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G protein-coupled receptors (GPCRs) exert their physiological function by transducing a 
complex signaling network that coordinates gene expression and dictates the phenotype 
of highly differentiated cells. Much is known about the gene networks they transcription-
ally regulate upon ligand exposure in a process that takes hours before a new protein 
is synthesized. However, far less is known about GPCR impact on the translational 
machinery and subsequent mRNA translation, although this gene regulation level alters 
the cell phenotype in a strikingly different timescale. In fact, mRNA translation is an 
early response kinetically connected to signaling events, hence it leads to the synthesis 
of a new protein within minutes following receptor activation. By these means, mRNA 
translation is responsive to subtle variations of the extracellular environment. In addition, 
when restricted to cell subcellular compartments, local mRNA translation contributes 
to cell micro-specialization, as observed in synaptic plasticity or in cell migration. The 
mechanisms that control where in the cell an mRNA is translated are starting to be 
deciphered. But how an extracellular signal triggers such local translation still deserves 
extensive investigations. With the advent of high-throughput data acquisition, it now 
becomes possible to review the current knowledge on the translatome that some 
GPCRs regulate, and how this information can be used to explore GPCR-controlled 
local translation of mRNAs.
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iNTRODUCTiON

When an endogenous ligand binds to its membrane receptor, it takes less than seconds to engage 
a dedicated signaling network, including second messenger production. Intertwined cascades of 
protein post-translational modifications are then activated and ultimately modulate gene expres-
sion. The latter relies on transcription of immediate early genes (IEGs) within 1 hour, and of genes 
requiring new protein synthesis and chromatin remodeling, which takes several hours. Subsequently, 
the corresponding transcription products need to be processed, exported through the nuclear pores, 
and transported in the cytosol to reach their ultimate destination, in specific cell compartments.
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So far, numerous studies failed in finding a strict correla-
tion between mRNA transcription, quantified by studying the 
transcriptome, and the cell protein content (1–5). Among other 
parameters (5, 6), gene expression also relies on protein neosyn-
thesis from preexisting pools of mRNA, as initially observed in 
the early embryo (7). Importantly, mRNA translation takes place 
within minutes following extracellular signal action, since it is 
directly branched to the cell signaling network, which explains in 
part why it is temporally uncoupled from transcription in some 
instances. Hence, regulations at the level of translation lead to 
early modification of the cell protein content in response to subtle 
variations of their environment, mediated by growth factors, 
stress, or hormones (8).

Many extracellular signals exert their function by binding 
to G protein-coupled receptor (GPCR), not only hormones but 
also chemokines, neurotransmitters, lipids, amino acids, ions, 
light, odorant molecules, etc. These receptors are endowed with 
a flexible three-dimensional structure dynamically oscillating 
between active and inactive conformations that are stabilized 
by ligand binding and coupling to transducing partners (9). 
The conformational modifications of the receptors are directly 
sensed by G proteins and by β-arrestins that transmit the signal 
within seconds or few minutes to a complex intertwined signaling 
network (10–12), altering long-term gene expression and leading 
to cell-specific responses. Within this network, both G proteins 
and β-arrestins transduce signaling to control translation, either 
by impacting on the translation initiation complex or by altering 
the upstream signaling cascades that regulate the assembly of the 
translational machinery (10). In this review, we summarize the 
state-of-the-art knowledge of the impact of GPCRs on the trans-
latome and address their role in spatially localized translation, in 
specialized cell types.

wHY iS iT iNTeReSTiNG TO ASSeSS THe 
iMPACT OF GPCRs ON mRNA 
TRANSLATiON?

mRNA translation covers two main cell requirements, i.e., cell 
proliferation and homeostasis on one hand (mainly quantitative 
control), and the production of cell-specific markers of the differ-
entiated state (quantitative and qualitative control) on the other 
(13). Although some GPCRs are endowed with mitogenic activ-
ity, GPCR-regulated mRNA translation mainly operates in highly 
specialized cells such as neurons, retinal rods, gonadal Sertoli 
cells, endothelial cells, immunocompetent cells, among others, 
where these receptors may regulate a trophic function. For exam-
ple, the follicle-stimulating hormone receptor (FSHR) promotes 
neosynthesis of paracrine factors essential for spermatogenesis to 
proceed, in the nurturer Sertoli cells of the testis (14). Similarly, 
in order to accommodate to the workload, or in pathological 
cardiovascular conditions, the endothelin ET1R enhances cardio-
myocyte hypertrophy via mRNA translation, in addition to its 
acute vasoactive activity (15). Other GPCRs exert a trophic role 
on their target cells like adenosine and purinergic P2Y receptors 
in endothelial cells during angiogenesis and vascular remodeling 
[reviewed in Ref. (16)], or the neurotransmitter muscarinic (17) 
or GABAB (18) receptors during brain maturation.

Notwithstanding, little is known about the mRNA-selective 
translation induced by GPCR activation. In differentiated cells, 
GPCR agonist binding leads to the regulation of the translation 
of selective mRNAs with minor, yet significant impact on global 
neosynthesis. For example, activation of the FSHR by FSH bind-
ing leads to the selective translation of the vegf and c-fos mRNA 
within minutes, without significant parallel effect on transcrip-
tion (19). So far, whereas the regulation of transcription induced 
by GPCR activation has been investigated for a long time, the 
regulation of cell-type specific genome-wide translatome by 
GPCRs has been surprisingly poorly investigated.

THe SCARSe TRANSLATOMeS OF GPCRs

From the late 2000s, whereas the number of publications on 
GPCR transcriptomes in various cell types and tissues has kept 
flourishing, only the translatomes of ET1R, GnRHR, LHR, 
mGluR1/5, D1 and D2 receptors in mammalian cells have been 
published (Table  1). Most of them have been obtained by 
polysome profiling (20). In this approach, mRNAs are separated 
according to the number of ribosomes they associate with. 
Practically, free mRNAs, the 40S and 60S ribosomal subunits and 
monosome/polysome-bound mRNAs sediment along a sucrose 
gradient, upon ultracentrifugation. mRNAs purified from each 
fraction are then analyzed by DNA microarray, or, nowadays, by 
NGS. Importantly, it becomes now possible to analyze actively 
translated mRNA in vivo by using the TRAP method (20). This 
approach consists in genetically modifying mice in order to label 
one protein of the 60S ribosomal subunit with a tag, in a cell-
specific manner with the Cre-lox system (20). Following tissue 
extraction and immunoprecipitation with an anti-tag antibody, 
ribosome-bound mRNA can be identified, in one cell type entan-
gled within a complex tissue (21).

eT1R Translatome
The first GPCR translatome published was the one of the 
ET1R induced by endothelin-1 (ET1) in cardiomyocytes (22). 
Cardiomyocyte hypertrophy is associated with increased cell 
size and myofibrillar content and the authors investigated the 
ET1-dependent relationships between the early signaling/gene 
expression (IEG) and the late gene expression in the established 
phenotype. To evaluate how the variations in early transcriptional 
response to ET1 were reflected by mRNA translation, the profiles 
of total and polysomal RNAs have been compared. It appeared 
that 67% of variations in mRNA content were also reflected at the 
translational level. Hence, most of the mRNA transcribed from 
IEG appeared also translated in response to ET1. However, 17% 
of mRNA were increased to a greater extent in the polysome-
associated pool than in the total transcriptome whereas some 
others were excluded, which is indicative of regulations of the 
translational machinery by ET1R-induced signaling to promote 
mRNA-selective translation, as the authors confirmed later (23).

GnRHR Translatome
More recently, the unfolded protein response (UPR), a mecha-
nism that maintains protein quality in secretory cells, has been 
explored in the LβT2 gonadotrope cell line derived from the 
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TAbLe 2 | Summary of the G protein-coupled receptors that regulate local translation processes, in different biological settings.

Receptor Stimulus Main process biological model Pathway Reference

mGluR5 DHPG Synaptogenesis E16.5 hippocampal neurons TLS/FUS (54)
DRD1/DRD5 Dopamine Synaptic transmission Hippocampal neurons cAMP/PKA (56)
ADRB1 Isoproterenol LTP CA1 hippocampal neurons PKA/ERK (57)
mGluR1 Glutamate Axon migration Axons of developing brain Ca2+/mTOR (66)
5HTR Serotonin Long-term facilitation Axons of Aplysia sensory neurons eEF1A (67)
mGluRs Glutamate Myelination of electrically active axons Oligodendrocytes Fyn (69)
CXCR4 SDF1 Cell migration Fibroblasts eIF2B (71)
mGluR1,5 DHPG LTD Dendrites of CA1 pyramidal neurons ERK/PI3K/Mnk1/

eIF4E/4E-BP/eIF2α
(28, 89)

mGluR1 PP-LFS Synaptic plasticity Mossy fibers of CA3 pyramidal neurons βarr2/Src/pERK (85)
mGluR5 PP-LFS Synaptic plasticity CA1 pyramidal neurons βarr2 (85)
mGluR5 CDPPB Neuronal plasticity (LTD) Hippocampal slices βarr2/pERK/FMRP (101)
ADRB1 Object recognition 

memory reactivation
Memory reconsolidation Entorhinal cortex βarr2/pERK (102)

TAbLe 1 | Main conclusions drawn from the study of the translatome of the endothelin receptor, the GnRH receptor, LH receptor, metabotropic glutamate receptors 1 
and 5, dopamine receptors 1 and 2.

G protein-
coupled 
receptor

Cell/tissue model Methodology Question addressed Main conclusions Reference

ET1R Primary neonatal 
rat ventricular 
cardiomyocytes

Polysome profiling 
(Affymetrix μ-array)

Connection between early signaling and 
developed hypertophy

The ET1R signal propagates through the 
transcriptional network to promote the long-term 
phenotype-67% of variations in mRNA content are 
reflected at the translation level

(22, 23)

GnRHR LβT2 pituitary cells Polysome profiling 
(Affymetrix μ-array)

Is pausing a generalized response to UPR  
or are gonadotropin mRNAs specifically  
prone to translational pausing?

Selective pausing of some GnRHR target  
genes-Subtle regulation of translation to monitor 
protein quality and quantity

(25)

LHR Leydig cell-specific 
in RiboTag mouse

Polysome profiling 
(Affymetrix μ-array)

Identify the transcripts that LH and FSH 
regulate in vivo, in the adult testis

LH regulates mRNA translation in the adult testis (26)

mGluR1/R5 Primary mouse 
cortical neurons

Polysome profiling 
(Illumina RNA-seq)

Which specific mRNA are translated in 
mGluR-LTD?

eIF2α is a major effector of mGluR-LTD-Silences 
general translation while inducing mRNA-selective 
translation

(28)

DRD1 Mouse striatonigral 
neurons

Affinity purification of 
tagged ribosomes 
(Affymetrix μ-array)

Distinguish striatonigral from striatopallidal 
neurons on the basis of their translational 
profile

Identification of striatonigral-specific translated 
mRNA

(30)

DRD2 Mouse 
striatopallidal 
neurons

Affinity purification of 
tagged ribosomes 
(Affymetrix μ-array)

Distinguish striatonigral from striatopallidal 
neurons on the basis of their translational 
profile

Identification of striatopallidal-specific translated 
mRNA

(30)
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anterior pituitary. This study has revealed that GnRHR activa-
tion enhances the translation of selective mRNA, such as the one 
encoding Dusp1, which is assumed to participate in the decoding 
of GnRH pulsatility in gonadotrope cells (24). Simultaneously, 
ligand-bound GnRHR also appeared to induce a pause in the 
translation of several mRNA involved in reproduction, such as 
the ones encoding the LH β and α chains of gonadotropins, in 
the endoplasmic reticulum-associated polysomes (25). By these 
combined means, GnRHR stimulation would fine-tune both 
protein quality and quantity in secretory gonadotrope cells.

LHR Translatome
By using the TRAP technology, the effect of FSH and LH on the 
regulation of spermatogenesis by somatic gonadal cells has been 
assessed (26). AMH-cre and Cyp17i-cre mice have been crossed 
with mice expressing HA-tagged RpL22, in Sertoli cells and in 

Leydig cells, respectively. Polysome-associated mRNA were 
identified on Affymetrix microarrays in both cell types in isola-
tion. While no increase in the FSH translatome was observed, LH 
altered the basal Leydig cell translatome. For example, as soon 
as after 1 h, the LH signal enhanced the translation of the Nr4a1 
et Egr1 transcription factors, and of the Rgs2 cell cycle regula-
tor. After 4  h, the number of translated mRNA still increased, 
showing that, in the adult, LH regulates mRNA translation in the 
seminiferous tubules.

mGluR1/5 Translatome
The translational control by GPCRs has been the most frequently 
studied in neurons. One of the reasons for this interest is that the 
subcellular localization of translation in these highly polarized 
and organized cells is a critical aspect of GPCR physiological 
function in the nervous system. Hence it deserves consideration, 
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particularly in synaptic plasticity (see below), such as long-term 
depression (LTD). LTD is an activity-dependent decrease in syn-
aptic tone that is mediated notably by ionotropic or metabotropic 
glutamate receptors (iGluR and mGluR, respectively). mGluRs, 
but not iGluRs, are GPCRs, and at the hippocampal synapses, 
the specific activation of group I mGluRs (mGluR1 and mGluR5) 
induces LTD via local protein neosynthesis (27). Furthermore, 
the phosphorylation of the eIF2α translation initiation factor 
is a major effector of mGluR-induced LTD in these neurons 
(28). By combining polysome profiling and deep-sequencing, 
the authors showed that 3,5-dihydroxyphenylglycine (DHPG), 
the selective agonist for mGluR1 and mGluR5, induced eIF2α 
phosphorylation that correlated with not only a general silencing 
of translation but also significantly enhanced the selective transla-
tion of several mRNA such as the one encoding oligonephrin 1 
(Ophn1). Injection of Ophn1 shRNA in mouse hippocampus 
prevents LTD formation and impairs mouse performance in 
a hippocampal learning task. Altogether, mGluR1/5 activation, 
eIF2α phosphorylation, and Ophn1 translation contribute to 
remove AMPA-type Glutamate receptors (AMPARs) from the 
cell surface, leading to depression of AMPAR-mediated excitatory 
postsynaptic current (28). mGluR-LTD-dependent local transla-
tion of activity-regulated cytoskeleton-associated protein (Arc) in 
the dendrites is also involved in AMPAR endocytosis (29).

Approaching the D1 and D2 Receptor 
Translatome by TRAP Assay
Mouse lines have been genetically engineered to express a GFP-
tagged ribosomal protein L10a under the control of a defined  
locus, in a specific cell type, by using BAC vectors (30). Following 
anti-GFP immunoprecipitation, ribosome-bound transcripts 
have been sequenced. This TRAP approach has been initially 
designed to discriminate the translatome of different neuronal 
subtypes that are morphologically indistinguishable, namely 
striatonigral and striatopallidal medium spiny neurons using 
2 GPCR loci: cell-type selectivity of L10a-GFP expression is 
controlled either by dopamine D1 (striatonigral) or D2 (striato-
pallidal) receptor locus (30). By these means, specific mRNA 
associated with ribosomes of either striatopallidal (e.g., Adk, 
Plxdc1, BC004044, et Hist1h2bc) or in striatonigral (e.g., Slc35d3, 
Zfp521, Ebf1, Stmn2, Gnb4, et Nrxn1) neurons have been iden-
tified. Hence, the TRAP method has paved the way for in vivo 
studies of mRNA translation profiling in selective cell-types of 
native tissues, in physiological or pathological conditions.

The discovery of GPCR translatome in increasing number 
should help to identifying new secondary structures in mRNA 
UTRs. By these means, new advances should be made on how 
some mRNA subpopulations bearing similar binding motifs for 
common cargos may be transported in the intracellular space, to 
be cotranslated locally.

iNvOLveMeNT OF GPCR iN LOCAL 
TRANSLATiON

Translation of selective mRNAs in specific subcellular location is 
an important contributor to cell regulatory processes, associated 

with morphological asymmetry. This permits the local produc-
tion of multiple units of the same protein from a single mRNA 
molecule, hence limiting energy consumption, as initially 
demonstrated at the genome-wide level during Drosophila early 
embryogenesis (31). In addition, local translation enables rapid 
protein synthesis during neuronal plasticity and is a convenient 
means to discriminate the activated synapse(s), at long distance 
from the cell body. Similarly, in migrating cells, directional motil-
ity toward a chemoattractant gradient is mediated by spontaneous 
cell polarization where proteins are differentially translated in the 
protrusions versus the cell body (32, 33).

To date, little is known on how extracellular signals control 
local translation. In the nervous system, both neurotransmitters 
and growth factors are involved in synaptic plasticity and axonal 
growth, by binding to GPCR or to growth factor receptors such 
as neurotrophin receptors (34) or BDNF receptor (35, 36). These 
classes of receptors share common signaling pathways (mTOR, 
ERK1/2) potentially involved in local mRNAs translation, but 
their direct coupling to different adapter proteins (respectively, 
β-arrestins and G proteins vs. SHC-1 or IRS-1) might affect the 
dynamic properties of the underlying signaling network. Despite 
these fragmentary data (Table  2), so far, how an extracellular 
GPCR ligand dictates where in the cell and when a mRNA is to 
be translated into a physiologically relevant protein remains, for 
the main part, an unresolved question.

General Principles
For site-specific translation to occur, mRNAs need to be trans-
ported from the nucleus to the specific intracellular location 
where they will be ultimately translated, while preventing pre-
mature translation during their transport. In the nucleus, a ribo-
nucleoprotein granule (RNP) gathers ribonucleoproteins (RBPs) 
and mature mRNAs (Figure 1). RBPs may recognize a structural 
motif, a so-called zipcode, in the 3′ or 5′ UTRs of the mRNAs, 
through a canonical RNA-binding domain (37). Recognition of 
mRNA sequences by proteins with low-complexity domains has 
emerged as a means to dynamically integrate mRNA into RNP 
granules to form an mRNP (38, 39). Cross-linking immunopre-
cipitation (CLIP) analyses have revealed that some RBPs, such 
as fragile X mental retardation protein (FMRP), are able to bind 
hundreds of different mRNAs, while others only bind one. mRNA 
passage through the nucleopores is facilitated by export receptors 
such as the TAP-15 complex that associate directly with mRNA-
bound RBP such as Aly/REF adaptors, and dissociate from the 
RNP granule once in the cytoplasm (40). Then, the silent mRNP 
complex is transported by motor proteins along the actin or 
microtubule cytoskeleton tracks toward the site of translation. 
Among others, the Staufen protein could be a general regulator 
of mRNA transport (41), in Drosophila embryo as well as in 
neurons (42). Another well-described RBP is the ZBP1 protein 
that silences the β-actin mRNA to avoid its premature translation 
in the cytoplasm, prior to its arrival at fibroblast protrusions (43). 
Upon arrival at the site of translation, the Src protein phosphoryl-
ates ZBP1, which leads to its dissociation from the mRNP, hence 
making the mRNAs accessible to the translational machinery 
(44). Extracellular signaling events are presumably the key 
step that unmasks the mRNAs enabling their local translation. 
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FiGURe 1 | Local translation in neurons: mRNA to be translated are 
transported to dendritic spines, where mGluR postsynaptic activation relives 
the inhibitory action of ribonucleoprotein granules (RNPs) such as fragile X 
mental retardation protein on mRNA, via the activation of signaling pathways. 
This process restricts local translation only to the active spines of a single 
neuron. The upper part of the illustration is a magnification of schematized 
dendritic spines.
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Besides budding yeast, Xenopus oocyte, and Drosophila embryo, 
cells of the nervous systems have become the paradigm to study 
localized mRNA translation in Mammals. Notably, the mRNA 

content is qualitatively different not only in dendrites, axons, and 
cell body but also among several dendritic spines of the same 
dendrite. Likewise, the distribution of neuronal GPCR content 
differs in the plasma membrane of the soma, the dendrites or the 
axon terminals (45). For example, in the nucleus accumbens, D1 
and D5 dopaminergic receptors are located mainly in dendritic 
spines and axonal terminals, respectively (46). Their distribution 
determines their postsynaptic function, their responsiveness to 
local neurotransmitter release and, more generally, their role in 
regulating neuronal activity (Figure  1). In synapses, silencing 
by components of the miRNA processing machinery have also 
been invoked in translational repression. Interestingly, neuronal 
activity could relieve this silencing by degrading miRNA locally, 
as shown in Drosophila (47).

Local Translation in Neurites
The hypothesis that mRNA might be transported to specific 
subcellular compartments in neurons has emerged from the 
observation that the mRNA content of dendrites and axons 
differs. mRNA prelocalization would enable rapid production of 
proteins at the activated synapse, independently of the inactive 
synapses of the same neuron, which is important for synaptic 
plasticity and memory. For example, the mRNA encoding 
microtubule-associated protein 2 (MAP2) is transported to the 
dendrites, whereas the tubulin mRNA is located in the axons 
and dendrites (48). Accordingly, the presence of polyribosomes, 
translation factors and mRNA at the base of dendritic spines has 
been reported (49–51). In addition, protein synthesis inhibitors 
have revealed the central role of local translation in synaptic plas-
ticity, in the dendrites of CA1 pyramidal neurons (52). The mRNA 
content of the dendrites is dynamically regulated. mGluRs are the 
GPCRs the most extensively reported to control local translation 
in neurons. Their stimulation by the DHPG mGluR1/5 agonist 
leads to actin-related protein mRNA redistribution to dendritic 
spines, that permits spine remodeling upon synaptogenesis. This 
process is in part mediated by the RNA-binding protein TLS/FUS 
(53, 54). TLS/FUS harbors a low complexity sequence domain 
involved in the dynamic aggregation of RNA-binding proteins 
to form RNP granules (38, 55). These regulatory events lead to 
the rapid withdrawal of excitatory synapses in the neurons of the 
hippocampus and striatum. Furthermore, in the hippocampus, 
dopamine D1/D5 receptor signaling alters synaptic plasticity via 
the translation of the GluR1 subunit of AMPA iGluR, which 
leads to local activity at synapses that were otherwise silent (56). 
Likewise, mRNA translation of AMPAR is stimulated during 
β1-adrenergic receptor-primed long-term potentiation in the 
CA1 hippocampal region, in a PKA and ERK-dependent manner 
(57), ultimately leading to its enhanced location at the plasma 
membrane and synaptic incorporation.

Protein synthesis could serve as one of the gates for synaptic 
plasticity that physiologically operates when mGluRs are acti-
vated. FMR1 knock-out mice models are useful tools to investigate 
activity-dependent translation in synaptic plasticity. In the fragile 
X syndrome, a monogenic form of autism spectrum disorder, the 
loss-of-function of FMRP encoded by the FMR1 gene leads to 
excessive translation of proteins, that would otherwise be rate-
limiting for synaptic remodeling. Examination of the phenotype 
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reveals defects in synaptic plasticity associated with an exacer-
bated mGluR-LTD (58–60). These observations are consistent 
with a direct silencing role of FMRP (Fragile X mental retardation 
protein) on neuronal translation (61). For example, the Chrm4 
mRNA encoding the muscarinic acetylcholine receptor 4 (M4) 
is excessively translated in Fmr1−/y mice occluding mGluR1/5 
activation (62). Unexpectedly, enhancement of M4 activation is 
required to correct the excessive translation and mGluR-LTD 
pathological phenotype of these mice.

FMRP is an RNA-binding protein involved in mRNA traf-
ficking and translation. The FMR1 knock-out mice model 
has also highlighted the association of aberrant synthesis of 
proteins involved in mGluR-dependent synaptogenesis such as 
PSD-95, MAP1b or CAMKIIα and defective long-term plastic-
ity (63–65).

In contrast to local translation in dendrites, much less is known 
about local translation in axons. Both dendritic spines and axonal 
terminals are specialized subcellular compartments located far 
away from the cell body. In growing axons, local mRNA transla-
tion might be involved in collapse or expansion of the growth 
cone during axon guidance whereas in mature axons, it might 
support regeneration of the nervous fiber upon injury. Most of 
these responses are dynamically regulated by signals emanating 
from non-GPCR receptors. However, in cortical neurons of the 
developing brain, it has been reported that glutamate enhances 
local protein synthesis, by interacting with both iGluRs and 
mGluRs in axons (66). In addition, in an in vitro model of Aplysia 
sensory/motor neurons, the local translation of the eEF1A mRNA 
has been involved in maintaining newly grown synapses, a pre-
requisite for long-term facilitation required for memory storage. 
Serotonin stimulation supports this site-specific targeting of the 
eEF1α mRNA if it is applied at the synaptic site solely (67).

Local Translation in Glial Cells
Cells of the nervous systems are highly interconnected and local 
translation can be viewed as one means whereby they commu-
nicate. This is the case at synaptic junctions, including synaptic 
communications between neurons and oligodendrocytes. These 
glial cells synthesize the myelin sheath, to wrap the axons, in 
order to increase the propagation speed of the nervous influx. 
The mRNA that encodes myelin basic protein (MBP), a major 
component of myelin, is transported to distal regions of oligoden-
drocytes for local translation and delivery to the membrane of the 
adjacent axon (68). Vesicular release of glutamate from activated 
axons of mouse dorsal root ganglion neurons has been shown to 
stimulate the local translation of MBP, by using a photoconvert-
ible fluorescent protein. The glutamate signal is sensed by both 
AMPA iGluR and mGluRs on oligodendrocytes (69). Recently, 
local translation in distal perisynaptic processes of astrocytes 
has also been observed (70), suggesting that the proteins these 
cells secrete are produced locally prior to release. However, the 
sensitivity to neurotransmitters of this process has not been 
explored yet.

Local Translation in Migrating Cells
More than 1,000 mRNAs have been shown to exhibit site-
specific translation in migrating fibroblasts (33), which supports 

a broader role of this process in cellular monitoring of the 
proteome in time and space than initially appreciated. Beside 
promoting the migration of a wide spectrum of motile cells of 
hematopoietic type, the CXCR4 chemokine receptor also triggers 
the migration of non-hematopoietic cells, such as fibroblasts. 
Local translation in migrating fibroblasts is exemplified by the 
β-actin mRNA, which displays an asymmetric distribution at the 
leading edge where its mRNA is translated upon ZBP1 release, 
as described above, in order to enable cell motility. Recently, 
CXCR4 has been shown to interact with the eukaryotic initiation 
factor 2B (eIF2B) (71). This protein is an exchange factor that 
negatively regulates translational efficacy. Binding of the CXCR4 
agonist, SDF1/CXCL12, leads to the dissociation of eIF2B from 
the receptor. This observation suggests that the local release of 
this translation factor could then be utilized locally, close to 
the plasma membrane, to enable local translation of the β-actin 
mRNA. Early work already showed that eIF2B also interacts 
with the β2-adrenergic receptors in protruding regions of the 
cell membrane (72).

Evidence is lacking that other GPCRs might be involved in 
local translation of actin-related proteins needed for cell motility. 
But, noteworthy, β-arrestins, major effectors that regulate the 
efficacy, duration and location of GPCR-responsive signaling 
pathways (73, 74), are involved in chemotaxis (75). Despite their 
ability to redistribute signaling components to selective subcel-
lular compartments, a role of these adaptor proteins in local 
translation in migrating cells has not been addressed yet.

As discussed above, it appears clearly that most studies to 
decipher the control of site-specific mRNA translation by GPCR 
have been undertaken in neurons. However, local translation 
processes virtually take place in any cell type, such as epithelial 
cells from the kidney, the gut, the skin, provided that they exhibit 
some degree of polarization and functional specialization. For 
example, Sertoli cells represent an ideal model for studying local 
mRNA translation. They are polarized cells that constitute the 
seminiferous tubules of the male gonad and the intimate associa-
tion they undergo with the successive steps of spermatogenesis 
has prompted investigators to refer to this histological architec-
ture as the “testicular synapse”. One of their major regulatory 
GPCR is the FSHR that stimulates Sertoli cell anabolic activity 
to provide each spermatogenic cell with the adapted complement 
of paracrine factors. Recently, the FSHR has been reported to 
promote mRNA-selective translation of some mRNAs such as 
the vegfa mRNA (19) that is involved in spermatogonia renewal 
occurring at their basal region. However, despite many analogies 
to neurons, hormone-induced local translation has never been 
demonstrated in these cells.

SiGNALiNG iNvOLveD iN  
GPCR-TRANSDUCeD ReGULATiON  
OF LOCALiZeD TRANSLATiON

In Sertoli cells, signaling pathways such as PKA and PI3K/mTOR 
have been shown to regulate proteins of the eIF4F initiation 
complex (76, 77). Interestingly, local regulation of Rap1 by the 
Mex3b RNA-binding protein is required for maintaining cell 
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polarity (78). Regarding Sertoli cell/germ cell contacts, FSH-
induced PTEN translation occurs at the apical pole of Sertoli cells 
during spermiation (79). Symmetrically, the kit-L is produced at 
the basal pole, a region in close contact with spermatogonia that 
express c-kit (80).

In polarized renal epithelial cells, agonist-induced ade-
nylate cyclase activity is restricted to basolateral or apical 
regions where α2B- and α1-adrenergic receptors, respec-
tively reside (81). Activation of GPCR-dependent p90RSK 
pathway in selective subcellular compartments may enable 
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de-repression of mRNAs once arrived at their specific site of 
translation.

Again, the signaling effectors of local translation have been 
mostly investigated in the case of mGluR activation (82). The 
ERK MAP kinase pathway is critical in mediating mGluR-
dependent protein synthesis in physiological as well as patho-
logical conditions (83). mGluR stimulation of hippocampal 
synaptoneurosomes leads to the recruitment of one of ERK 
substrates, p90RSK, to the ribosomes (84). The phosphorylation 
of glycogen synthase 3β (GSK-3β) would relieve eIF2B-mediated 
translational inhibition (Figure 2). Another target of ERK that 
is also stimulated upon mGluR activation (DHPG binding) is 
Mnk, a kinase that phosphorylates the cap-binding protein 
eIF4E (Figure  2). In CA3 hippocampal neurons, this pathway 
has been shown to be mostly regulated by β-arrestin 2 to regulate 
synaptic plasticity (85).

In addition, DHPG-induced LTD in the dendrites of hip-
pocampal neurons is also mediated by the PI3 kinase/mTOR 
pathway (86), presumably as a consequence of mGluR binding 
to the postsynaptic adaptor protein Homer (87) (Figure  2). 
PIKE has been proposed as a molecular link between Homer 
and PI3K activation in neuronal survival, and its role in mGluR-
mediated local translation has been proposed (88). PI3K/mTOR 
activation during LTD leads to the inhibitory phosphorylation 
of 4E-BP, the inhibitor of eIF4E (89) (Figure 2). In agreement, 
4E-BP2 knock-out mice exhibit exacerbated mGluR-LTD, 
hence confirming the negative regulatory role of this translation 
inhibitor on synaptic activity. Other well-known targets of the 
PI3K/mTOR pathway, such as ribosomal protein S6 (rpS6) (90) 
or eEF2K (91), are also engaged in protein translation upon 
mGluR activation in the hippocampus (Figure 2). In this brain 
region, DHPG enhances locally in dendrites the translation of 
EF1A (92), as well as phosphorylation (90), that is involved in 
the assembly of the translational preinitiation complex (93). In 
mGluR-LTD, rpS6 phosphorylation most likely results from 
the activation of RSK, and not of p70S6K, as it is not altered in 
S6K1-deficient mice (90).

More generally, type I mGluRs maintain synaptic plasticity 
by provoking the rapid elimination of excitatory synapses in 
the hippocampus and in the striatum. As indicated above, the 
FMRP protein plays a pivotal role in regulating these processes 
in dendrites, by modulating local protein translation in classical 
mGluR-LTD (94). For example, the MAP1B mRNA colocalizes 
with FMRP granules at hippocampal synapses neurons and its 
translation is stimulated by eEF2K in DHPG-stimulated neurons 
(91, 95) (Figure 2). MAP1B, a component of the cytoskeleton, 
is involved in the rapid internalization of AMPA iGluR during 
mGluR-LTD (96), by disrupting the interaction of the AMPA 
GluR2 subunit with GRIP1 (91). In parallel, mGluR activation 
during LTD also relieves the inhibition that FMRP exerts on the 
translation of the Arc mRNA at dendritic spines (97) (Figure 2). 
Together with GRIP dissociation from AMPA, Arc mediates a 
postsynaptic endocytic pathway that controls AMPA traffick-
ing (98). Dynamic activation/deactivation of FMRP could in 
part result from the interplay between mTOR/PP2A (99) and 
CK2 (100), that temporally regulate its phosphorylation level. 

β-arrestin 2 appears to mediate the detrimental effect of FMRP 
on translation, by activating the ERK MAP kinase signaling 
module (101). β-arrestin 2-dependent translation is also involved 
in memory reactivation mediated by β1-adrenergic receptor, but 
whether mRNA translation is localized is not clear to date (102).

Fragile X mental retardation protein regulates translation 
negatively in most instances (61, 103) but also sometimes 
positively. More precisely, combined CLIP and TRAP assays 
have recently revealed that FMRP enhances the translation 
of the diacylglycerol kinase (DGKκ) mRNA that encodes a 
protein involved in mGluR signaling, among numerous other 
mRNAs involved in synaptic plasticity (104) (Figure 2). DGKκ, 
a member of the DGK enzyme family, is involved in spine main-
tenance most likely through the multiple effectors of DAG- and 
PA-mediated signaling (105).

A recent model has proposed that, beside targeting the rate-
limiting step of translation initiation, synaptic mGluR signaling 
also acts on stalled polyribosomes, which optimizes the speed 
and efficacy of translation (106). This effect is mediated by UPF1, 
an RNA-helicase associated with the STAU2 RNA-binding 
protein (107).

As for axonal local translation, glutamate stimulates 
translation by binding to AMPA receptors and metabotropic 
glutamate receptors, thus activating Ca2+ and mTOR signaling 
(66). Besides, the interaction between glial cells and axons 
involves kinases of the Src family, such as Fyn, that could 
regulate MBP mRNA local translation to promote axons 
myelination (69, 108).

Beside the long-distance signaling to the translational 
machinery induced by membrane-bound receptors, an alterna-
tive/addition model has proposed that deleted in colorectal 
cancer (DCC), a receptor for netrin, forms a complex with 
components of the translational machinery at the membrane of 
neurons (109). This model will plausibly be generalized to other 
membrane receptors in the future, since ribosomes or translation 
initiation factors have been observed in their close vicinity, as 
illustrated above with CXCR4 and eIF2B, for example.

CONCLUDiNG ReMARKS

Many questions remain open on the signaling mechanisms 
that mediate GPCR-dependent local translation, because, by 
essence, their activity should also be localized. In support of this 
assumption, FMRP has been shown to control the localization of 
the mRNA encoding the p110 β catalytic subunit of PI3K at the 
synapse, where mGluR activation enhances p110 β local transla-
tion and PI3K activity (110).

Local translation appears as a key regulator of early gene 
expression in polarized cells, that is, in cells that engender dif-
ferential responses in their different (sub)membrane region as 
a function of the connexions/relationships they have with their 
neighboring cells. This is typically the case of the neuronal 
network and of the Sertoli cells/germ cells assembly. Local trans-
lation responds to the signaling network generated by extracel-
lular signals, among which some target GPCRs. Since GPCRs 
constitute a prominent class of therapeutic targets, the question 
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is raised as to whether biased ligands may modulate the pool of 
local mRNAs. Biased ligands target various signaling components 
with variable efficacy within the total repertoire mediated by a 
given receptor when compared to the physiological ligand (111, 
112). This process depends on the high level of conformational 
plasticity of GPCRs. Such tools are attractive candidates that 
could compensate dysregulated local translation at the site where 
the endogenous ligand is released to restore synaptic plasticity, in 
pathologic conditions, like the Fragile X syndrome, for example 
by dampening mGluR signaling (110). In the gonad, there are 
potential applications in the control of puberty onset or in the 
preservation of the male fertility by sustaining the renewal of the 
spermatogonial pool.
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