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Kisspeptins are a family of neuropeptides that are critical for initiating puberty and reg-
ulating ovulation in sexually mature females via the central control of the hypothalamic– 
pituitary–gonadal axis. Recent studies have shown that kisspeptin and its receptor kis-
speptin receptor (KISS1R) are expressed in the mammalian ovary. Convincing evidence 
indicates that kisspeptins can activate a wide variety of signals via its binding to KISS1R. 
Experimental data gathered recently suggest a putative role of kisspeptin signaling in the 
direct control of ovarian function, including follicular development, oocyte maturation, 
steroidogenesis, and ovulation. Dysregulation or naturally occurring mutations of the 
kisspeptin/KISS1R system may negatively affect the ovarian function, leading to repro-
ductive pathology or female infertility. A comprehensive understanding of the expression, 
actions, and underlying molecular mechanisms of this system in the human ovary is 
essential for novel approaches to therapeutic and diagnostic interventions in reproduc-
tive diseases and infertility.

Keywords: kisspeptin, kisspeptin receptor, ovarian function, follicular development, oocyte maturation, ovulation, 
steroidogenesis, kisspeptin signaling

iNTRODUCTiON

Female reproduction is a highly orchestrated and regulated process controlled by the hypothalamic–
pituitary–ovarian (HPO) axis. The pulsatile gonadotropin-releasing hormone (GnRH), and therefore 
gonadotropins (FSH and LH), secretion primarily governs the HPO axis at puberty and maintains 
the cyclic function in adulthood (1). This tonic GnRH/gonadotropins secretion is modulated by a 
negative feedback effect of serum estrogen secreted from the growing ovarian follicles (2). Apart 
from the pulsatile secretion of GnRH, the surge mode of GnRH release is characterized by a large 
amount of LH secretion, which is required for triggering ovulation in female mammals (3). During 
the periovulatory stage, the high serum level of estrogen exerts its positive feedback influence upon 
GnRH neurons to induce a GnRH surge and hence the LH surge (4). Studies related to the underlying 
cellular and molecular mechanisms of the negative and positive feedback effects of estrogen have 
been of considerable interest. Even though the critical role of GnRH in regulating female reproduc-
tion, there exist several functional limitations of the GnRH neuronal network. The major issue is that 
GnRH neurons do not express estrogen receptor α, the principle receptor that mediates both negative 
and positive estrogen feedback actions (5).

In the past decade, emerging studies have found that kisspeptin (KISS1) is the upstream regulator 
of pulsatile and surge GnRH release, with indispensable roles in female reproduction, including 
gonadotropin secretion, puberty onset, brain sex differentiation, ovulation, and metabolic regulation 
of fertility (6, 7). In mammals, two populations of hypothalamus kisspeptin neurons, anteroventral 
periventricular nucleus (AVPV) and arcuate nucleus (ARC), have been identified to play different 
functional roles in exerting the positive and negative feedback actions in response to estrogen (8, 9). 
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FigURe 1 | Major structural features of human kisspeptins, the products of the Kiss1 gene. Different kisspeptins are generated by the cleavage from a common 
precursor, the prepro-kisspeptin. The prepro-kisspeptin contains 145 amino acids, with a 19-amino acid signal peptide and a central 54-amino acid region, 
kisspeptin-54 (Kp-54; formerly termed as metastin). Further cleavage of metastin generates kisspeptins of lower molecular weight: kisspeptin-14 (Kp-14), Kp-13, 
and Kp-10. All kisspeptins contain the RF-amide motif that is able to bind and activate kisspeptin receptor. Modified from Ref. (6).
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Specifically, kisspeptins function through a G-protein-coupled 
receptor, kisspeptin receptor (KISS1R) to stimulate the release 
of GnRH (and subsequent secretion of FSH and LH) in many 
mammals. Notably, in humans and mice, inactivating mutations 
in either kisspeptin or KISS1R lead to the phenotype of hypo-
gonadotropic hypogonadism. In addition, emerging evidence 
indicates the potential physiological roles of extra-hypothalamic 
kisspeptins in modulating the activity of diverse systems in 
the brain and many peripheral organs (10–14). Several studies 
have demonstrated that kisspeptins and their putative receptor, 
KISS1R are expressed across different types of tissues (15–19). 
Therefore, kisspeptins may exert their direct actions on various 
types of tissues in an autocrine/paracrine manner depending on 
different physiological conditions. With regard to the reproduc-
tive function, an increasing number of reports have shown that 
the reproductive tissues, such as ovary, female genital tract, 
placenta, and testis, can express functional form of kisspeptin/
KISSR system among various species including humans (18, 20, 
21). Furthermore, several publications have appeared in recent 
years documenting that locally produced kisspeptin/KISSR 
directly participates in a series of physiological and pathologi-
cal activities in the ovary. Indeed, the extra-hypothalamic roles 
of kisspeptins have recently attracted special attention in fields 
related to reproductive biology and clinical reproductive medi-
cine. This review will focus mainly on available literature related 
to the pathophysiological roles of kisspeptin/KISSR in regulating 
ovarian function and summarize our current understanding of 
the mechanisms by which kisspeptin exert its cellular actions as 
well as the therapeutic implications of kisspeptins in reproductive 
medicine.

MeTHODS

A systematic literature search was performed using PubMed and 
Web of Science for all English-language articles up to November 
2017. A systematic review of English-language publications was 

carried out using the following keywords: Kiss1, kisspeptin, 
metastin, KISS1R, GPR54, ovary, kisspeptin signaling, premature 
ovarian failure, PCOS, endometriosis, follicular development, 
steroidogenesis, oocyte maturation, ovulation, knockout, and 
therapeutic application. The goal of this review is to summarize 
the latest studies regarding the direct roles and physiological 
significance of kisspeptin/KISS1R in the ovary and discuss some 
molecular mechanisms and potential therapeutic targets in 
reproductive diseases.

DiSCOveRY OF KiSSPePTiN AND KiSS1R

In 1996, kisspeptin (the 145 amino acid) and its encoding 
gene KISS1 were first identified as a suppressor (and a gene) 
of human malignant melanoma in Hershey, Pennsylvania, 
USA—the hometown of the famous Hershey’s kisses chocolates 
(22). The name of KISS1 was derived from these sweets, with 
the “SS” representative of “suppressor sequence.” In human, 
KISS1 is located on the long (q) arm of chromosome 1 at q32. 
KISS1 encodes an unstable and biologically inactive intermedi-
ate prepropeptide of 145 amino acids, which is further post-
translationally converted to four biologically active peptides 
distinguished on the basis of their number of amino acid: 
kisspeptin-54, 14, 13, and 10 (Figure  1). All of the peptides 
have a C-terminal region that contains an Arg–Phe–NH2 
motif characteristic of the RF-amide peptide family, which 
allows them to fully activate KISS1R. Based on structural simi-
larities and their common origin as KISS1-derived peptides, 
the term kisspeptin was globally used to define this family  
(6, 23). Kisspeptin-54 was initially termed as “metastin” 
because of its capacity to inhibit tumor metastasis. This peptide 
has been considered as the major product of the human KISS1 
gene (19). Whereas in rats and mice, the largest proteolytic 
product of the kisspeptin precursor is kisspeptin-52 (composed 
of 52 amino acids), and the terminal RF-amide signature is 
substituted by an Arg–Tyr–NH2 motif (6). Kisspeptin-54, -14, 
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TAble 1 | Expression of the kisspeptin/kisspeptin receptor system in the ovary.

Reference Kisspeptins gPR54 Methods Species

Garcia-Ortega et al. (29) MGCs, CCs MGCs, CCs RT-qPCR Human
Laoharatchatathanin et al. (14) GCs GCs, interstitial cells RT-qPCR Rat
Zhou et al. (30) TCs, oocyte, interstitial cells TCs IH Rat
Garcia-Ortega et al. (31) MGCs, CCs MGCs, CCs RT-qPCR, IF, WB Human
Merhi et al. (32) MGCs (−) CCs (−) CCs RT-qPCR Human
Merhi et al. (32) Ovary Ovary RT-qPCR Mouse
Cielesh et al. (33) Oocyte, CL, GCs, TCs (−) Oocyte, CL, GCs, TCs (−) IH Canine
Gaytan et al. (41) TCs, CL, interstitial and epithelium cells; GCs (−), SCs (−) TCs, SCs, GLCs; TLCs (−) RT-qPCR, IH Human, 

marmoset
Castellano et al. (17) GCs (−), TCs, TCLs, GLCs, CL, oocyte, interstitial GCs (−), TCs, CL, interstitial; SCs (−) RT-qPCR, IH Rat
Hsu et al. (34) Oocyte, GCs, TCs GCs (−), oocyte (−), interstitial IH Mouse
Shahed and Young (20) CL, GCs, TCs, interstitial (−) CL, GCs, TCs (−) RT-qPCR, IH Hamster
Peng et al. (37) TCs, CL, interstitial, GC (−) CL, GC, interstitial (−) RT-qPCR, IH Rat
Xiao et al. (43) CL, GCs CL RT-qPCR, IF Chicken
Saadeldin et al. (44) CCs (−), oocyte, FF CCs, oocyte RT-qPCR, IF, EIA Pig
Mondal et al. (35) AF, CL No data EIA Cow
Mondal et al. (36) FF No data EIA Cow
Terao et al. (12) Ovary No data RT-qPCR Rat
Fernandois et al. (40) Ovary No data RT-qPCR, WB Rat
Fernandois et al. (39) Ovary No data RT-qPCR, WB Rat
Dorfman et al. (45) GCs Oocyte RT-qPCR, IH Mouse
Cejudo Roman et al. (21) Ovary Ovary RT-qPCR, Human
Ricu et al. (38) CL, interstitial gland, TCs, GCs Ovary, GCs RT-qPCR, IH, IF Rat

AF, antral follicle; CL, corpus luteum; CCs, cumulus cells; GCs, granulosa cells; FF, follicular fluid; TCs, theca cells; MGCs, mural granulosa cells; GLCs, granulosa-lutein cells; TLCs, 
theca-lutein cells; SCs, stromal cells; EIA, enzyme immunoassay; IF, immunofluorescence; IH, immunohistochemistry; WB, western blot; RT-qPCR, quantitative real-time PCR.
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and -13 as well as a shorter peptide designated kisspeptin-10 
have the same affinity and efficacy on KISS1R in both humans 
and rats, indicating that the C-terminal part of the peptides is 
responsible for the high-affinity binding and the activation of 
KISS1R (23).

Kisspeptin receptor is a seven-transmembrane G-protein-
coupled receptor, which was firstly identified in the rat brain 
as an orphan receptor with around 40% sequence similarity 
with the transmembrane region of galanin receptors (24). 
Subsequently, the human ortholog of KISS1R was cloned and 
cataloged as a putative receptor for KISS1-derived peptides (19, 
25). Since various groups of researchers independently noted 
its presence or studied its physiological roles, KISS1R has been 
given various different names, including KISS1R, GPR54, 
AXOR12, hOT7T175, CPPB1, and HH8 (19, 23–25). It was not 
until 2003 that the physiological role of kisspeptins and their 
receptor, KISS1R in the neuroendocrine–reproductive axis was 
identified (26, 27), which thereafter revolutionized the field of 
reproductive physiology. These findings suggest that kisspeptins 
and their receptor KISS1R play a critical role as gatekeepers of 
sexual maturation during puberty onset and central proces-
sors for the dynamic regulation of the gonadotropic axis at 
adulthood.

THe KiSSPePTiN/KiSS1R SYSTeM iN THe 
OvARY

The action of kisspeptin/KISS1R in the ovary presupposes 
the presence of functional KISS1R and its endogenous ligand 

kisspeptin. Expression of both kisspeptin and KISS1R has 
been reported in a variety of tissues, including adipose tissue, 
pancreas, liver, small intestine, peripheral blood lymphocytes, 
testis, lymph nodes, aorta, coronary artery, and umbilical vein, 
female tract, and particularly abundant in placenta and the 
central nervous system (12, 21, 28). Terao et al. first reported 
that kisspeptin mRNA was prominently expressed in the rat 
ovary, suggesting a locally functional role of kisspeptin in this 
reproductive tissue (12). Specific structure or cell expression 
of kisspeptin and its receptor KISS1R had not been indicated 
until 2006, when Castellano et  al. found that kisspeptin and 
KISS1R were both expressed in theca cells, corpora lutea, and 
interstitial tissues (17). While there are inconsistent results 
from later studies that are particular puzzling with regard to the 
cell expression of Kiss1/KISS1R even in the same species (14, 
20, 29–36) (summarized in Table 1). For example, some studies 
demonstrated the absence of kisspeptin/KISS1R in granulosa 
cells (GCs) of rat ovary (17, 30), whereas other studies indi-
cated the strong expression of kisspeptin or KISS1R in rat GCs 
(14, 37, 38). One study has identified that GC was the major site 
for kisspeptin synthesis in rats, as Kiss1 mRNA expression was 
significantly higher in the GCs compared with the theca cells 
and other ovarian cells (38). However, other studies showed 
that KISS1R mRNA was equally distributed between the GCs 
and other cells of the residual ovary. These inconsistencies in 
the expression of the kisspeptin/KISS1R system in the ovary are 
partly because of the different methods employed to examine 
their presence. In addition, the discrepancies of age and ovar-
ian tissues and cells obtained from different estrous/menstrual 
cycles can significantly affect the expression patterns (17, 20, 
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TAble 2 | Summary of the ovarian effects of Kiss1/Kiss1r in genetically modified or mutant models.

Reference Mutant  
model

Fertility Ovarian effects Serum gn Species

Funes et al. (46) Kiss1r−/− Infertile Ovary size↓ No data Mouse

Seminara et al. (27) Kiss1r+/− Fertile Normal No data Mouse

Seminara et al. (27) Kiss1r−/− Induced ovulation when 
injection of pregnant mare 
serum gonadotropin and HCG, 
but no data as to fertility

Ovary weight↓; primary and secondary follicles and 
occasionally an early antral follicle, but no large graafian 
follicles or corpus luteum (CL)

FSH↓ LH↓ Mouse

Colledge (47) Kiss1r−/− No data Ovary weight↓ FSH↓ LH↓ Mouse

Colledge (47) Kiss1−/− No data Ovary weight↓ FSH↓ LH↓ Mouse

Chan et al. (48) Kiss1−/− No data Follicles at all stages of development and large numbers 
of atretic follicles, no CL

FSH↓ LH (−) Mouse 

Uenoyama et al. (49) Kiss1−/− No data Ovary size↓ FSH↓ LH↓ Rat

Kauffman et al. (50) Kiss1r−/− No data Ovary size↓ No data Mouse

Mayer and Boehm (51) Specific Kiss1 
KO in neurons

Fertile Ovary weight↓; all stages of follicles and CL LH (−) Mouse

Mayer and Boehm (51) Specific Kiss1r 
KO in neurons

Fertile Ovary weight↓; All stages of follicles and CL LH↓ (insignificant) Mouse

Gaytan et al. (52) Kiss1r+/− Fertile before 48 weeks old; 
infertile at 48 weeks old

Ovulated oocyte↓, primary follicle↓ (by 16 weeks of 
age); premature ovarian failure (after 32 weeks of age)

FSH (−) LH (−) 
before 48 weeks 
old; FSH↑ LH (−) at 
48 weeks old

Mouse

Gaytan et al. (52) Kiss1r−/− No data Ovary size↓; primary, and secondary follicles; all early-
antral follicles showed signs of atresia; no large antral 
follicles or corpora lutea

FSH↓ LH↓ Mouse

Gaytan et al. (53) Kiss1r−/− No data Growing follicles↓, resting follicles↑ No data Mouse

Garcia-Galiano et al. (42) Kiss1r−/− No data Ovary weight (−) (by 3 weeks of age); ovary weight↓ (by 
9 weeks of age); all stage follicles; atretic follicles↑, CL↓

No data Mouse

Lapatto et al. (54) Kiss1r+/− Fertile Ovary weight (−) FSH (−) LH (−) Mouse

Lapatto et al. (54) Kiss1r−/− Infertile Ovary weight↓; absence of preovulatory follicles and 
CL, atretic follicles↑

FSH↓ LH (−) Mouse

Lapatto et al. (54) Kiss1+/− Fertile Ovary weight (−); all stages of follicles and CL, atretic 
follicles↑

FSH (−) LH↑ Mouse

Lapatto et al. (54) Kiss1−/− Infertile Ovary weight↓/t (−); absence of preovulatory follicles 
and CL, atretic follicles↑, presence of multiple large cyst

FSH↓ LH (−) Mouse

d’Anglemont de Tassigny 
et al. (55)

Kiss1−/− No data Ovary size↓; absence of preovulatory follicles and CL, 
atretic follicles↑

FSH↓ LH↓ Mouse

Kirilov et al. (56) Specific Kiss1r 
KO in neurons

Infertile Ovary size↓, absence of CL, atretic follicles↑ FSH↓ LH (−) Mouse

4

Hu et al. Ovarian Kisspeptin/KISS1R System

Frontiers in Endocrinology | www.frontiersin.org January 2018 | Volume 8 | Article 365

32–35, 38–41). Similar to other species, the follicular expres-
sion of kisspeptin/KISS1R is gradually increased as the follicles 
grow, with a highest level at the preovulatory stage in humans  
(20, 35, 36), which is partly due to the stimulatory effect of the 
gradually increased gonadotropins on the expression of kiss-
peptin at this stage (17). In gene knockout models, Kiss1−/− or 
Kiss1R−/− mice showed small ovarian size and weight compared 
to the wild-type counterparts (see Table 2). Initially, no such 
difference in ovarian weight was detected between wild-type 
and Kiss1R−/− females in 3-week-old animals. Eventually, in 
9-week-old and 7-month-old animals, there was a significant 
decrease in reproductive organ weights in the female Kiss1R−/− 
mice (42). These findings suggest a possible age-related 
physiological role for the kisspeptin/KISS1R system in ovarian 
physiology and that this system functions mainly at the puberty 
and adult stages.

ROleS OF THe KiSSPePTiN/KiSS1R 
SYSTeM iN RegUlATiNg OvARiAN 
FUNCTiON

Follicular Development
The population of primordial follicles decreases at variable rates 
until menopause in humans and infertility in rodents. During 
follicular development, the selection and activation of primordial 
follicles in the ovarian pool (ovarian reserve), established early in 
life, provides all growing follicles, including primary, secondary, 
small antral, and large antral follicles, and ovulated oocytes.

Using an implanted mini-osmotic pump containing kisspep-
tin or kisspeptin antagonist P234 for 28 days, Fernandois et al. 
evaluate the long-term effect of kisspeptin on ovarian follicular 
development (39). In 6- and 10-month-old rats, ovaries infused 
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with a low dose of kisspeptin had a fewer number of antral 
follicles, but an increased number of preovulatory follicles and 
corpora lutea. On the contrary, ovaries infused with P234 had an 
increased number of antral follicles and a decreased number of 
preovulatory follicles and corpora lutea. This study also showed 
that kisspeptin attenuated the initial follicle recruitment (primary 
to secondary) by downregulating the expression of FSH receptor 
(FSHR). Apart from the downregulation of FSHR, kisspeptin can 
suppress the initial follicle recruitment through the upregulation 
of circulating anti-Müllerian hormone (AMH). AMH is primar-
ily secreted by the secondary and small antral follicles and is a 
biomarker for ovarian reserve (57) due to its ability to inhibit the 
activation of primordial follicles (58). Interestingly, Fernandois 
et  al. found that local administration of kisspeptin increased 
plasma AMH, whereas administration of P234 decreased plasma 
AMH in 6- and 10-month-old rats (39). Therefore, kisspeptin may 
negatively regulate preantral (including primordial, primary, and 
secondary follicles in this review) follicular development through 
upregulating AMH and downregulating FSHR expression in 
the ovary. However, there was an intriguing phenomenon that 
kisspeptin can induce an accumulation of preovulatory follicles 
and a decrease in the number of small antral follicles (39). We 
may speculate that kisspeptin inhibits the growth of preantral 
and small antral follicles by negatively regulating the expres-
sion of FSHR. On the other hand, kisspeptin upregulates AMH 
expression and promotes the maturation of large antral follicles, 
as the same phenotype shown in Kiss1−/− or Kiss1r−/− knockout 
models (54, 55). Intriguingly, low dose of LH has been shown to 
suppress the development of small ovarian follicles and stimulate 
the growth of large ovarian follicles (59–64). Collectively, these 
findings indicate that kisspeptin could be the downstream target 
of LH signals to regulate the follicular development. In line with 
these findings, Castellano and coworkers found that Kiss1 mRNA 
was significantly increased in rat ovary following the injection of 
hCG (17).

In gene knockout models, both Kiss1r−/− and Kiss1−/− mice 
display significantly reduced ovarian weight and size (46, 47, 
49, 50), which may be resulted from the absence of large follicles 
(Table 2). Interestingly, the Kiss1r haploinsufficient (Kiss1r+/−) 
mice have significantly decreased ovarian kiss1r expression 
and exhibit premature ovarian failure (POF) at 32-week-old 
age, with a substantial loss of preantral follicles and increased 
percentage of atretic follicles. The depletion of these follicles 
seems not because of the defect in gonadotropin secretion as the 
exhaustion of follicular reserve cannot be rescued by gonadotro-
pin replacement (52). Moreover, the gonadotropin levels were 
not significantly different between the wild-type and Kiss1r+/− 
mice as demonstrated in another study (54). Interestingly, the 
discrepancy of the number of preantral and antral follicles 
between Kiss1r+/− and wild-type mice is related to age. Indeed, 
no significant differences in preantral follicle development 
were observed between wild-type and Kiss1r+/− mice before 
puberty, but the progressively decreased number of preantral 
follicles were detected in Kiss1r haploinsufficient mice after 
puberty, and thereafter until the age of 32-week olds. Consistent 
with these results, immature ovaries showed low to negligible 
levels of Kiss1 mRNA, which were significantly enhanced by 

gonadotropin priming (17). Taken together, all these findings 
strongly suggest that functional role of kisspeptin in regulating 
follicular development mainly occurs after puberty, which is in 
consistence with the age-related expression of kisspeptin in the 
ovary (17, 32, 39).

Increased atretic follicles were also observed in the ovaries 
obtained from KISS1R−/− humans and Kiss1−/− mice (48, 54, 55). 
However, the increased number of atretic follicles cannot be 
totally attributed to the local kisspeptin/KISS1R signals, as the 
decreased FSH levels caused by the neural Kiss1/Kiss1r knock-
out and subsequently the downregulation of hypothalamic– 
pituitary–gonadal axis can also induce the atretic changes of 
the follicles (56, 65) (Table  2). Nevertheless, one study using 
ovarian histology showed the presence of all stages of follicular 
development and corpora lutea in mice with targeted ablation 
of Kiss1 and/or Kiss1r expressing neurons (reduced more than 
90%). Interestingly, the LH levels of mutant mice were lower than 
the wild-type mice, without showing the FSH levels (51). These 
results suggested the indispensable role of the neural kisspeptin/
KISS1R system in regulating follicular development. Future 
studies aimed at addressing the functional role of intraovarian 
kisspeptin/KISSR1 system in regulating follicular development 
using the established ovary-specific Kiss1/Kiss1r knockout model 
will be urgently required.

OOCYTe MATURATiON

Evidence from two independent studies showed that kisspeptin- 
54 injection could trigger human oocyte maturation effectively 
and safely (66, 67). Given that kisspeptin-54 is able to cross 
the blood–brain barrier and then stimulates LH release to 
the peripheral circulation (44), we can expect a dramatically 
elevated level of LH in plasma following the kisspeptin-54 
injection as reported in two studies (66, 67). Therefore, it is 
difficult to establish a theoretical concept that kisspeptin can 
directly induce oocyte maturation in the ovary because oocyte 
maturation can also be induced by the elevated LH level. 
Nevertheless, kisspeptin has been shown to enhance in  vitro 
maturation of the oocytes of pigs (44) and sheep (68). However, 
these studies used an in vitro culture system of the cumulus–
oophorus complex instead of the denuded oocytes. Since both 
cumulus cells (CCs) and oocyte can express KISS1R in pigs 
and mice (44, 45), it is easily confused whether the kisspeptin-
induced oocyte maturation is mediated by the CCs or the 
oocyte itself. One interesting result derived from these studies 
is that during in  vitro maturation of pig cumulus–oophorus 
complex, treatment with kisspeptin-10 resulted in temporally 
elevated expression of GDF9 and BMP15 in oocytes, two 
essential growth factors involved in regulating folliculogenesis, 
ovulation, luteinization, oocyte maturation, and developmental 
competency (69–71). Furthermore, these effects are potentially 
mediated via a MAPK signaling pathway in GCs (72, 73). On the 
other hand, administration of kisspeptin-10 also upregulated 
the expression of C-MOS in oocytes, which plays a crucial role 
in promoting the meiosis process, formation of normal spindle 
and chromosome, and reactivation of purified maturation 
promoting factor after first meiosis (74–77). Collectively, these 
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findings suggest that kisspeptin-induced oocyte maturation is 
mediated by the upregulation of C-MOS, GDF9, and BMP15. 
To the best of our knowledge, the utilization of kisspeptin to 
induce in  vitro maturation of human oocytes has not been 
reported.

OvUlATiON

Peripheral administration of kisspeptin has been reported to 
induce ovulation in rats (78) and ewes (79). Since plasma levels 
of gonadotropins (FSH and LH) significantly increased after the 
administration of kisspeptin, the stimulatory effect of kisspeptin 
on ovulation is most likely at the hypothalamus instead of at the 
ovary.

In gene knockout mice, depletion of Kiss1r can induce ovula-
tion after standard gonadotropin priming (27), suggesting that the 
ovarian kisspeptin signaling is not mandatory for ovulation. In 
addition, in Kiss1r−/− female mice following the extended GnRH 
plus gonadotropin stimulation, newly formed corpora lutea could 
be observed in the ovaries, and cumulus–oophorus complexes 
could be found in the oviducts (52). Although there seems no 
significant difference of oocyte quality between wild-type and 
Kiss1r−/− female mice, null animals presented significantly fewer 
ovulated oocytes and corpora lutea (52), suggesting that the 
GnRH plus gonadotropin stimulation is not enough to reverse 
the functional loss due to Kiss1r knockout. Given that ovaries 
from nearly all Kiss1r−/− and many Kiss1−/− mice do not contain 
follicles past the antral follicle stage (54), and most Kiss1−/− mice 
and at least one Kiss1r−/− mouse exhibit multiple large cysts with 
no sign of ovulation, the depletion of kisspeptin/KISS1R system 
significantly influences the process of ovulation. In neuron-
specific Kiss1 and Kiss1r knockout mice, the ovarian histology 
showed follicles at all developmental stages and the presence of 
corpora lutea. All female mutant mice can produce offspring 
when mated to wild-type males (51). These two independent 
studies strongly suggest that the locally produced kisspeptin/
KISS1R system, instead of that in the neuron, may be involved in 
the process of ovulation and oocyte maturation. However, these 
findings cannot completely exclude the central role of the neural 
kisspeptin/KISS1R system in controlling the LH surge and the 
subsequent ovulation.

COX-2/prostaglandins have a crucial role in the ovulatory 
process (80–82). Gaytan et al. found that inhibition of COX-2 
in cyclic female rats resulted in a dramatic drop of ovarian Kiss1 
mRNA levels at the time of ovulation, which was fully rescued 
by the coadministration of prostaglandin E2 (41). In addition, 
injection of hCG increased the Kiss1 mRNA level in the ovary, 
which was completely reversed by the inhibition of COX-2 (41). 
These results indicate that kisspeptin is one of the downstream 
targets of COX-2/prostaglandins, and that kisspeptin may 
participate in the process of ovulation. In rat ovaries, the Kiss1 
mRNA levels fluctuated in a cyclic-dependent manner, with a 
robust increase shortly before ovulation, suggesting a functional 
role of kisspeptin at the time of ovulation (17). In line with this 
result, pregnant mare serum gonadotropin evoked a significant 
increase in ovarian Kiss1 mRNA level that was further enhanced 
by the injection of an ovulatory dose of hCG. Furthermore, 

the rise of the ovarian Kiss1 mRNA level was prevented by the 
blockade of LH surge using an antagonist of GnRH (17). In 
both 6- and 10-month-old rats, ovarian infusion with kisspeptin 
increased the number of corpora lutea, while infusion with P234 
decreased the number of corpora lutea (39), suggesting that 
locally increased kisspeptin may promote the process of ovula-
tion. Interestingly, an exposure of female rats to the high-fat 
diets resulted in a downregulation of ovarian Kiss1 mRNA and 
kisspeptins, which is likely associated with the obesity-related 
ovulatory dysfunction (30).

STeROiDOgeNeSiS

The role of kisspeptins in the regulation of endocrine system 
was first identified in 2001 showing that kisspeptin was highly 
expressed in human placenta, pituitary gland, pancreas, and spi-
nal cord and was an endogenous stimulator of oxytocin (23). In 
rat ovaries, kisspeptin was intensively expressed in morphologi-
cally discernible steroidogenic luteal cells of newly formed copora 
lutea (17). Two reports documented the direct stimulatory effects 
of kisspeptin on the secretion of progesterone in chicken GCs 
(43) and rat luteal cells (37), respectively. The synthesis of proges-
terone is controlled by a series of processing enzymes, including 
steroidogenic acute regulatory protein (StAR), cytochrome P450 
side-chain cleavage (P450scc) enzyme, and 3β-hydroxysteroid 
dehydrogenase (3β-HSD) enzyme (83). The mRNA levels of all 
these progesterone-producing enzymes in chicken GCs were 
significantly increased when treated with kisspeptin-10 (43). In 
rat luteal cells, treatment with kisspeptin alone had no significant 
effect on 3β-HSD mRNA level, while cotreatment with kisspeptin 
and hCG significantly increased the transcript level of 3β-HSD 
(37). In addition, treatment with kisspeptin alone increased the 
mRNA levels of StAR and CYP11A, and these stimulatory effects 
were enhanced when cotreated with hCG (37). In line with these 
results, hCG stimulated the expression of kisspeptin in rat GCs, 
and the hCG-induced increase in progesterone production was 
suppressed by a kisspeptin antagonist P234 (14), suggesting an 
indispensable role of ovarian kisspeptin in the regulation of 
progesterone production.

Unlike the stimulatory effect on progesterone production, 
kisspeptin has no effect on estrogen production in rat luteal cells 
(37). However, whether kisspeptin can promote the estrogen 
synthesis in GCs of the growing follicle during the mid- and 
late-proliferative phase, when the expression of kisspeptin 
reaches peak levels, has not been investigated. Neurokinin B 
(NKB) stimulate kisspeptin secretion in an autocrine and/or 
paracrine manner in neurons [reviewed in Skorupskaite et  al. 
(84)]. Interestingly, NKB and its receptor were coexpressed with 
kisspeptin and KISS1R in human GCs and CCs (14, 29, 31). 
In addition, a recent study showed that NKB exerted a direct 
effect on stimulating estradiol production in zebrafish follicular 
cells and human GCs via the activation of ERK signaling (85). 
It is likely that kisspeptin/KISS1R system is involved in NKB-
induced estrogen production, as kisspeptin acts as a downstream 
mediator of NKB in the hypothalamus and that kisspeptin can 
stimulate the activation of ERK signaling (discussed later). 
Further studies are required to confirm the functional role of 
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FigURe 2 | Kisspeptin/kisspeptin receptor (KISS1R) signaling at a glance. KISS1R is a seven-transmembrane domain, Gq/11-coupled receptor. Upon binding of 
kisspeptin, the intracellular portion of KISS1R phosphorylates Gq/11. The α-subunit of Gq/11 activates PLC, which cleaves PIP2 into IP3 and DAG. IP3 promotes 
intracellular Ca2+ release from the endoplasmic reticulum, while DAG activates a signaling cascade by phosphorylating PKC. PKC activation induces the 
phosphorylation of MAP kinases, such as ERK1/2 and p38. In addition, activation of KISS1R recruits arrestin-1 and -2, which downregulated and upregulated 
phosphorylated ERK1/2 levels, respectively. The activation of KISS1R can stimulate or inhibit the phosphorylation of PI3K/Akt, depending on the cell types, but the 
intermediator is not investigated. Activated KISS1R also enhances the expression of MMP-9 via PI3K/Akt/NF-κB or ERK/NF-κB signaling. DAG, diacylglycerol; 
ERK1/2, extracellular signal-regulated kinase; IP3, inositol 1,4,5-triphosphate; PI3K, phosphatidylinositol-3-kinase; MMP-9, matrix metalloproteinase-9; NF-κB, 
nuclear factor κB; PIP2, phosphatidylinositol 4,5-bisphosphate; PKC, protein kinase C; PLC, phospholipase C.
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intraovarian kisspeptin in regulating steroidogenesis in human 
GCs of growing follicles.

THe KiSSPePTiN SigNAliNg PATHwAY

Convincing evidence indicates that kisspeptin can activate a 
wide variety of signals via KISS1R. Being a G-protein-coupled 
receptor, KISS1R belongs to the subgroup of typical Gq/11 
protein-associated receptors. After kisspeptin binds to KISS1R, 
the phosphorylated Gq/11 protein activates phospholipase C 
(PLC)-β, which leads to the activation of various second mes-
sengers, including phosphatidylinositol 4,5-bisphosphate (PIP2) 
hydrolysis, accumulation of inositol-(1,4,5)-triphosphate (IP3), 
and diacylglycerol, protein kinase C (PKC) activation, and intra-
cellular Ca2+ mobilization and release (Figure 2) (19, 23, 25, 86, 
87). It has been reported that activation of PKC is required for 
LH-induced progesterone synthesis the preovulatory follicles of 
rats, hen, pigs, and quails (88–92). In addition, activation of PKC 
activity is required to promote the ERK signaling cascade that 
ultimately facilitates LH-induced progesterone production (93). 
Consistent with this result, Peng et  al. showed that kisspeptin 
promoted progesterone synthesis by phosphorylating ERK1/2 
(37). Therefore, the PLC–PKC–ERK signaling pathway most 
likely mediates progesterone synthesis in granulosa-luteal cells.

Ca2+ is initially stored in the lumen of the endoplasmic reticu-
lum. Following the signal from IP3, Ca2+ is released through 
specialized channels, and therefore the free Ca2+ concentration 
in the cytoplasm is elevated (94). LH induces a rapid rise of 

intracellular Ca2+ that is released from Ca2+ stores in the cumulus 
layers, and subsequently an increased Ca2+ efflux into the oocyte 
(95). The increase of Ca2+ in the oocyte is thought to play a role in 
controlling either spontaneous or gonadotropin-induced oocyte 
maturation, possibly by modulating the intracytoplasmic cAMP 
concentrations via a Ca2+-sensitive adenylate cyclase (96, 97).

In addition to the PLC–PKC–Ca2+ pathway, kisspeptin also 
induces other intracellular transduction pathways. The activa-
tion of ERK1/2 is thought to be the most conserved kinase signal 
among many cell types examined. However, not all cell types with 
the activation of ERK1/2 show stable p38 MAPK and PI3K/Akt 
activation when exposed to kisspeptin (98). In Chinese hamster 
ovary K1 cells, treatment with kisspeptin-10 induced a strong and 
sustained phosphorylation of ERK1/2, while a weak phosphoryla-
tion of p38 and no phosphorylation of stress-activated protein 
kinase/c-Jun NH2-terminal kinase (23). Similarly, kisspeptin can 
activate the ERK1/2 signaling without any effect on P38 signal-
ing in rat luteal cells (37). Intriguingly, activated KISS1R can also 
recruit arrestin β-1 and β-2 to the plasma membrane, which fur-
ther modulates the intracellular phosphorylated ERK1/2 levels 
in many mammalian cells (99–101). The attenuation of MAPK 
signaling pathway in GCs results in cell apoptosis and the subse-
quent follicle atresia (102). Interestingly, Kiss1 or Kiss1r mutant 
animals showed much more atretic follicles than the wild-type 
counterparts (54, 55), suggesting that kisspeptin/KISS1R system 
may prevent the apoptosis of GCs. However, kisspeptin also 
downregulates the expression of FSHR in rat follicles, which may 
increase follicle atresia by inhibiting the follicular growth and 
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inducing apoptosis of GCs (103, 104). Therefore, we may specu-
late that the intraovarian kisspeptin/KISS1R system modulates 
GC proliferation and apoptosis, oocyte maturation, ovulation, 
and steroidogenesis by regulating the MAPK signaling pathway.

Apart from the MAPK pathway, PI3K/Akt pathway also func-
tions in both GCs and oocytes (105). In mammals, the PI3K/AKT 
signaling pathway is required for primordial follicle survival and 
activation, determination of the primordial follicle pool, and 
transition of the primordial follicle to growing follicles (106). In 
addition, this intra-follicular signaling modulates GC apoptosis, 
oocyte meiosis resumption, polar body emission, and spindle 
organization (107, 108). The effect of kisspeptin on the activation 
of PI3K/Akt signaling pathway is cell type specific. In rat luteal 
and thyroid cancer cells, kisspeptin cannot stimulate the phos-
phorylation of PI3K/Akt (37, 109), whereas kisspeptin induced 
the phosphorylation of PI3K/Akt in stably KISS1R-overexpressed 
thyroid cancer cells (110). Similarly, kisspeptin-10 was reported 
to inhibit the phosphorylation of PI3K/Akt in tumor cells  
(111–113), while kisspeptin-10 promoted the activation of 
PI3K/Akt in preoptic neurons (114). Whether the intraovarian 
kisspeptin/KISS1R system can modulate PI3K/Akt signaling 
pathway and further regulate GC apoptosis and oocyte matura-
tion remains to be elucidated.

In HT-1080 cell line, overexpression with KISS1 inhibited 
matrix metalloproteinase-9 (MMP-9) enzyme activity via 
blocking nuclear factor κB (NF-κB) nuclear translocation and 
subsequently reducing the capacity of NF-κB binding to the 
MMP-9 promoter (115). This kisspeptin-induced signaling 
pathway has been demonstrated in several cancers, including 
urothelial carcinoma (116), ovarian epithelial cancers (117), and 
breast cancers (118). ERK and PI3K/Akt have been shown to act 
the upstream of NF-κB and regulate the NF-κB DNA-binding 
activity in melanoma cells (119–121). Interestingly, the enhanced 
expression of MMP-9 via PI3K/Akt/NF-κB (122) or ERK/NF-κB 
signaling pathway (123, 124) has also been established in other 
cell types. Therefore, it is most likely that ERK or PI3K/Akt 
signaling is involved in kisspeptin-induced downregulation of 
NF-κB/MMP-9.

Matrix metalloproteinase-9 is a matrix metalloproteinase that 
plays a critical role in tissue remodeling and follicular rupture 
(125). In addition, MMP-9 is involved in the mechanism by which 
kisspeptin prevents the tumor metastasis (112, 115, 126). In rats, 
intraovarian bursa administration of kisspeptin antagonist p234 
resulted in the distortion of corpus luteum (14), indicating that 
kisspeptin can inhibit the degradation of the extracellular matrix 
in the ovary.

ROleS OF THe KiSSPePTiN/KiSS1R 
SYSTeM iN FeMAle RePRODUCTive 
PATHOlOgY

Genetic analysis in humans gave the first evidence of the 
indispensable role of kisspeptin/KISS1R system in the control 
of reproduction. Using complementary genetic approaches, 
KISS1R has been identified as the causative gene responsible for 
the consanguineous families with idiopathic hypogonadotropic 

hypogonadism (26, 27). In addition, an inactivating mutation of 
KISS1 gene has been reported as causative for idiopathic hypog-
onadotropic hypogonadism (127). The subsequent animal studies 
also confirmed that target depletion of either Kiss1 or Kiss1r had 
similar phenotypes of the human condition (27, 54).

PReMATURe OvARiAN FAilURe

A series of animal studies indicate a direct role of kisspeptin sign-
aling in the ovary, and the defect of kisspeptin/KISS1R system 
precipitates a state of POF (or primary ovarian insufficiency). 
The haploinsufficient Kiss1r mice displayed a premature decline 
in ovulatory rate, progressive loss of oocytes, and antral follicles, 
reduced numbers of preantral follicles, and reduced fertility (52). 
In addition, the ovarian tissues of these precocious ovarian aging 
mice showed atrophic appearance without growing follicles and 
corpora lutea during their 48 weeks of ages (52). Furthermore, 
the phenotype is associated with a decreased expression level of 
ovarian Kiss1r mRNA. Notably, the failure of follicular develop-
ment and ovulation due to the absent function of Kiss1r cannot be 
rescued by the replacement with gonadotropins (52). In line with 
these results, the loss of NTRK2 and Kiss1r receptor-mediated 
signaling in mouse oocytes caused POF (45). Collectively, these 
findings suggest a direct role of kisspeptin/KISS1r system in 
the ovary. Data generated from animal studies may provide a 
potential contribution to the evaluation or screening of isolated 
heterozygous mutations of KISS1R to POF in humans.

POlYCYSTiC OvARY SYNDROMe

Polycystic ovary syndrome (PCOS) is a heterogenous endocrine 
disorder that affecting reproductive-aged women. This highly 
prevalent disease is characterized by hyperandrogenism, ovula-
tory dysfunction, and metabolic dysregulation (128). In women 
with PCOS, the classic neuroendocrine dysfunction leading to the 
ovarian phenotype includes increased LH pulsatility, decreased 
FSH secretion, and perturbed LH–FSH ratios, which could be due 
to the disrupted GnRH secretion (128). Since kisspeptin/KISS1R 
system is the upstream central controller for inducing GnRH 
(and LH) secretion, we may speculate that kisspeptin levels will 
be higher in women with PCOS. Indeed, a recent study showed 
that serum kisspeptin levels were significantly higher in women 
with PCOS and that serum levels of kisspeptin were negatively 
correlated with those of FSH (129). In line with this result, other 
studies demonstrated that higher serum levels of kisspeptin in 
women with PCOS (130, 131).

During the menstrual cycle, the increased LH pulsatility in 
PCOS persisted throughout the luteal phase, which resulted in 
the persistent stimulation of androgen production by ovarian 
theca cells (132). In addition, women with PCOS displayed 
metabolic alterations, which manifest insulin resistance and 
hyperinsulinemia (133). Interestingly, serum levels of kisspeptin 
in women with PCOS were positively correlated with those of 
testosterone and DHEAS (129). Studies in mice showed that 
administration of kisspeptin significantly increased the serum 
levels of testosterone (134). The metabolic dysregulation has been 
demonstrated to exert a suppressive effect on different levels of 
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FigURe 3 | Potential mechanisms involved in the direct ovarian effects of the kisspeptin/kisspeptin receptor (KISS1R) system. Kisspeptin and KISS1R are 
expressed in ovarian cells. This locally produced kisspeptin might regulate follicular development, oocyte maturation, ovulation, and steroidogenesis in a paracrine or 
autocrine manner. Solid arrows stand for actions that have been clearly demonstrated in ovarian cells. Dotted arrows reflect potential pathways that could be 
involved in mediating the intraovarian kisspeptin/KISS1R effects, which have been proposed.

9

Hu et al. Ovarian Kisspeptin/KISS1R System

Frontiers in Endocrinology | www.frontiersin.org January 2018 | Volume 8 | Article 365

the gonadotropin axis in patients with PCOS (135) and an inhibi-
tory effect on Kiss1 mRNA expression in the hypothalamus of rats 
(136). Furthermore, ovary-derived kisspeptins have been shown 
to play a role in regulating the secretion of gonadotropins (137). 
All these findings provide the available, albeit indirect, evidence 
supporting a potential link between PCOS and the kisspeptin/
KISS1R system.

eNDOMeTRiOSiS

Endometriosis is a common benign gynecologic disease defined 
as the ectopic presence of endometrial glandular epithelium 
and stroma outside the uterus (138). At present, the detailed 
pathogenesis of this disease remains unclear despite extensive 
research. Although a benign lesion, endometriosis shares several 
characteristics of malignancy, such as cell invasion, motility, and 
adhesion, which is a unique paradigm of benign metastasis (139). 
Several metastasis suppressor genes have been identified to sup-
press the metastasis at different steps of the metastatic cascade 
(140). KISS1 was originally identified as a human metastasis sup-
pressor gene that is able to suppress the metastasis of melanoma 
and breast cancer (22). A recent study showed that the expression 
of kisspeptin (also known as metastin) is significantly higher in 
the glandular endometrium of endometriosis lesions compared 
with the eutopic glandular endometrium, indicating that kisspep-
tin is potentially implicated in the pathogenesis and maintenance 
of endometriosis (141). In contrast, other study did not detect 
the expression of kisspeptin in any endometrial tissue obtained 
from women with endometriosis (142). The discrepancy could be 
attributed to differences in study design and experimental meth-
ods. Future studies will focus on investigating the relationship 

between kisspeptin and endometriosis and evaluating the poten-
tial clinical application of kisspeptin as a marker for early and 
minimally invasive detection of endometriosis.

FUTURe DiReCTiONS AND CliNiCAl 
APPliCATiONS
Although most research mainly focuses on the functional roles 
of the kisspeptin/KISS1R system in the central modulation of the 
H–P–G axis, the growing, albeit as yet limited, experimental data 
gathered recently suggest a putative role of kisspeptin signaling 
in the direct control of ovarian function (Figure 3). It must be 
stressed that our understanding of the physiological relevance, 
putative molecular mechanisms, and subsequent pathophysio-
logical implications of such direct actions is still limited. However, 
such fragmentary evidence has supported the existence of a local 
kisspeptin/KISS1R system and the dysregulation of this system 
might contribute to several ovarian pathologies. Future study 
aimed at addressing the local role of kisspeptin in regulating 
ovarian function using a specific Kiss1 or kiss1r knockout model 
in the ovary will be of great interest. Functional studies using the 
kisspeptin antagonist P234 or other inhibition approaches will 
help investigate the physiological and pathophysiological roles 
of kisspeptin in the ovarian biology (143, 144).

The involvement of kisspeptin/KISS1R system and its 
downstream signaling pathways in a range of ovarian function 
has led researchers to develop potential therapeutic approaches 
to overcome ovarian pathology and infertility. Data obtained 
from animal and human have indicated that the peripheral 
administration of kisspeptin-10 and kisspeptin-54 can initiate 
the LH surge (145, 146). At present, kisspeptin-54 has been used 
to trigger oocyte maturation effectively in women undergoing 
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in  vitro fertilization (IVF) (66). Moreover, kisspeptin-54 may 
be a substitute medication to trigger oocyte maturation during 
IVF treatment for women at high risk of developing ovarian 
hyperstimulation syndrome (67, 147, 148). However, safety 
concern should be seriously taken into consideration before its 
application, as kisspeptin supplementation was reported to have 
a harmful impact on the cultured hatched blastocysts in pig 
(44). Nevertheless, data from several clinical studies have shown 
that administration of kisspeptin in humans is safe without any 
observed adverse effects (149–151). More extensive clinical trials 
are required to investigate the safety, efficacy, and administra-
tion routes of the pharmaceutical applications of kisspeptins in 
humans. Animal studies have demonstrated that administration 
of pharmaceutical KISS1R antagonist suppresses the secretion of 
reproductive hormones (144), indicating a potential development 
of therapeutic targets for precocious puberty, endometriosis, 
some hormone-dependent cancers, and an alternative form of 
contraception.

During follicular development, kisspeptin suppressed the 
initial follicle recruitment through the upregulation of circulat-
ing AMH, which is able to inhibit the activation of primordial 
follicles (58). We may expect the clinical application of kisspeptin 
as a potential biomarker for ovarian reserve and an indicator 
for ovulation induction during IVF treatment. Studies in mice 
demonstrated that the haploinsufficient Kiss1r mice displayed a 
phenotype of POF (52). Such data will remind us a more careful 
evaluation of the possible attribution of certain heterozygous 
gene mutations in KISS1R to POF in humans and provide a useful 
screening method for these genetic variants.

CONClUSiON

In the past decade, research regarding locally produced kiss-
peptin in the ovary has been of considerable interest. Emerging 
evidence indicates that the intraovarian kisspeptin/KISS1R sys-
tem is of great importance in controlling female reproduction, 

including follicular development, oocyte maturation, steroido-
genesis, and ovulation. Any abnormality or dysregulation of 
kisspeptin signaling may negatively affect the ovarian function, 
leading to reproductive pathology or female infertility. In 
this review, we provided a concise overview of the available, 
mainly indirect, evidence suggesting the local effects of the 
kisspeptin/KISS1R system in regulating ovarian function and 
the potential underlying molecular mechanisms. The conclusive 
demonstration of the physiological and pathophysiological 
roles of kisspeptin signaling in the ovary is still pending, and 
additional studies are required to better characterize the kiss-
peptin/KISS1R system in reproductive biology and pathology. 
Expanding our understanding of the expression, actions, and 
molecular mechanisms of this system in the human ovary is 
essential for determining whether therapeutic interventions 
targeting kisspeptin signaling can ameliorate several reproduc-
tive pathology and infertility.
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