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A commentary on

3-Iodothyronamine reduces insulin secretion in vitro via a mitochondrial mechanism
by Lehmphul I, Hoefig CS, Köhrle J. J Mol Cell Endocrinol (2017) 460:219–228. doi:10.1016/j.
mce.2017.07.026

Lehmphul et al. report the effect of 3-iodothyronamine in reducing insulin release in a model of 
immortalized pancreatic β-cells. Notwithstanding the simplified β-cell model used, this article offers 
an opportunity to reconsider, possibly under a new light, an old issue of research, which excited 
people working on amine oxidases (AOs) in the last 20 years. Toward this aim, we would like to 
propose some points of reflection to the scientific community working on 3-iodothyronamine and 
thyroid hormone metabolites:

 1. the paper indicates that 3-iodothyronamine reduces insulin release with a mechanism mediated, 
at least in part, by its oxidative metabolite, the 3-iodothyroacetic acid, produced by mitochondrial 
monoamine oxidase (MAOs), type B (MAO-B) activity. This finding, confirming our observa-
tions and hypothesis on the role of 3-iodothyronamine as a source of active metabolites (1, 2), 
demonstrates for the first time that 3-iodothyronamine is a substrate for MAO-B, the MAO 
isoform in search of substrates and of functions;

 2. the degradation of 3-iodothyronamine by MAO-B, with production of the corresponding 
aldehyde and hydrogen peroxide (H2O2), potentially represents a self-standing mechanism 
independently of 3-iodothyronamine receptor activation on pancreatic cells.

Amine oxidases are a heterogeneous class of enzymes, including MAOs (type A and B) and sem-
icarbazide-sensitive amine oxidases (SSAOs). While MAOs are ubiquitous enzymes, being linked 
to the outer mitochondrial membrane (active site facing the cytoplasm), plasma membrane SSAOs 
can have selective and species-specific tissue/cell expression. In addition, MAOs and SSAOs are 
distinguishable by inhibitor sensitivity, substrate selectivity and affinity, and subcellular localization. 
Noradrenaline and serotonin are among MAO-A substrates, dopamine and other trace amines, 
including tyramine and β-phenylethylamine, are MAO-A, B, and SSAO substrates. Up to now, direct 
evidence that 3-iodothyronamine is a substrate for MAO-A is lacking. However, now we know that 
3-iodothyroanime is a substrate for MAO-B.

ao CatalySIS: a Pro-oXIDant SoUrCe For DIaBeteS 
ComPlICatIonS

The oxidative deamination carried out by AOs produces substrate-derived aldehydes, H2O2, and 
ammonia. Aldehydes and H2O2 are well known pro-oxidant compounds scavenged by aldehyde 
dehydrogenase(s) and catalase activities, respectively, to the corresponding carboxylic acid and 
water. If produced outside the cell by SSAO activity, H2O2 may have two fates: to enter cells or to 
remain outside cells. Both conditions can be a trigger for intra- or extracellular milieu oxidation 
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with the latter compartmentalization as a pathogenic mecha-
nistic event generating micro- and macrovascular damage. 
Aldehydes from SSAO catalysis can generate carbonylation of 
extracellular proteins as their scavenging to the corresponding 
carboxylic acid can only occur intracellularly.

If produced, by MAO activities, H2O2 may be scavenged by 
catalase or freely diffused throughout organelle membranes, gen-
erating a potential localized change in the redox state, a condition 
recognized as one among the main pathogenic events triggering 
the pancreatic dysfunction, insulin resistance, and long-term 
deleterious effects in exhausting cell/tissue antioxidant defenses. 
Furthermore, insulin-target cells were described as a preferential 
site for SSAO and MAO expression (2, 3), with their activities 
further increased in hyperglycemia (4) as well as in hypertension, 
obesity, and in other cardiovascular diseases (2–5), likely as a 
consequence of increased levels of pro-inflammatory signals (6).

ao CatalySIS: tHe HyPoGlyCemIC 
anD InSUlIn mImetIC eFFeCtS oF  
ao SUBStrateS

Hydrogen peroxide can also have beneficial signaling activi-
ties, including its capacity to activate the trafficking of GLUT4 
in adipocytes and other insulin-sensitive cells. Several studies 
have highlighted the use of high concentrations of non-selective 
SSAO and MAO substrates in stimulating GLUT4 activity, thus 

reducing hyperglycemia and mimicking insulin effects, including 
adipocyte differentiation (7–9). On the other hand, SSAO sub-
strate degradation was found to be a trigger for the generation of 
advanced glycation products (10). Therefore, whether AO inhibi-
tors or substrates should be proposed for controlling diabetes 
thus remained an open issue (11).

ProteCtIVe eFFeCtS oF ao 
InHIBItIon: ClInICal anD 
eXPerImental eVIDenCe

Aminoguanidine, an inhibitor of SSAOs, is effective in reducing 
advanced glycation end products in diabetic patients and in 
experimental diabetes (12, 13). More interestingly, clinical and 
experimental evidence indicate that the beneficial effects of drug 
targeting angiotensin II cascade in preventing diabetes complica-
tions might include the control of MAO activities (14, 15), which 
may play a pathogenic role in different cardiomyopathies (5).

These evidence confirm the pro-oxidant and pro-inflammatory 
role for AO catalysis and an overall beneficial effect of reducing 
their activities.

3-IoDotHyronamIne: WHat’S neW?

The novel fact is that 3-iodothyronamine (i) is a common endog-
enous substrate for MAO-B and SSAOs, (ii) its plasma levels 

FIGUre 1 | 3-Iodothyronamine and hyperglycemia: the mediation of amine oxidases. 3-Iodothyronamine (T1AM) injected in mice induces hyperglycemia likely 
interacting at different pancreatic receptors promoting glucagon and reducing insulin release. At insulin-sensitive cells, including the pancreas, T1AM is converted 
into 3-iodotyroactic acid (TA1), the oxidative metabolite of T1AM by the activities of mitochondrial monoamine oxidase (MAOs), or semicarbazide-sensitive amine 
oxidases (SSAOs). TA1 can diffuse from cells and induce cell signaling activities and promoting hyperglycemia. The secondary product of amine oxidase activities, 
i.e., hydrogen peroxide (H2O2) and the aldehyde, may promote oxidative attack to cell components.
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increased in diabetic patients (16), and (iii) when administered 
to mice it induces hyperglycemia (central and/or peripheral 
effects) with a mechanism that remains to be clarified but 
dependent, at least in part, on MAO activity (17, 18). To note, we 
have collected evidence demonstrating that MAO activities are 
involved in the conversion of endogenous but also pharmaco-
logical administered 3-iodothyronamine into 3-iodothyroacetic 
acid (19). This latter result suggests that 3-iodothyroacetic 
acid/3-iodothyronamine might be homeostatically regulated 
via AO activities.

Even if it is not demonstrated yet, under conditions of hyper-
glycemia, the products of oxidative deamination of 3-iodothy-
ronamine are expected to increase. Overall, hyperglycemia might 
reflect a condition of an unbalanced 3-iodothyronamine rate of 
synthesis and degradation, making available a great amount 
of the “pro-diabetic” 3-iodothyroacetic acid and pro-oxidant 
compounds, which can exacerbate diabetes and its complications.

Since thyroid dysfunctions are a risk factor for diabetes 
and because 3-iodothyroacetic acid/3-iodothyronamine seems 
to be homeostatically regulated, the circle around AOs and 
hyperglycemia might be conclusively closed. Consequently, the 
measure of 3-iodothyroacetic acid/3-iodothyronamine plasma 
levels may have diagnostic relevance to predict the risk of 
hyperglycemia (Figure 1).
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