–5 cases per 100,000 and 
this number is expected to continue rising primarily due to 
improvements in diagnostic imaging and physician aware-
ness (1, 15–17). Patients with GEP-NETs often present with 
advanced disease at diagnosis (18). Surgical resection is often 
the first option either for curative (for localized, non-metastatic 
disease) or palliative (for advanced metastatic disease) intent, 
followed by pathway-based, systemic chemotherapies such as 
those outlined below for patients with metastatic disease.

TARGeT-bASeD THeRAPieS—
GASTROeNTeROPANCReATiC  
NeTs (GeP-NeTs)

Somatostatin Analogs
SSAs (octreotide, lanreotide, pasireotide) were initially devel-
oped to mimic the inhibitory action of somatostatin on cell 
surface G-protein-coupled receptors called SSTR1–5, which 
mediate downstream hormone release and cell growth via PI3K 
and MAPK signaling (19). These drugs are used successfully to 
control symptoms of the carcinoid syndrome that is clinically 
characterized by flushing, diarrhea and right-side heart valve 
disease as a result of hypersecretion of bioactive amines from 
small intestinal NETs (20). The ELECT trial (NCT00774930),  
a phase III double-blind study of lanreotide depot as a therapy 
for carcinoid syndrome, enrolled 115 patients—59 in the lan-
reotide depot arm and 56 in the placebo arm. Enrolled patients 
were randomized and given access to short-acting octreotide  
as a rescue medication, with the primary study endpoint being 
the utilization of the rescue medication and self-reported fre-
quency of diarrhea and/or flushing episodes. The percentage of 
days using rescue medication was significantly decreased in the 
lanreotide depot group (33.7%, 95% CI 25–42.4) compared to 
placebo (48.5%, 95% CI 39.6–57.4) (21) indicating increased 
control of carcinoid syndrome with lanreotide.

SSA therapy was also used in a trial of patients with Hashi-
moto’s thyroiditis and enterochromaffin-like hyperplasia (22). 
Chronic atrophic gastritis is an autoimmune attack on the pari-
etal cells that results in increased gastrin production. Chronic 
atrophic gastritis is also a risk factor for gastric endocrine car-
cinoma, especially when correlated with enterochromaffin-like 
cell hyperplasia. One study evaluated the prevalence of chronic 
atrophic gastritis, hypergastrinemia, and enterochromaffin-like 
cell hyperplasia in patients with Hashimoto’s. Treatment with 
SSAs caused regression of enterochromaffin-like cell hyperplasia 
in all patients suggesting that the early diagnosis of entero-
chromaffin-like cell hyperplasia, and the treatment with SSAs, 
may play a role in prevention of gastric endocrine carcinoma. 
However, it should be noted that one patient in this study with 
a type-1 gastric carcinoid at study start did not have significant 
tumor regression in response to SSA (22).

In clinical trials focused on NEN regression/control, SSAs 
have demonstrated efficacy in treatment arms compared to 
placebo controls. The phase 3 PROMID trial (NCT00171873) 
examined octreotide LAR (n  =  42) compared to placebo 
(n  =  43) in treatment-naïve, well-differentiated, metastatic 
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TAble 2 | Current Phase III clinical trials for gastroenteropancreatic 
neuroendocrine tumors (GEP-NETs).

NCT Number Title intervention

NCT02288377a A Study Evaluating Lanreotide as 
Maintenance Therapy in Patients with 
Non-resectable GEP-NETs (REMINET)

•	Lanreotide
•	Placebo

NCT02246127 Efficacy and Safety of Everolimus and 
STZ-5FU Given One Upfront and the 
Other Upon Progression in Advanced 
pNET (SEQTOR)

•	everolimus
•	STZ-5FU

NCT02588170 Phase III Study of Sulfatinib in Treating 
Advanced Extrapancreatic NET

•	Sulfatinib
•	Placebo

NCT02589821 Phase III Study of Sulfatinib in Treating 
Pancreatic NETs

•	Sulfatinib
•	placebo

NCT03049189 Efficacy and Safety of 177Lu-edotreotide 
PRRT in GEP-NETs

•	 177Lu-edotreotide
•	everolimus

NCT01842165 177Lu-octreotate Treatment Protection 
using Multimodality Imaging in 
Refractory NETs (LUMEN)

•	 177Lu-octreotate

NCT02465112 Metabolic Radiotherapy after Complete 
Resection of Liver Metastases in 
Patients with Digestive NET

•	 111In-Pentetreotide
•	placebo

NCT01578239 A Study Comparing Treatment 
with 177Lu-DOTA0-Tyr3-octreotate 
to Octreotide LAR in Patients with 
Inoperable, Progressive, SSTR-Positive 
Midgut Carcinoid Tumors

•	Octreotide LAR
•	 177Lu-DOTA0-Tyr3-

octreotate

NCT02608203a 68Ga-DOTANOC pET/CT in GEP-NETs •	 68Ga-DOTANOC

aPhase II/III.
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midgut (mostly GI) NENs with time to tumor progression 
(TTP) as the primary endpoint. Octreotide LAR significantly 
lengthened TTP by 8.3  months over placebo [14.3  months 
TTP for octreotide LAR, 6  months in placebo (HR  =  0.34; 
95% CI 0.2–0.59; p = 0.000072)] (23). Long-term follow-up of 
these patients did not show a demonstrable increase in overall 
survival (OS) (24). Patients on placebo were offered octreotide 
LAR at study completion and the crossover design of this study 
may have confounded the data interpretation with respect to OS 
(23, 24). The CLARINET trial (NCT00353496) included lanreo-
tide depot (n = 101) compared to placebo (n = 103) in meta-
static, non-functioning, low-grade (G1 or G2) pancreatic and 
intestinal NETs with stable disease (25, 26). This trial resulted 
in significantly prolonged PFS in the lanreotide depot group 
compared to placebo (median not reached versus 18 months; 
HR =  0.47; 95% CI 0.3–0.73; p <  0.001). As in the PROMID 
trial, this improvement in PFS did not translate to increases 
in OS at 2 years (25). The CLARINET trial was continued for 
an additional 40  months with an open label extension that 
further confirmed the favorable safety and tolerability profile 
of lanreotide depot with long-term use (26). The ongoing phase 
2 CLARINET FORTE study (NCT0265987) is investigating a 
reduced dosing interval (14 versus 28 days) for lanreotide depot 
in patients with well-differentiated pancreatic or midgut NENs 
with the primary endpoint of PFS.

Peptide receptor radionuclide therapy (PRRT) has tremen-
dous potential for the treatment of NETs with elevated expres-
sion of SSTRs or other cell surface receptors. This therapy directs 
radionuclides directly to cancer cells by targeting the SSTRs 
expressed on their surface (27). It should be noted that SSAs have 
varying affinities for the different SSTR receptors and may be 
a compounding factor when comparing clinical trials involving 
different SSAs (28, 29). The NETTER-1 trial (NCT01578239), 
measured PFS in patients treated with octreotide LAR with and 
without 177Lu-Dotatate as a localized anticancer radiotherapy 
for advanced, SSTR-positive metastatic midgut (primarily 
jejuno, ileum, and proximal colon) NETs. In a preliminary 
analysis published recently, treatment with 177Lu-Dotatate plus 
octreotide LAR (n =  111) resulted in markedly increased PFS 
compared to the octreotide LAR (n =  110) alone (30). At the 
time of the planned interim analysis, the median PFS had not 
been reached for the 177Lu-Dotatate plus octreotide LAR group 
and was 8.4 months for the control group (95% CI 5.8–9.1). The 
estimated rate of PFS at month 20 was 65.2% (95% CI 50–76.8%) 
in the 177Lu-Dotatate plus octreotide LAR group versus 10.8% 
(95% CI 3.5–23) in control. PRRT has also been studied in 
combination with standard chemotherapeutic agents in NETs. 
For example, small published studies of 177Lu-dotatate in com-
bination with capecitabine to radiosensitize in metastatic GEP-
NETs, demonstrated safety and efficacy (31, 32). Other studies 
examined the combination of 177Lu-octreotate with capecitabine 
and temozolomide in advanced, low-grade NETs (n = 30), dem-
onstrating an overall response rate of 80% (95% CI 66–93), with 
complete remission in 13% (95% CI 4–30) and partial response 
in 70% (95% CI 52–83) (33, 34). Among the many phase II tri-
als in progress to study PRRT in NETs, the CONTROL NETS 
trial (NCT02358356) is testing the combination therapy of 

177Lu-octreotate  +  capecitabine  +  temozolomide is compared 
with capecitabine  +  temozolomide in low- to intermediate-
grade (G1/G2) pancreatic NENs and versus PRRT alone in 
low- to intermediate-grade midgut NENs. The LUNET trial 
is recruiting 98 patients for a non-comparison trial of two 
separate doses of 177Lu-Dotatate in advanced enteropancreatic 
NETs (NCT02489604), and the LUCAS trial (NCT02736448) 
is a randomized trial seeking to enroll 176 patients to compare 
177Lu-PRRT  +  capecitabine versus 177Lu-PRRT alone in well-
differentiated GEP-NENs. The PRELUDE trial (NCT02788578) 
is a retrospective study seeking to describe the effects on PFS 
of combination Lanreotide depot with PRRT in metastatic well-
differentiated (G1 or G2) GEP- and bronchopulmonary NETs. 
There are many other PRRT trials in NETs currently recruiting 
(clinicaltrials.gov) and these trials are just the beginning of 
studies to understand combination interventions in NETs. It is 
unknown whether the timing and sequence of therapies is impor-
tant, i.e., simultaneous versus sequential, direct effect versus 
radiosensitizing, octreotide versus pasireotide versus lanreotide 
(efficacy depends on the SSTR distribution present in tumor, if 
any), and many of the current clinical trials will yield informative 
results in coming years. Guidelines for therapy selection, timing, 
and combination may also be further clarified as we understand 
more about the genetics of the different subtypes and grades of 
NETs. Table  2 outlines the current phase III clinical trials for 
GEP-NETs.
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Gastric inhibitory Polypeptide Receptor
In addition to SSTR, other peptide receptor targets have also 
been identified and utilized for in vivo scintigraphy and targeted 
radiotherapy. Incretin receptors, including glucagon-like pep-
tide-1 (GLP-1R) (35, 36) and glucose-dependent insulinotropic 
polypeptide receptor (GIPR) (37, 38), have been investigated 
with earnest in recent years, with putative utility in tumors such 
as insulinoma that often occur with low or absent expression of 
SSTR. Interestingly, in studies of SSTR-negative gastrointestinal 
or bronchial NETs, more than 88% were positive for GIPR 
(39). Recent studies from the Maecke lab (40) investigate a set 
of GIP-derived ligands for their ability to image a broad spec-
trum of GIPR-expressing NETs with positive results. Whereas 
biodistribution studies in mouse xenograft models indicate 
accumulation of these peptides in the kidney which could result 
in nephrotoxicity upon translation to clinical use, optimization 
of GIP-derived peptides demonstrates great potential for both 
imaging and PRRT in GIPR-positive NETs.

mTOR Pathway inhibitors
The mammalian target of rapamycin (mTOR) pathway was 
initially studied in NETs as a part of familial tumor syndromes 
known to have genetic mutations in genes upstream of the 
mTOR complexes. For example, the autosomal-dominant syn-
dromes neurofibromatosis type 1 (NF1) and tuberous sclerosis 
(TS) are caused by inactivating mutations in NF-1 and TSC1/2, 
respectively. Patients with NF1 develop a spectrum of NETs in the 
ampulla of Vater, duodenum, and mediastinum, and demonstrate 
constitutive activation of the mTOR signaling pathway as a result 
of NF1 loss (41). TS has been associated with pancreatic NETs, 
and the loss of the TSC1/2 genes similarly leads to activation of 
mTOR signaling (42). Clinical genetic studies have identified that 
gastrointestinal (small intestine) NETs can have somatic muta-
tions in MEN1, CDKN1B, and other genes involved in the PI3K/
AKT/mTOR signaling pathway (43–45) and more recent whole-
exome sequencing data have identified that 14% of pancreatic 
neuroendocrine tumors (NETs) have mutations in genes of the 
mTOR signaling pathway (46).

Mammalian target of rapamycin functions as an intracellular 
serine/threonine kinase that modulates key cellular processes 
such as nutrient sensing, proliferation, metabolism, and cell 
survival. mTOR exists as one of two known complexes, mTORC1 
or mTORC2, in conjunction with several other proteins 
(47). Inhibitors of mTOR (rapamycin, everolimus/RAD001, 
temsirolimus) bind to the FK506 binding protein, which then 
binds to mTORC1 and inhibits pathway signaling. Everolimus 
has been investigated in NETs through the RADIANT series of 
trials. The RADIANT-1 trial was an open-label, phase 2 study 
that initially investigated everolimus in patients with advanced, 
low- to intermediate-grade GEP-NENs and included a small 
number of patients with carcinoids (n = 30) and islet cell tumors 
(n = 30). Patients received everolimus either alone or in combi-
nation with octreotide at the discretion of the study investigators 
and resulted in promising antitumor activity that was well toler-
ated (48). Octreotide is known to reduce serum IGF-1 levels, a 
pathway upstream of the mTOR pathway, so the combination 
of everolimus plus octreotide was considered a two-pronged 

approach to accomplish both upstream and downstream inhi-
bition of mTOR signaling. Patients receiving the combination 
therapy had median PFS of 60 weeks (95% CI 54–66), compared 
to 50 weeks with 5 mg everolimus alone (95% CI 23–78) and 
72 weeks with 10 mg everolimus alone (95% CI 60–83). However, 
this study was not powered nor designed to make the com-
parison between these study groups. RADIANT-1 was followed 
up with a larger study, the RADIANT-2 trial (NCT00412061) 
which was a randomized, double-blind, placebo-controlled 
phase III study (49). Patients with low- or intermediate-grade 
NENs (the majority small intestinal primary site) were treated 
with everolimus plus octreotide LAR (n = 216), or placebo plus 
octreotide LAR (n  =  213). Everolimus plus octreotide LAR 
improved PFS by 5.1 months over the everolimus plus placebo 
group (16.4  months, 95% CI 13.7–21.2 versus 11.3, 95% CI 
8.4–14.6), but did not meet statistical significance. Treatment 
with everolimus offered patients a 23% decrease in relative risk 
of progression (HR 0.77; p = 0.026) compared to placebo (49). 
The recently completed COOPERATE-2 trial, a randomized, 
open-label phase II study had similar results (50). Patients with 
advanced, well-differentiated progressive pancreatic NETs were 
treated with either everolimus alone (n =  81) or in combina-
tion with pasireotide (n  =  79) and evaluated on the primary 
endpoint of PFS. The everolimus alone group had a median 
PFS of 16.6 months, while the combination group had median 
PFS of 16.8 months (HR 0.99; 95% CI 0.64–1.54), however, the 
combination group showed an advantage in partial responses 
with 20.3 versus 6.2% in the everolimus alone group (50), sug-
gesting that there may be some low-level benefit to combination 
therapy.

The RADIANT-3 trial (NCT00510068) extended the study of 
everolimus alone to a larger number of patients with advanced, 
low, or intermediate grade pancreatic NETs with radiologic 
evidence of progression within the prior 12  months. Patients 
in this international, multicenter, double-blind phase 3 trial 
were randomized to receive everolimus (n  =  207) or placebo 
(n  =  203) in addition to supportive care (which involved SSA 
therapy in 40% of patients across both groups). Median PFS 
in the everolimus group was 11  months (95% CI 8.4–13.9) 
compared to the placebo group at 4.6 months (95% CI 3.1–5.4) 
and offered a reduction in relative risk of progression of 65% 
(HR = 0.35; 95% CI 0.27–0.45; p < 0.001) (51). The RADIANT-4 
trial (NCT01524783) further studied everolimus in patients with 
advanced, progressive, well-differentiated, non-functional NETs 
of the lung or gastrointestinal tract (ileum and rectum) (52, 53). 
This randomized, placebo-controlled phase III trial investigated 
everolimus (n = 205) versus placebo (n = 97) on the background 
of best supportive care. Overall, patients receiving everolimus 
demonstrated an increase of 7.1 months PFS compared to placebo 
(11 months, 95% CI 9.2–13.3 versus 3.9 months, 95% CI 3.6–7.4) 
and a 52% decrease in relative risk of progression or death  
(52, 53). In the GI subset of these patients (175 of the 302 enrolled), 
PFS was increased by 7.7 months (13.1 months, 95% CI 9.2–17.2 
in everolimus versus 5.4  months, 95% CI 3.6–9.3 in placebo), 
with no unexpected safety concerns (53). Taken together, the 
RADIANT-3 and -4 trials demonstrate that mTOR inhibitors pro-
vide durable antitumor effects in NETs from pancreatic, lung, and 
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gastrointestinal origin suggesting that treatment with everolimus, 
with or without SSA therapy, may continue to be a promising 
treatment option for patients with progressive, advanced stage 
NETs. Indeed, there is now a phase 4 clinical trial in progress 
in China (NCT02842749) to understand the long-term safety of 
everolimus in locally advanced or metastatic, well-differentiated 
progressive pancreatic NETs.

Everolimus has also been studied in combination with PRRT. 
The NETTLE phase 1b study conducted in Australia was a 
proof of concept study for combination of everolimus with 
177Lu-octreotate to identify the maximum tolerated dose, any dose 
limiting toxicities and to evaluate objective response in patients 
with progressive low-grade GEP-NENs (n = 16; 11 small bowel, 
5 pancreatic). This study reported an overall response rate of 44% 
(7/16), and all patients maintained stable disease throughout the 
6-month course of treatment with a manageable (and apparently 
reversible) side effect profile (54). Four of five pancreatic NEN 
patients achieved PR with this combination therapy, which sets 
the stage for an appropriately powered larger, phase 2 trial for 
statistical comparisons of combination versus monotherapy on 
the endpoint of PFS.

Antiangiogenic Therapies
Neuroendocrine tumors are highly vascular tumors and over-
expression of proangiogenic molecules and their receptors such 
as vascular endothelial growth factor (VEGF)/VEGF receptor 
(VEGFR), platelet-derived growth factor (PDGF)/PDGFR, fibro-
blast growth factor (FGF)/FGFR, and epithelial growth factor 
(EGF)/EGFR have been reported (55, 56). These observations 
have led to extensive preclinical and clinical investigations using 
tyrosine kinase inhibitors (TKI; either small molecule antagonists 
or blocking antibodies) that inhibit the activity of proangiogenic 
signals (57).

The oral TKI sunitinib (which targets both VEGFR and 
PDGFR) was studied in a prospective phase III clinical trial in 
patients with advanced, well-differentiated pancreatic NETs 
(NCT00428597). This trial resulted in a 6-month increase in 
PFS (11.4  months in the sunitinib group versus 5.5  months in 
the placebo arm; HR 0.42; 95% CI 0.26–0.66; p <  0.001) (58). 
This study was discontinued early by the independent ethics 
review panel because of a high number of serious adverse events 
and deaths in the placebo arm, and a significant trend toward 
improvement in PFS in the treatment group (58). Another small 
molecule TKI sulfatinib (which targets VEGFR and FGFR) has 
completed phase I studies (NCT02133157), with an objective 
response rate of 26.5% (9/34) and a disease control rate of 70.6% 
(24/34) (59). The phase I study identified 300  mg sulfatinib as 
the recommended dose for a phase Ib/II trial (NCT02267967) 
that is nearing completion. Randomized, double-blind phase III 
trials are currently recruiting to test sulfatinib versus placebo in 
patients with advanced pancreatic NETs (NCT02589821) and 
with low/intermediate-grade (G1/G2) advanced extrapancreatic 
NETs (any location except pancreatic; NCT02588170).

Pazopanib is an inhibitor of VEGFRs 1, 2, and 3 and showed 
clinical activity in phase II trials (NCT01280201, NCT01099540, 
NCT01841736) as a monotherapy for advanced GEP-NETS 
with stable disease or confirmed PR in 75.7% of patients (28/37; 

95% CI 58.8–88.2) (60, 61). Combination of pazopanib with 
octreotide depot (NCT00454363) was associated with tumor 
response in advanced, well-differentiated pancreatic NETs but 
not in carcinoids (62), suggesting that a larger phase III trial 
in advanced pancreatic NETs is warranted. Axitinib (inhibits 
VEGF and PDGF) had disappointing results as a monotherapy 
in progressive, advanced grade G1/G2 extrapancreatic NETs 
(NCT01435122). Tumor growth was inhibited in advanced 
carcinoids, with radiographic evidence of stable disease in 21/30 
(70%) patients, but there was an unacceptably high incidence 
of hypertension associated with this therapy (63). Lenvatinib is 
another pan-TKI in an ongoing phase II trial (NCT 02678780, 
TALENT study) evaluating ORR as the primary endpoint in 
patients with advanced pancreatic NETs after progression on 
other therapy (arm1) or in progressive gastrointestinal NETs after 
SSA therapy (arm2).

Bevacizumab is a recombinant human IgG1 monoclonal 
antibody that blocks VEGF from binding to VEGFR, resulting 
in decreased blood vessel density around tumors in rectal cancer 
studies (64). Initial phase II trials evaluating bevacizumab in 
advanced carcinoids and well-differentiated metastatic NETs 
were positive with increases in PFS (65, 66). Bevacizumab was 
studied in combination with temozolomide in patients with 
advanced NETs (56% carcinoid, 44% pancreatic; NCT00137774). 
Interestingly, only pancreatic NETs responded to therapy (5/15, 
33%) with no responses in carcinoids (0/19, 0%) suggesting 
that this regimen may be more efficacious in patients with 
pancreatic NETs (67). More recently, the XELBEVOCT trial 
(NCT01203306) studied octreotide LAR + capecitabine ± beva-
cizumab in well to moderately differentiated metastatic NETs 
(multiple anatomic primary sites). Of the 45 patients enrolled 
in the study, partial response (most often in pancreatic NETs) 
was noted in 8 patients (17.8%; 95% CI 6.4–28.2) (68). A subse-
quent phase II trial followed this to evaluate the combination of 
octreotide LAR +  everolimus ± bevacizumab (NCT01229943) 
in locally advanced or metastatic pancreatic NETs that cannot 
be treated by surgery. Surprisingly, preliminary data available on 
clinicaltrials.org indicate that there is no statistically significant 
improvement in PFS with the octreotide  +  everolimus group 
at 14  months (95% CI 9.1–16.9) versus 16.7  months (95% CI 
12.6–19.7) in the octreotide + everolimus + bevacizumab group 
(p = 0.12). The phase III SWOG S0518 study (NCT00569127) 
investigated octreotide  +  bevacizumab compared to octreo-
tide  +  interferon alpha-2b in advanced G1/G2 NETs (various 
anatomical sites). This study concluded there was no discernible 
difference in PFS between these two treatment groups, suggest-
ing that bevacizumab had similar activity to that of interferon 
alpha-2b therapy (69).

immunotherapy
Immunotherapy is a recent, rapidly emerging therapeutic 
option for all cancers, including NETs. Immune checkpoint 
inhibitors block interactions of programmed death-ligand 1 
(PD-L1)/programmed cell death receptor 1 (PD1) or cytotoxic 
T lymphocyte antigen 4 (CTLA4) to block immune escape of 
tumor cells. PD-L1 is expressed on the surface of many cancer 
cells and interacts with its receptor PD1 on the surface of 
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TAble 3 | Clinical immunotherapy trials in gastroenteropancreatic neuroendocrine tumor (GEP-NETs).

NCT number immunotherapy Tumor type Phase

NCT03167853 JS001 (humanized anti-PD1 antibody) Advanced, well-differentiated neuroendocrine tumor (NET) following first line failure 1b

NCT03043664 Pembrolizumab Non-resectable, recurrent, or metastatic well or moderately differentiated GEP-NET 1/2
Lanreotide depot

NCT02923934 Ipilimumab Pancreatic NET 2
Nivolumab Intestinal NET

NCT02834013 Ipilimumab Pancreatic NET 2
Nivolumab Intestinal NET

NCT02939651 Pembrolizumab Metastatic high-grade GEP-NETs who have failed platinum-based therapy 2

NCT02955069 PDR001 (humanized anti-PD1 IgG4 antibody) Well-differentiated, non-functional GI, pancreatic or thoracic NET 2
Poorly differentiated GEP-NEC
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T cells. Immune escape occurs when antigens produced by the 
tumor inhibit T  cells, allowing cancer cells to remain unde-
tected by immune surveillance. Antibodies that target and 
block PD-L1 (avelumab), PD1 (pembrolizumab, nivolumab, 
JS001, or PDR001), or CTL4 (ipilimumab) have been used in 
a number of cancers with promising results, including mela-
noma, renal, lung, prostate, and bladder cancers, and equiva-
lent trials are now in progress for GEP-NETs. Furthermore, 
durable responses have been obtained with the anti-PD-L1 
antibody avelumab in clinical trials of Merkel Cell carcinoma, 
a NET of the skin, suggesting successful proof of concept 
for immune therapy in other NETs. Immunohistochemical 
analysis of PD-L1 expression in intermediate- to high-grade 
(G2/G3) GEP-NEN/NECs (n = 32, the majority from pancreas 
and rectum) was measured in 22% of patients and correlated 
specifically with the aggressive, high grade (G3) tumors. Based 
on these results, there are a number of clinical trials in progress 
or soon to open that investigate immunotherapy in GEP-NETs 
(Table 3).

PReCliNiCAl PATHwAYS UNDeR 
iNveSTiGATiON—eNTeROPANCReATiC 
NeTs

Genetic Profiling of GeP-NeTs
Despite the abundance of activity in clinical research, the 
underlying molecular mechanisms of NET tumorigenesis are 
not fully understood and continue to be actively investigated in 
the preclinical setting. Recent whole-exome and whole-genome 
sequencing efforts have begun to reveal the mutational and 
epigenomic landscape of NET subtypes. The identification of 
new germline and somatic mutations, along with copy number 
variations and other changes, has identified novel mechanisms 
such as Notch, chromatin remodeling, histone modification, and 
promoter methylation that may be contributing to pathogen-
esis. These investigations with genetic underpinnings have the 
potential to be future precision approaches beyond the currently 
targeted methodologies outlined above.

There have been several reports published on the genetic 
profiles of different NET subtypes (70, 71). Gebauer et al. iden-
tified the degree of genomic instability and identified frequent 

copy number variations present in low-grade (G1/G2), 
well-differentiated pancreatic NETs. Using array compara tive 
genomic hybridization, copy number gains were found on 6p22.2-
p22.1, 17p13.1, 7p21.3-21.2, and 9q34.11, affecting regu latory  
genes involved in transcription, signaling, and epigenetic 
control (70). Recent whole-exome (46) and whole-genome 
(72) sequencing of pancreatic NETs identified that the most 
commonly mutated genes in this tumor type are genes involved 
in chromatin remodeling, such as multiple endocrine neopla-
sia type 1 (MEN1), death domain-associated protein (DAXX), 
α-thalassemia/mental retardation syndrome, X-linked (ATRX) 
(46), and DNA repair genes MUTYH, CHEK2, and BRCA2 
(72). Interestingly, these studies demonstrated very little 
pathogenic role for oncogenes commonly mutated in cancer 
such as TP53 or RB1. Protein products from DAXX and ATRX 
form a heterodimer that is required for chromatin remodeling 
through histone H3.3 at telomeres. In the Jiao study, clinical 
NET samples with mutations in these genes were associated 
with improved prognosis (46). However, follow-up studies 
by other groups wherein telomere-specific FISH and DAXX/
ATRX immunohistochemistry were performed, loss of these 
gene products was associated with worse prognosis for NET 
patients (73, 74). Other studies in patients with MEN1-related 
pancreatic NETs suggest that DAXX/ATRX mutations are not 
driver mutations, but rather later events in the pathogenesis of 
NET development (75). Although there is still some controversy 
over the clinical correlation of DAXX/ATRX mutations, this 
area of research has attracted a great deal of attention. Both the 
mutations in MEN1 and DAXX/ATRX suggest that targeting 
these epigenetic mechanisms with small molecule compounds 
may be a viable approach to developing new therapeutics for 
pancreatic NETs.

Small intestinal NETs have also been profiled at the genetic 
level (76–78). The study performed by Banck et al. on 48, G1/G2,  
well-differentiated SI-NETs identified single-nucleotide 
variants in a number of known cancer genes, including FGFR2, 
MEN1, HOOK3, EZH2, MLF1, VHL, NONO, and SMAD1 by 
whole-exome sequencing. The dysregulated genes implicated 
several altered cellular processes, such as chromatin remodeling, 
DNA damage pathways, apoptosis, and RAS signaling. 30% 
of SI-NETs have genetic mutations in the PI3K/AKT/mTOR 
pathway (see below) and amplification of AKT1 and 2 occurs 
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the most frequently (44). In a subsequent study, CDKN1B 
mutations were identified in 8% of tumors, suggesting the gene 
for p27 to be a putative tumor suppressor in these tumors, with 
an obvious role in regulating the cell cycle (45, 79). Studies on 
copy number alterations in SI-NETs identified losses of 11q23.1-
qter, 16q12.2-qter, 9pter-p13.2, and 9p13.1-11.2, and gains in 
14q11.2, 14q32.2-32.31, 20pter-p11.21, 20q11.1-q11.21, and 
20q12-qter (80). These regions impact tumor suppressor genes, 
growth factors (in particular FGF2/FGFR3/FGFB, PDGR), and 
signal transduction pathways (TGFB1, IGFBP3, AKT1, E2F1). 
DNA methylation studies have provided a global picture of 
gene regulation, highlighting genes, such as WIF1, RASSF1A, 
CTNNB1, CXCL14, NKX2-3, and others with increased promoter 
methylation, and at the same time noting a significant decrease 
in global methylation in tumors compared to normal reference 
controls (81). Furthermore, Karpathakis et al. performed a large, 
integrated analysis of these tumors and showed epigenetic-based 
mutations in 85% of tumors with 21 dysregulated genes, includ-
ing CDX1, CELSR3, FBP1, and GIPR (79).

In general, GEP-NETs can be divided by location into gas-
trointestinal and pancreatic, but also by different copy num ber  
aberrations, gene expression profiles, and distinct DNA meth-
ylation patterns (82–84). Pancreatic NETs have variations in  
DAXX, ATRX, PTEN, and TSC2, whereas GI-NETs have 
identified CDKN1B and RASSF1A as the recurrent mutations. 
Ras-associated domain family 1 (RASSF1) is frequently hyper-
methylated in pancreatic NETs—75% of 48 well-differentiated 
tumors demonstrated hypermethylation at this site, with no 
hypermethylation in adjacent normal tissue (85). Furthermore, 
this hypermethylation correlated with larger tumors and wide-
spread metastasis. Expression of O(6)-methylguanine DNA 
methyltransferase (MGMT), a DNA repair enzyme that guards 
cells against mutations caused by O6 alkylating agents, has also 
been studied in pancreatic NETs (86, 87). Temozolomide cytotox-
icity is attributed to its ability to induce DNA methylation at the 
O6 position of guanine, leading to DNA mismatch and tumor cell 
death (88). MGMT promoter methylation was reported in 40% of 
pancreatic NETs (85), suggesting that this might be a biomarker 
for response to temozolomide. Others demonstrate that MGMT 
deficiency due to methylation was more prevalent in pancreatic 
NETs compared to gastrointestinal NETs (89). Subsequent stud-
ies have not identified a correlation between MGMT protein 
expression and promoter methylation, even though MGMT 
promoter methylation was significantly associated with response 
to temozolomide (86, 87). All of these genomic investigations 
have led to ongoing clinical tissue collection protocols to iden-
tify biomarkers (NCT02092714, NCT03130205) and complete 
molecular profiling (NCT02586844) of NET subtypes to aid in 
diagnosis and patient management.

Canonical Notch Signaling
Through genome-wide studies, the Notch signaling pathway has 
been implicated in pathogenesis of GEP-NETs as well. Notch has 
been studied for many years in the context of cancer; and over 
the years, the major players in the pathway have been identified, 
revealing a complex and sometimes redundant signaling network. 
The Notch pathway is widely recognized as a central player in 

proliferation, differentiation, and stem cell maintenance. Notch 
signaling is evolutionarily conserved and canonical signaling 
relies on the presence of a Notch receptor (in mammals called 
Notch1–4) binding to a ligand present on a neighboring cell. 
Ligand binding promotes intracellular cleavage of the receptor 
by metalloproteases (ADAM and gamma-secretase) to release 
the active form of the receptor, called the Notch intracellular 
domain (NICD). The NICD translocates into the nucleus, binds 
to transcription factor CBF-1/Suppressor of Hairless/LAG-1 
(CSL, also known as RBP-Jκ) and activates transcription of 
Notch-responsive genes (90).

Notch is known to contribute to tumorigenesis in epithelial-
derived cancers by inhibiting differentiation, promoting cellu-
lar proliferation, and/or inhibiting apoptosis. There is evidence 
that Notch can behave as a tumor suppressor or oncogene in 
these cancers depending on the cellular context. In the case 
of GEP-NETs, few studies have comprehensively examined the 
complement of Notch molecules and the mechanisms of Notch 
signaling. Those that have demonstrate that the presence of 
Notch signaling components varies across cells derived from 
the neuroendocrine lineage. Immunohistochemical staining 
for Notch1, Hes1, Hey1, pIGF1R, and FGF2 antibodies on a 
tissue microarray of 120 well-differentiated NETs arising from 
the pancreas (n = 74), ileum (n = 31), and rectum (n = 15), 
demonstrated elevated Notch1 expression in 100% rectal, 
34% of pancreatic, and 0% of ileal NETs. Hes1 expression was 
present in 64% of rectal, 10% of pancreatic, and 0% of ileal 
NETs (91), exhibiting significant variability in Notch1 signaling 
across different tissue types. Due to the low/absent expres-
sion of Notch in ileal NETs/carcinoids, some have proposed 
that Notch functions as a tumor suppressor in these tumors.  
In the non-tumorigenic cell, Notch signaling activates a cas-
cade of events that ultimately leads to the inhibition of a protein 
called ASCL1 (92). In ileal NETs, ASCL1 is overexpressed and 
transient overexpression of Notch1 in carcinoid cell lines 
in  vitro can reverse ASCL1 overexpression, suggesting that 
activation of Notch1 may be therapeutic. In addition, organic 
extracts such as resveratrol activate Notch in  vitro and have 
been proposed as therapy in patients with low-grade GI-NETs 
(NCT01476592 (93, 94)).

The presence of coactivators and corepressors also dictates 
Notch functionality. CSL coactivators such as MAML, SKIP, and 
p300 are well known to activate transcription of Notch target 
genes by binding to NICD, while in the absence of NICD, core-
pressors such as SMRT (95), SIRT (96), and others (97) inhibit 
such functions. Notch activator and repressor complexes can 
also actively remodel the chromatin at Notch-responsive target 
genes and provide an additional layer of reversible epigenetic 
regulation (98) by recruiting proteins with histone modification 
potential (99–101). A report by Liefke et  al. (98) demonstrates 
that the histone demethylase KDM5A/RBP2 is a key component 
of the Notch CSL repressor complex. Recent studies demonstrate 
that RBP2 is upregulated in gastrointestinal NETs and in liver 
metastases from primary NET tumors, suggesting that RBP2 
may be actively repressing canonical Notch activity (102) or 
perhaps remodeling chromatin in these tumors, resulting in 
aberrant expression of RBP2-regulated genes. Putative inhibitors 
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of RBP2 demethylase activity and/or steric inhibitors to block 
protein–protein interaction may demonstrate efficacy for this 
tumor type. Notch receptor, ligand, coactivator, and corepressor 
function have not been fully analyzed across the spectrum NETs 
and the complete profile of Notch components present in these 
diverse tumors may begin to explain the wide variation in clinical 
responses observed with NETs.

Pi3K/Akt
Genome-wide studies in combination with older immunohis-
tochemical studies have identified components of the PI3K/
AKT pathway as dysregulated in NETs (70, 71). Although the 
PI3K/AKT pathway has been studied for decades in many solid 
tumors, it has more recently been in the spotlight with respect 
to GEP-NETs. The PI3K/AKT pathway integrates a multitude of 
extracellular signals and transmits these signals downstream via 
mTOR. PI3K/AKT/mTOR is the central regulator of a plethora 
of downstream events, including cell proliferation, apoptosis, 
cell survival, differentiation, angiogenesis, and cell migration. 
PI3K can be activated at the cell surface by tyrosine kinase recep-
tors, G-coupled receptors or mutant RAS, and is antagonized by 
PTEN. Robbins and Hague have conducted a thorough review 
of PI3K/AKT in GEP-NETs (103), and a few points warrant 
reemphasis. Pancreatic NETs have a decrease in PTEN expres-
sion in 50% of patients, and a downregulation of TSC2 in 35% 
of patients, both of which correlate with poor survival (71). 
Small intestinal NETs also have dysregulated PI3K/AKT/mTOR 
pathway, but exhibit amplification of AKT in 33% of patients 
(44). This suggests that while there is clear evidence that this 
pathway is dysregulated in both pancreatic and intestinal NETs, 

the underlying molecular mechanisms are potentially different, 
and may explain the varied responses to targeted therapy in 
clinical trials.

CONClUSiON

Gastrointestinal NETs are a very heterogeneous group of 
tumors. Targeted therapies are available to treat these tumors 
but despite the many clinical approaches to NETs, and beyond 
surgery for localized disease, there is little consensus on first 
line therapy. Results of ongoing clinical trials will better inform 
patient management with respect to selection, timing, duration, 
and combination of available therapies, and immunotherapy 
holds great promise for NETs and other cancers. Furthermore, 
genetics-based approaches may hold the key toward precision 
therapies and future investigations into novel pathways may help 
define driver mutations present in the different subtypes of NETs. 
Future clinical utilization of gene panels, methylation screening 
tools and other molecular biomarker approaches in addition to 
classical neuroendocrine markers, will facilitate treatment and 
improve outcomes of this disease.
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