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Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder defined 
by ROME IV criteria as pain in the lower abdominal region, which is associated with 
altered bowel habit or defecation. The underlying mechanism of IBS is not completely 
understood. IBS seems to be a product of interactions between various factors with 
genetics, dietary/intestinal microbiota, low-grade inflammation, and stress playing a key 
role in the pathogenesis of this disease. The crosstalk between the immune system and 
stress in IBS mechanism is increasingly recognized. Corticotropin-releasing factor (CRF), 
a major mediator in the stress response, is involved in altered function in GI, including 
inflammatory processes, colonic transit time, contractile activity, defecation pattern, pain 
threshold, mucosal secretory function, and barrier functions. This mini review focuses on 
the recently establish local GI-CRF system, its involvement in modulating the immune 
response in IBS, and summarizes current IBS animal models and mapping of CRF, 
CRFR1, and CRFR2 expression in colon tissues. CRF and receptors might be a key 
molecule involving the immune and movement function via brain–gut axis in IBS.

Keywords: corticotropin-releasing factor, CRFR1, CRFR2, inflammation, irritable bowel syndrome

inTRODUCTiOn

Functional gastrointestinal disorders (FGIDs) are a group of idiopathic disorders which affect 
different parts of the gastrointestinal (GI) tract. They are classified by GI symptoms related to any 
combination of the following: motility disturbance, visceral hypersensitivity, altered mucosal and 
immune function, altered gut microbiota, and altered central nervous system (CNS) processing. 
The FGIDs are classified into six major domains for adults including irritable bowel syndrome 
(IBS) which is in FGIDs-C. IBS is defined by ROME IV criteria as pain in the lower abdominal 
region, which is associated with altered bowel habit or defecation (1, 2). Patients are diagnosed 
according to symptom-based criteria and the majority of the time they report recurring pain 
in the lower abdomen, accompanied by altered stool form or frequency (2, 3). These symptoms 
occur without any known structural abnormalities (3, 4). IBS is further subcategorized as diarrhea 
predominant (IBS-D), constipation predominant (IBS-C), alternating (IBS-A), or unspecified 
(IBS-U) (1, 2). The global prevalence of IBS is 11.2% making it an important clinical entity, but 
the underlying mechanism is not fully understood (5).
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POSSiBLe CAUSeS OF iBS

Irritable bowel syndrome is a multifactorial disorder with diet/ 
luminal microbiota, low-grade inflammation, stress, and genetics. 
IBS patients report a worsening of symptoms after eating specific 
food such as diary product, hot spices, and wheat product. Recent 
area of interest relates the effect of altered intestinal bacterial 
flora namely increased Firmicutes and reduced Bacteroidetes, 
Lactobacillus, Bifdobacteriumsp, and Bifidobacter to the onset 
IBS (1, 6). There is evidence that the luminal microbiota affects 
GI motility by interacting with muscularis macrophage and 
enteric neurons (7). In a prospective trial, IBS patients receiving 
Bifidobacteriumlongum showed decreased-depression scores, 
improved quality of life scores, and overall symptoms (8). 
Investigators have also suggested that small-intestinal bacterial 
overgrowth might contribute to IBS progression (9).

There is evidence to support the role of mild intestinal 
inflammation in the etiology of IBS. Researchers have found 
alteration in inflammatory mediators in the GI tract as well as 
in the peripheral blood circulation of animal and patient with 
IBS. Patients reported the onset of postinfectious IBS, a subset 
of IBS, after contracting viral, bacterial, protozoa, and nematode 
infections (6, 9). There are experimental models showing that 
inflammation, even if mild, could lead to long-term changes in 
GI nerve and smooth muscle function, resulting in dysmotility, 
hypersensitivity (1, 7, 9, 10).

ROME IV uses a biopsychosocial conceptual model to explain 
the susceptibility to develop IBS. This means that IBS is the 
product of interactions between various factors and stress (1). 
Psychological and physical stresses exacerbate GI symptoms. IBS 
patients also suffer from psychiatric disorders such as anxiety 
and depression (9, 11). Animal and human studies have demon-
strated that stress stimulates colonic motor function, reflected by 
decreased-colonic transit time, increased contractile activity, the 
induction of defecation, and symptoms of diarrhea. There is also 
evidence to support that stress affects gut-pain threshold, mucosal 
secretory function, barrier functions, and visceral inflammatory 
response (1, 4).

Irritable bowel syndrome patients more often have a family 
history of IBS (1). A search for candidate genes to reinforce the 
hypothesis that environmental factors play an important role in 
the pathogenesis of IBS has led to the association of serotonin 
transporter gene and cholecystokinin A receptor gene with IBS. 
It has been found that patients with IBS-D have a functional 
polymorphism in the serotonin transporter gene (6).

CRF MeCHAniSM in iBS

The hypothalamic-pituitary-adrenal (HPA) axis is crucial 
in maintaining homeostasis and plays an important role in 
responses of the endocrine system and behavioral activity to 
various stresses. Corticotropin-releasing factor (CRF or CRH) 
plays a pivotal and well-established role in activating the HPA 
axis under basal and stress conditions (12). There is convergent 
evidence indicating the presence of CRF, Ucns, CRFR1, and 
CRFR2 in various peripheral tissues such as GI tract, heart, 
lungs, spleen, testis and adipose tissue, and CNS. CRF, Ucns, 

and CRF receptors have been identified in myenteric neuron, 
sensory nerve, sympathetic nerve, enterochromaffin cell, and 
immune cells in the intestine of animals and human. This 
indicates that both central and peripheral CRF systems modu-
late the body response to stress and modulate syndromes that 
occurs in IBS (11–14). Early weaning stress in pigs (15–21 days) 
causes impaired intestinal mucosal function. A decreased-CRF 
protein, an increased-CRFR2 protein, and no change in CRFR1 
protein was detected in jejunum of late weaned pigs. Blocking 
both CRFR1 and CRFR2 improved disturbances in barrier 
function, whereas blocking CRFR2 leads to an enhanced bar-
rier dysfunction, showing that dysfunction and hypersecretion 
is mediated by CRFR1 (15). Central administration of CRF 
induced colonic hypersensitivity in low-anxiety rats (Fischer 
344); this effect was inhibited by pretreatment with CRFR1 
antagonist (16). Water-avoidance stress and injection of CRF 
increased fecal pellet output which is inhibited by CRFR1/R2 
antagonist and CRFR1 antagonist CP-154,526 (17). Therefore, 
CRF via its CRF receptors affects smooth muscle contractility, 
mucosal permeability, mucosal transport, and visceral pain 
sensitivity, indicating possible correlation with colonic mani-
festations of IBS (4, 11, 13). To study the mechanism of IBS, 
many animal models have been developed. Various approaches 
using chemical, mechanical stimulation, and physiological/psy-
chological stress such as drugs, colorectal distention, restraint 
stress, maternal separation, water-avoidance stress, electric foot 
shock, and cold water stomach irrigation (18–27) have been 
used to study IBS pathogenesis on animal but no ideal animal 
model has been created up till now. Table 1 is a summary of 
the currently used stresses in IBS model to study its different 
hallmarks.

invOLveMenT OF CRF SiGnALinG  
in iMMUne CeLLS in iBS

Recent studies demonstrated a novel therapeutic potential of the 
mechanisms showing complex interactions between immune 
cells, epithelial cells, smooth muscle, enteric nerves (28), as well 
as their respective roles in manifestations of clinical symptoms 
of FGIDs (29). IBS was thought to be a neurological condition 
as a result of imbalances in brain–gut axis, but there has been 
growing evidence revealing immunological imbalances in 
IBS patients with a chronic and a low-grade immune activa-
tion(3). CRF promotes inflammation by stimulating release of 
proinflammatory cytokines TNF-α, IL-1, IL-6, and macrophage 
inflammatory protein 1α (MIP-1α) from immune cells in GI  
(11, 13, 30). CRF and CRF receptors in the CNS are also key signals 
triggering various stress response including the altered visceral 
response in the stomach, small intestine, and colon (11). There 
is a close anatomic relationship between neurons from periph-
eral nervous system (PNS) and ENS and resident immune cells  
(13, 29). There is growing and compelling evidence proving 
the correlation between mild inflammatory response and stress 
in IBS pathogenesis. But so far not much clarification has 
been given on the role played by the peripheral CRF-receptor 
signaling in this inflammatory response (11–14). A variety of 
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TABLe 1 | Stress-induced irritable bowel syndrome (IBS) animal model in the current literature.

iBS-type phenotype Stresses Genetic 
background

Age/weight Reference

1. Increased colonic epithelial secretion

2. Increased fecal pellets

3. Increased numbers of abdominal muscle 
contraction

1. Restraint stress for 1 h

2. Overnight illumination for 12 h, 45°C hot environment for  
5 min, water deprivation for 24 h, 4°C cold environment for 3 min, 
tail clamp for 1 min, level vibration (120 /min) for 40 min and food 
deprivation for 24 h.

Wistar 200 ± 20 g (21)

1. Inflammation in the colon

2. Visceral hyperalgia

3. Enterochromaffin cell hyperplasia

1. Trinitrobenzene sulfonic acid was administered: (a) with different 
doses (20, 10, 5 mg/0.8 mL per rat); (b) with same dose in different 
concentrations (20 mg/rat, 25, 50 mg/mL); (c) in different ethanol 
percentage (25%, 50%); and (d) at depth either 4 cm or 8 cm from 
anus.

Sprague–Dawley 6 weeks (18)

1. Visceral pain

2. Slight damage in mucous epithelium with 
few glands

3. Few inflammatory cell in mucous layer

1. Colorectal distention; angioplasty balloon 2.5 mm, 60 mmHg  
daily between age 8–14 days for 1 min (two times within 1 h); 
angioplasty balloon 3.5 mm, 60 mmHg daily between age 
15–22 days for 1 min (two times within 1 h)

Sprague–Dawley 60 days (19)

1. Visceral Hypersensitivity 1. Maternal separation PND 3 to PND 21 for 3 h daily Sprague–Dawley 8 weeks (24)

1. Abnormal colorectal motility

2. Change in colon microbiota

1. Maternal separation PND 2 to PND 14 for 3 h daily Wistar 2 days (23)

1. Visceral hypersensitivity

2. Increased colonic permeability

3. Altered motility

4. Changes in colon microbiota

1. Water avoidance stress for 1 h per day for 10 days Sprague–Dawley 160 ± 20 g (25)

1. Increased defecation

2. Stimulate proximal and distal colonic 
transit.

1. Conditioned fear stress; electric foot-shock, 5 s/min for 15 
exposures

Sprague-Dawley 5–8 weeks (26)

1. Increase in number of fecal pellets

2. Increase in weight per fecal pellets

1. Restraint stress for 1 h Charles Foster 
strain albino rats

5–6 weeks (22)

1.1 Less water content in feces

1.2 Visceral hypersensitivity

1.3 Delayed small-intestine transit rate

2.1 More water content

2.2 Visceral hypersensitivity

2.3 Increase small-intestine transit rate.

1. 0–4°C, 2mL water stomach irrigation daily for 14 days

2. Restraint stress

Sprague–Dawley 200 ± 20 g (27)

1. Visceral hypersensitivity 1. Heterotypic chronic stress for 9 days;60-min water-avoidance stress, 
45-min cold restraint stress at 4°C or 20-min forced swimming stress

Wistar rats 6–10 weeks (20)
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immune cells are involved in the pathogenesis of IBS. Here, we 
have selected six immune cells, namely intestinal epithelial cells, 
macrophages, dendritic cell, mast cell, T cell, and B cell to review. 
CRF, CRFR1 and CRFR2mRNA, and protein have been found 
in GI tissues such as blood vessel, B cell/plasma cell (31–35), 
dendritic cell, enterochromaffin cell (30, 36–41), epithelial cell 
(39, 40, 42–44), goblet cell (31), intestinal crypt, lamina propria 
(40, 43), macrophage (32, 35, 39, 42, 45–48), mast cell (49, 50), 
myenteric plexus (31, 40, 42, 50–52), stem cell of intestinal crypt 
(31), submucosal plexus (31, 42, 52), and T cell (32–34, 53, 54). 
Figure 1 is a graphic summary of the expression of CRF, CRFR1, 
and CRFR2 in GI tissue.

Intestinal epithelial cells protect the body against luminal 
antigen and pathogens derived from the external environment by 
producing high amounts of mucus and secreting antimicrobial 

peptides. Tightly sealed by tight junctions the intestinal epithe-
lial cells allow only small molecules to cross the epithelium via 
the paracellular route (13). They express pattern recognition 
receptors such as toll-like receptors (TLR) which triggers tissue-
specific innate immunity. Furthermore, these cells have the 
ability to initiate and amplify the immune response by secreting 
cytokines and chemokines (29). Immunoreactive CRF and 
CRFmRNA was detected in mucosal epithelial cells in human 
and rat (39, 40). There was CRFR1 at the base of absorptive sur-
face epithelial cell (42) of sigmoid colon in healthy subjects and 
CRFR2 was reported in epithelial cell of distal/sigmoid colon 
biopsy samples (55). Water-avoidance stress or mucosal tissue 
exposed to CRF causes decreased transepithelial resistance and 
increased paracellular and transcellular macromolecular, ileal 
villus epithelium, and follicle-associated epithelium (56) in rat 
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FiGURe 1 | Graphic summary of the expression of CRF, CRFR1, and CRFR2 in GI tissue.
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colon. Also in human colon epithelial cell line (HT-29), CRF 
decreased transepithelial resistance, increased the permeability 
of horseradish-peroxidase, increased claudin2, and TLR4 
expression at the mRNA and protein level (57). Likewise there 
is higher expression of CRFR1, CRFR2, TLR2, and TLR4 in 
peripheral blood of IBS patients, supporting that the activation 
of CRF-TLR may lead to IBS (58). CRF stimulates ion secretion 
in the distal colon of Wistar–Kyoto rats in vitro; this epithelial 
response was inhibited in tissues pretreated with a non-selective 
CRF-receptor antagonist, indicating the involvement of CRF in 
ion secretion (59). CRFR2 antagonist delayed healing, decreased 
epithelial cell proliferation, increased apoptosis, and proinflam-
matory cytokine expression in colon of colitis mice; meanwhile, 
there was an increased proliferation and migration in CRFR2-
overexpressing colonic epithelial cells (60).

Macrophages are innate immune cells distributed throughout 
the GI tract. The function of macrophages is to maintain tissue 
homeostasis by phagocytizing and clearing invading pathogens 
and they also act as antigen-presenting cells and secrete a wide range 
of cytokines (3). Intestinal epithelial cell-secreted mediators and 
intestinal luminal content have the capability to stimulate mucosal 
macrophages (29). Recently, a distinct population of macrophages 
associated with intestinal muscularis externa has been reported 
which have the ability to modulate colonic peristaltic activity (7, 
29). Macrophages-expressed TRLs, and an increased-TLR4 and 

-TLR5 expression, and a decreased-macrophage number have 
been found in colonic biopsies of IBS. Macrophage-attracting 
chemokines and number of CD68+ macrophages are decreased 
in intestinal biopsies of IBS (3). There is evidence indicating that 
macrophages have the ability to secrete CRF (32, 35) and the 
CRF participates in immune system function in inflammation 
(39, 42, 46, 47). RAW264.7 macrophage cells are positive for 
CRF, CRFR1 and R2 in immunohistochemistry experiment. CRF 
can enhance the antigen-specific antibody response through the 
CRFR1 by NF-kappaB (48). CRFR1 immunoreactivity increased 
in macrophages in the lamina propria (42) in colonic biopsies 
with ulcerative colitis. Also, CRF, Ucn1, and Ucn2, via CRFR1 and 
CRFR2, increase TNF-α transcription in murine RAW264.7 (13). 
CRF evoked an enhanced release in proinflammatory cytokines 
TNF-α and IL-6 from macrophages in vitro. CRFR1 antagonist 
reduced the elevated macrophage-derived TNF-α, IL-1β, and 
IL-6 in blood after LPS in BALB/c mice (11).

Intestinal dendritic cells shape adaptive immune responses 
to harmful or infectious intraluminal stimuli through acquisi-
tion of luminal antigens and migration to mesenteric lymph 
nodes to present these antigens to naive T cells. An increased 
number of intestinal lamina propria dendritic cells, decreased 
endocytic ability, and enhanced abilities to stimulate CD4+ 
T cell were reported in postinfectious IBS mouse (61). Dendritic 
cells isolated from mesenteric lymph node of acetic acid and 
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restraint stress-IBS rat and cocultured with splenic CD4+/CD8+ 
T cells showed an increase proliferation of T cells with a rise in 
secretion of IL-4 and IL-9 (62). Another study, using colorectal 
distension  +  restraint stress IBS rat, showed an increase in 
CD103-positive cells and proinflammatory cytokine IL-4 and 
IL-9 in colon. Mesenteric lymph node-dendritic cell, cocultured 
with CD4+ T  cells and CD8+T  cells, showed an increase IL-4 
expression in CD4+ T  cells and increase IL-9 expression in 
CD8+T cells. In vitro studies, using JAWSII cells, demonstrated 
that dendritic cells have the ability to produce and secrete CRF. 
Commensal bacterial strains can stimulate the production of 
CRF in dendritic cell, showing that CRF derived from den-
dritic cell may be involved in the pathogenesis of IBS (36, 37). 
JAWSII cells and mouse mesenteric lymph node-dendritic cells 
expressed CRFR1 and CRFR2 receptors (30, 38). CRF promotes 
inflammation in mature JAWSII by increasing the production 
of proinflammatory IL-6 and MIP-1α and decreasing anti-
inflammatory IL-4 (30). CRF increases the capacity of mouse 
mesenteric lymph node-dendritic cells to stimulate T-cell prolif-
eration, and treatment of mesenteric lymph node-dendritic cells 
with CRFR1 antagonist yielded a reduced capacity to stimulate 
T cells (38).

Mast cells are distributed in the mucosa and they have a 
major role in the transition from innate to adaptive immunity. 
Activated mast cells release a variety of preformed or newly 
synthesized inflammatory mediators (including proteases, 
histamine, prostaglandins, 5-HT, cytokines/chemokines, chy-
mase, CRF, and tryptase) and various factors such as microen-
vironment, physiological, and psychological stress influenced 
its phenotype and the release of inflammatory mediators  
(29, 63). Mast cells and neurons in the GI tract express CRF 
and its receptors (31, 40, 42, 45, 49–52) and an electron micro-
graph from IBS patient colonic mucosa has shown membrane– 
membrane contacts between degranulating mast cell and a nerve 
fiber, proving the complex integrated interactions between 
neurons and immune cells via the CRF signaling in the 
pathophysiology of IBS. Colonic mast cell infiltration and 
mediator release modulating the intestinal nerve activity 
have been positively correlated with severity and frequency 
of abdominal pain in IBS patients (10). Some papers have 
reported elevated number of mast cell, whereas others have 
reported an unchanged number of mast cells (3). Investigators 
have shown the participation of TNF-α, a mucosal mast cell 
mediator, in tight junction dysregulation, and altered intes-
tinal permeability (13, 64). In accordance with this finding, 
the elevated release of tryptase, histamine, and prostaglandin 
coexisting with increased paracellular permeability have been 
reported in colonic biopsies of IBS patients (4). Mast cells 
are immunocytochemically positive for CRH, and RT-PCR 
data have indicated presence of CRFmRNA in human cord 
blood-derived cultured mast cells. The presence of CRFR1 and 
CRFR2 in human and rat colonic mast cells are also supported 
by functional reports (13, 50). Chronic social stress in pigs 
resulted in reduced transepithelial electrical resistance in the 
ileum, and increased fluoresce flux in the ileum and colon. This 
stress also upregulated CRFmRNA in ileum and IL-10mRNA 
and mast cell chymase gene in both ileum and colon (65). 

In distal colon segments in Wistar–Kyoto rat, CRF induced a 
dose-dependent increase in short-circuit current (ion secre-
tion), enhanced horseradish–peroxidase–flux and release of 
mast cell protease II. Non-selective CRFR1/R2 antagonist or 
mast cell stabilizer inhibited these epithelial responses. Mast 
cell-deficient rats show a reduced epithelial response to stress 
(59). Mast cell stabilizer alleviates barrier disruption-induced 
by water-avoidance stress and mucosal tissue exposed to 
CRF in colon, ileal villus epithelium, and follicle-associated 
epithelium of rat (56). Restraint stress or CRF administra-
tion followed by rectal distention enhanced the number of 
abdominal cramps and the colonic histamine content. CRF 
antagonist blocked the stress and CRF-induced enhancement 
of abdominal cramps (66).

T  cells form part of the adaptive immune system and they 
are subdivided into different phenotypes including cytotoxic 
(CD8+), T helper (CD4+), memory (CD4+, CD8+, CD45RO), 
and regulatory (CD25+) based upon specific cell markers (29). 
The immune cells are mainly found in the intestinal mucosa (67). 
It has been reported that IBS patients have a greater amount of 
T cells, which are orienting to the GI tract. Furthermore, there 
is an increase in activated T cells expressing CD69 and HLA-DR 
residing in the colon IBS patient. Increased T-cell numbers in IBS 
patient’s biopsies of descending colon correlate with abnormal 
bowel movement (3). It has also been demonstrated that T lym-
phocytes have a major role in mediating changes in neuromus-
cular function following GI infection (68). Rise in T lymphocyte 
in Campylobacter enterocolitis patients is positively correlated 
with gut permeability. This description also matched changes 
observed in patients suffering from prolonged IBS symptoms 
after contracting acute bacterial enteritis (63). Convergent 
evidence indicates that human lymphocytes have the ability to 
secrete CRF, and CRF participates in immune system regulation 
by acting locally as a proinflammatory mediator (42). It has been 
reported that human T  lymphocytes contain immunoreactive 
CRF (32) and express CRF gene. Stimulation with PHA/TPA 
leads to an increase in CRHmRNA levels, which decreased after 
22 h (53).

B  cells have a key role in the adaptive immunity as they 
have the ability to secrete a wide range of antibody, which 
protects the body against infections. Not only can B  cells 
produce antibody but also act as antigen-presenting cells. 
IgA made by mucosal B  cell is secreted to protect mucosal 
surfaces and the intestinal tissue against pathogens and food 
antigens. B cells derived from blood of IBS patients displayed 
augmented B-cell activation with increased cell surface expres-
sion of IgG, CD80, and CD86. UV-light-inactivated probiotic 
bacteria and LPS-exposed-B  cells showed impaired ability to 
express costimulatory molecule CD80 (69). In IBS patients, 
immunoglobulin-producing B cells are involved in low-grade 
local GI inflammation (3). IBS patients have a lower number 
of IgA-B  cells in the ascending colon and also a decreased 
number of IgA-B cells (vs. sigmoid colon) (70). Patients with 
IBS-D display a higher density of germline transcripts (GLTs) 
and activated B lymphocytes in the jejunal mucosa, which 
are predominantly distributed along the crypts in the lamina 
propria. A slight increase in IgA and IgM concentrations in 
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the jejunal content was also reported in IBS-D patients (71). 
There is evidence proving that B lymphocytes have the ability 
to secrete CRF. In response to hyperthermia, hyperosmolarity 
and hypoxia stress, human T and B lymphocytes secrete CRF 
which is inhibited by corticosteroids (32, 33).

COnCLUSiOn

This review summarizes the etiology of the onset of IBS referring 
to evidence that it may be triggered by diet/luminal micro-
biota, low-grade inflammation, stress, and genetic composition. 
Various animal models using chemical, mechanical stimula-
tion, and physiological/psychological stress support that stress 
affects epithelial secretion, GI motility, inflammatory response, 
microbiota, abdominal muscle contraction, and response to 
pain. CRF and CRF receptors are distributed in immune cells, 
secretory cell, and tissues in the GI tract. Stress via local CRF 
system can activate cells in the GI tract and this can cause IBS 
phenotypes such as increase permeability, ion secretion, mucin 
secretion, visceral hypersensitivity, and release of proinflamma-
tory cytokines. T cells and B cells have been shown to contribute 
to IBS progression. Further studies on mechanism network of 
central CRF system (circulation, sympathetic, parasympathetic 
neurons) and the local GI CRF system will provide new insights 
in understanding brain–gut axis.
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