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introduction: Impaired glucose tolerance (IGT) is diagnosed by a standardized oral glu-
cose tolerance test (OGTT). However, the OGTT is laborious, and when not performed, 
glucose tolerance cannot be determined from fasting samples retrospectively. We tested 
if glucose tolerance status is reasonably predictable from a combination of demographic, 
anthropometric, and laboratory data assessed at one time point in a fasting state.

Methods: Given a set of 22 variables selected upon clinical feasibility such as sex, age, 
height, weight, waist circumference, blood pressure, fasting glucose, HbA1c, hemoglo-
bin, mean corpuscular volume, serum potassium, fasting levels of insulin, C-peptide, tri-
glyceride, non-esterified fatty acids (NEFA), proinsulin, prolactin, cholesterol, low-density 
lipoprotein, HDL, uric acid, liver transaminases, and ferritin, we used supervised machine 
learning to estimate glucose tolerance status in 2,337 participants of the TUEF study 
who were recruited before 2012. We tested the performance of 10 different machine 
learning classifiers on data from 929 participants in the test set who were recruited 
after 2012. In addition, reproducibility of IGT was analyzed in 78 participants who had 2 
repeated OGTTs within 1 year.

results: The most accurate prediction of IGT was reached with the recursive partition-
ing method (accuracy = 0.78). For all classifiers, mean accuracy was 0.73 ± 0.04. The 
most important model variable was fasting glucose in all models. Using mean variable 
importance across all models, fasting glucose was followed by NEFA, triglycerides, 
HbA1c, and C-peptide. The accuracy of predicting IGT from a previous OGTT was 0.77.

conclusion: Machine learning methods yield moderate accuracy in predicting glucose 
tolerance from a wide set of clinical and laboratory variables. A substitution of OGTT 
does not currently seem to be feasible. An important constraint could be the limited 
reproducibility of glucose tolerance status during a subsequent OGTT.

Keywords: clinical study, supervised machine learning, oral glucose tolerance test, prediction, classification, 
impaired glucose tolerance, test-retest variability, machine learning classification
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Table 1 | List of anthropometric, clinical, and laboratory variables used as 
features in the machine learning classifiers.

Variablea evidence of association with impaired glucose 
tolerance (igT)

Sex Women have higher risk of IGT (12)

Age IGT incidence increases with age (13)

Height Used separately as underlying variables of body mass 
index that is strongly associated with IGT age (13)Weight

Glucose By definition strongly associated with glycemia, 
prediabetes, and diabetes

HBA1C Strongly associated with IGT (14)

Hemoglobin Potentially interacts with the association of HbA1c  
with the outcome (BZ120)

Mean corpuscular  
volume (MCV)

MCV could interact with HbA1c in modulating its 
association with glycemia

Ferritin Elevated ferritin is associated with impaired glucose 
tolerance (15), ferritin levels may also interact with 
HbA1c in modulating its association with glycemia

Potassium Associated with prediabetes in hypertensive  
persons (16)

Insulin Higher fasting insulin is associated with insulin 
resistance and IGT (17)

C-peptide Similar to insulin, higher levels are associated  
with IGT (18)

Proinsulin A read-out of proinsulin-insulin conversion, higher 
levels are associated with IGT (19, 20)

Non-esterified fatty  
acids (NEFAS)

High-fasting free fatty acids (=NEFAS) predict  
diabetes (21)

Triglycerides Well-known association with type 2 diabetes and 
prediabetes

Total cholesterol Well-known association with type 2 diabetes and 
prediabetes

LDL cholesterol Well-known association with type 2 diabetes and 
prediabetes

HDL cholesterol Well-known inverse association with type 2 diabetes 
and prediabetes

C-reactive protein 
(CRP)

Elevated CRP predicts the development of type 2 
diabetes (22)

Aspartate 
aminotransferase (AST)

AST is associated with fatty liver and IGT (23)

Gamma-glutamyl 
transferase (GGT)

GGT is associated with IGT (24)

Uric acid Associated with IGT especially in women (25)

aClinical chemistry values have been determined from fasting plasma.
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inTrODUcTiOn

Impaired glucose tolerance (IGT) defines an intermediate state 
of blood glucose regulation that is not yet clearly pathologic. 
However, it is important to recognize this state because indi-
viduals with IGT have significantly increased incidence of type 2 
diabetes (1), and it is associated with an elevated cardiovascular 
disease risk (2–4). Therefore, identification of IGT is important 
to allow focused diabetes and cardiovascular disease prevention 
strategies on those who are at the highest risk.

There is a widely accepted consensus definition of IGT using a 
cutoff of 7.8 mmol l−1 for the postchallenge plasma glucose level 
measured 2 h after the administration of a 75 g glucose load in 
an oral glucose tolerance test (OGTT) (5). While the test itself is 
usually well tolerable and not too difficult to perform, it requires 
considerable attention and time from both the participant and 
the medical personnel. Unfortunately, currently, there is no 
procedure of substituting the OGTT to establish IGT. For the 
diagnosis of diabetes, the use of glycated hemoglobin (HbA1c) 
levels has been proposed as an alternative to OGTT. However, 
it has been shown that using only HbA1c to diagnose diabetes 
misses more than half of the diabetes cases established by OGTT 
(6). According to recommendations of the American Diabetes 
Association, prediabetes can also be diagnosed with an interme-
diary HbA1c range of 5.7–6.4% (7). Nevertheless, it has recently 
been demonstrated that in obese individuals, 44% of prediabetes 
cases captured by OGTT were missed using the HbA1c criterion 
(8). Furthermore, the HbA1c-based diagnosis of prediabetes pre-
cludes the differentiation of impaired fasting glycemia from IGT.

Therefore, we investigated if machine learning could be uti-
lized to differentiate IGT from normal glucose tolerance (NGT) 
using a battery of potential predictor variables that can be easily 
obtained in a fasting state. Machine learning can be employed as 
a computational technique to recognize specific patterns that are 
characteristic for a class of entities. Specifically, we set out to test 
supervised machine learning to predict IGT from anthropomet-
ric, clinical, and laboratory variables obtained at one time point.

MaTerials anD MeThODs

Participants
Data of the Tuebingen Family Study (TUEF) were retrospectively 
analyzed. In the TUEF study, participants at an increased risk for 
type 2 diabetes were recruited if they had a family history of dia-
betes, obesity, or previously known prediabetes. All participants 
underwent OGTT with an extensive phenotyping including the 
laboratory measurements of several glycemic traits. The data 
were acquired between December 1996 and November 2016.  
To separate training and test sets, the data were longitudinally 
split at the date January 1, 2012. The training set comprised 
OGTTs performed before this date, and the test set comprised 
OGTTs performed after this date. To measure the intraindividual 
variability of an OGTT in our study center, we identified 78 
participants who underwent a second OGTT within 1 year and 
had a weight difference <3 kg between the two measurements.

This study was carried out in accordance with the recommen-
dations of the Ethics Committee of the University of Tübingen 

with written informed consent from all subjects. All subjects gave 
written informed consent in accordance with the Declaration of 
Helsinki. The protocol was approved by the Ethics Committee of 
the University of Tübingen.

Model Variables
We preselected routinely phenotyped variables upon scientific 
credibility and feasibility as model features for machine learn-
ing. The list of selected variables with available evidence for an 
association with IGT or glycemia is shown in Table  1. Mean 
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Table 2 | Characteristics of the training and test set for the feature variables 
and the target variable defining the classification.

Training set Test set

N Mean sD N Mean sD p*

Sex (f/m) 2,337 929 0.79
Age (years) 2,337 40 13 929 49 15 <0.0001
Height (cm) 2,337 171 9 929 170 9 0.00022
Weight (kg) 2,337 91.5 29.1 929 89.8 25.5 0.11
Fasting glucose (mmol l−1) 2,337 5.25 0.72 929 5.46 0.74 <0.0001
Glycated hemoglobin 
HbA1c (%)

2,190 5.4 0.5 916 5.7 0.5 <0.0001

Hemoglobin (g dl−1) 2,208 13.8 1.2 917 13.9 1.2 0.047
Mean corpuscular  
volume (fl)

2,208 86 5 917 86 4 0.59

Potassium (mmol l−1) 2,155 3.97 0.32 912 3.99 0.35 0.13
Fasting insulin 2,304 84 75 919 110 77 <0.0001
C-peptide (pmol l−1) 2,236 685 344 913 603 308 <0.0001
Triglycerides (mg dl−1) 2,185 132 152 917 123 71.9 0.027
Cholesterol (mg dl−1) 2,183 194 38.9 917 197 40.1 0.052
Low-density lipoprotein 
(mg dl−1)

2,157 121 33.5 917 115 34.1 <0.0001

HDL (mg dl−1) 2,157 53.3 14.3 917 53.4 13.9 0.99
Uric acid (mg dl−1) 2,174 5.5 1.4 836 5.6 1.3 0.16
Aspartate 
aminotransferase (U l−1)

2,132 22 11 917 24 10 <0.0001

Gamma-glutamyl 
transferase (U l−1)

2,167 28 33 917 28 36 0.71

C-reactive protein  
(mg dl−1)

2,161 0.42 0.62 917 0.36 0.51 0.0038

Ferritin (μg dl−1) 2,175 9 12 834 12 14 <0.0001
Non-esterified fatty  
acids (μmol l−1)

2,210 593 251 906 606 225 0.15

Proinsulin (pmol l−1) 2,132 6 6.5 890 3.6 3.9 <0.0001
Postchallenge  
glucose (mmol l−1)

2,337 6.65 2.15 929 6.96 2.19 0.00022

*t-Test or Fisher’s exact test, as appropriate.
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arterial blood pressure, alanine aminotransferase, family history 
of diabetes (9), and prolactin (10) were initially selected and then 
excluded due to a high missing rate (>10%). The feature vari-
ables sex, age, height, weight, fasting glucose, and the outcome 
variable IGT had no missing values in the training set, and all 
other features had missing value rates <10%. Missing values were 
imputed using multivariate imputation by chained equations (11). 
For constructing the classifiers, all variables were normalized to 
a mean of 0 with a SD of 1 (scaled and centered). No further 
preprocessing was applied.

OgTT and laboratory Measurements
All participants received a 75-g glucose solution (Accu-Check 
Dextro, Roche) at 8:00 a.m. following an overnight fast. Venous 
blood was obtained through an indwelling venous catheter before 
and 30, 60, 90, and 120 min after glucose ingestion. Glucose val-
ues were measured directly using a bedside glucose analyzer (YSI, 
Yellow Springs, CO, USA). All other obtained blood samples were 
put on ice, and the serum was centrifuged within 2  h. Plasma 
insulin and C-peptide were determined by an immunoassay 
with the ADVIA Centaur XP Immunoassay System (Siemens 
Healthineers, Eschborn, Germany).

Serum proinsulin concentrations were measured using a 
microparticle enzyme immunoassay (IBL, Hamburg, Germany) 
on a BEP III System (Siemens Healthineers, Eschborn, Germany). 
Triglycerides (TGs) and total, HDL, and low-density lipoprotein 
cholesterol levels, as well as alanine aminotransferase, aspartate 
aminotransferase, and gamma-glutamyl transferase (GGT) 
activities, were measured using the ADVIA XPT clinical chemi-
cal analyzer (Siemens Healthineers, Eschborn, Germany). Plasma 
concentrations of total non-esterified fatty acid (NEFA) were 
measured with an enzymatic method (WAKO Chemicals, Neuss, 
Germany) on the latter instrument. Hematological parameters, 
including mean corpuscular volume, were determined on the 
Sysmex XN-10 (Sysmex GmbH, Norderstedt, Germany) or 
ADVIA 2120 hematological analyzers (Siemens Healthineers, 
Eschborn, Germany). HbA1c measurements were performed 
using the Tosoh glycohemoglobin analyzer HLC-723G8 (Tosoh 
Bioscience Tokyo Japan).

Model computation and statistics
All computations were run under R version 3.4 (26). Classifiers 
were computed using the wrapper package Classification and 
Regression Training (27). Detailed information on the machine 
learning packages is provided as Supplementary Material; see 
Table S1 in Supplementary Material. Model optimization in the 
training set was performed by fivefold cross-validation, with 
three sets of repeats. The granularity of the tuning parameter 
grid (“tuneLength”) was set to 5 (default: 3). We used Synthetic 
Minority Over-sampling Technique to compensate for the 
imbalanced prevalence of IGT and NGT in the training set (28).  
By doing this, we simulate balanced NGT and IGT prevalence 
for the classifier, thus precluding it from utilizing prevalence 
infor mation in the estimation procedure. Intraindividual per-
centage error was calculated as the ratio of the difference of two 
measurements divided by their mean. Intraindividual coefficient 
of variation was calculated as the ratio of SD and mean. Insulin 

sensitivity was assessed using the method of Matsuda and 
DeFronzo (29).

resUlTs

Machine learning classifiers
We tested the performance of 10 machine learning classifiers to 
predict IGT from 22 biologically reasonable feature variables.  
Table 2 compares the characteristics of the training and test sets. 
In the training set during resampling by repeated cross-validation, 
the highest model accuracy indicating the proportion of right 
predictions over all predictions was shown for the recursive 
partitioning and regression trees (RPART) classifier at a median 
of 0.82 (interquartile range, 0.80–0.83). In the independent test 
set, the same RPART classifier reached the highest accuracy of 
0.78. The mean sensitivity across all models was 0.67 ± 0.08, and 
the specificity was 0.75 ± 0.08. The generalized linear model and 
the penalized multinomial regression classifier had the highest 
sensitivity (both 0.74), while the highest specificity (0.88) was 
yielded by the RPART classifier. These measures translate to posi-
tive predictive values of around 51 ± 6% and negative predictive 
values of 86 ± 2%. Model accuracy showed a mean of 0.73 ± 0.04.
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FigUre 1 | Aggregated importance score in the machine learning classifiers for each feature variable. Individual importance scores are represented by colors in the 
stacked bars. The classifiers are described in Table S1 in Supplementary Material.

Table 3 | Model performance showing crude accuracy values (the ratio of right 
predictions over all predictions) and κ statistic (accuracy in relation to expected 
accuracy) for the evaluated machine learning classifiers in the test set.

Method accuracy κ p Value

Recursive partitioning (rpart) 0.783 0.423 <0.0001
Lasso (glmnet) 0.767 0.418 0.003
Stochastic gradient boosting (gbm) 0.761 0.414 0.012
Random forest (rf) 0.744 0.412 0.142
Extended gradient boost (xgbLinear) 0.74 0.394 0.22
generalized additive model (gamLoess) 0.708 0.368 0.913
Neural networks (nnet) 0.695 0.348 0.987
Generalized linear model (glm) 0.686 0.339 0.998
Penalized multinomial regression (multinom) 0.686 0.339 0.998
Partial least squares (pls) 0.692 0.331 0.993

A one-sided binomial test p value is shown for the difference of the model accuracy 
from the no information rate. The no information rate is equivalent to the prevalence  
of impaired glucose tolerance in the test set (0.73).
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Simple accuracy measurements could be biased because the 
predicted categories were unbalanced. IGT has a prevalence of 
27%, corresponding to an NGT prevalence of 73% in the test set, 
such that a uniform “forecast” of NGT would also result in an 
accuracy of 0.73. This value is also called no information rate. To 
quantify prediction accuracy adjusted for the expected accuracy, 
Cohen’s kappa (κ) was applied as a suitable measure. Table  3 

shows the accuracy, κ statistic, and the p-value of the difference 
of κ from the no information rate for all models in the test set. The 
mean κ over all models in the test set was 0.38 ± 0.04.

Furthermore, to show which predictor variables are used 
by the machine learning classifiers, model-specific variable 
importance measures were obtained for each model. By using a 
common scale of 0–100 (with 0 indicating an omitted variable 
and 100 indicating the variable with the highest importance), we 
show overall variable importance in Figure  1. The single most 
important model feature was fasting glucose. It is followed by 
NEFA, TGs, and HbA1c. Some of the tested machine learning 
methods shrink the number of model features from the origi-
nal 22 by completely eliminating weak predictor variables. For 
example, the best-performing RPART classifier has only retained 
fasting glucose, HbA1c, insulin, C-peptide, and TGs, while the 
lasso method used fasting glucose, NEFA, C-peptide, HbA1c, age, 
height, and CRP for the classifier.

To compare model performance in insulin-sensitive and insulin-
resistant individuals, we tested the classifiers in subsets of the test set 
split at the median insulin sensitivity index. Higher accuracy levels 
were obtained in the insulin-sensitive subset; however, κ was gener-
ally very low, probably due to the low proportion of individuals with 
IGT among insulin-sensitive subjects. In contrast, accuracy and κ 
values were moderate in individuals with low insulin sensitivity.
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intraindividual Variability of OgTT
To compare the predictive performance of machine learning 
models with the predictive performance of an earlier OGTT for 
discriminating IGT from NGT in an individual, we investigated 
78 participants who received a second OGTT within 1 year of 
their first OGTT. Only participants who did not undergo lifestyle 
intervention in between and who did not experience substantial 
weight change (<3  kg) were selected. Postchallenge 120-min 
glucose in a repeated OGTT, i.e., the underlying variable for 
discrimination of IGT from NGT, showed large variation. The 
percentage error of measurement pairs for postchallenge 120-
min glucose, calculated as the average of the bias-to-mean ratio 
of the individual data points of the plot, was 18.3% (±15.2%). 
For comparison, fasting glucose had a percentage error of only 
6.4% (±5.0%). Bland-Altman plots and coefficients of variation of 
repeated OGTT measurements for each time point are shown in 
the Supplementary Material, Figures S1 and S2 in Supplementary 
Material, respectively. The calculated mean coefficients of vari-
ation were 13.0% (±11.0%) for postchallenge glucose and 4.6% 
(±3.5%) for fasting glucose. By using these data, we calculated 
the predictive accuracy of one OGTT for forecasting IGT in a 
second OGTT. In the set of 78 OGTT measurement pairs, the 
agreement (accuracy) between corresponding measurements 
was 0.77. Given the expected frequency of IGT, the computed κ 
statistic was 0.46.

DiscUssiOn

Our work shows that machine learning is capable of predicting 
the glucose tolerance status by 22 baseline variables obtained at 
fasting blood acquisition. The best-performing RPART classifier 
had an unbiased predictive accuracy κ of 0.42, which is a moder-
ate classifier according to the consideration of Landis and Koch 
(30). From another aspect, given a test population with similarly 
high IGT prevalence, this classifier’s IGT prediction would be 
correct in 62% of the cases (positive predictive value), and the 
NGT predictions would be correct in 83% of the cases (negative 
predictive value). This might fall short of initial expectations. 
However, the κ value of the RPART classifier (0.42) approaches 
the computed intraindividual κ of a repeated OGTT (0.46) that 
can be interpreted as the upper bound of a feasible prediction of 
IGT. A wealth of studies has been investigating the reproducibil-
ity of OGTT results since the 1960s (31–36). It has been shown 
that in a population with NGT, the 95th percentile of random 
test–retest differences is 46% for the postchallenge glucose, 
while this ratio is only 16% for fasting glucose values (36). The 
coefficient of variation has been estimated around 16–17% for 
2-h postchallenge glucose levels (34, 36). In our population, 
the coefficient of variation was only 12%, which might be due 
to the stringent laboratory methods employed in our single-
center study. Higher variability seems to be also true for other 
postchallenge analytes such as insulin levels during the OGTT 
(32). Fasting levels of these analytes are more stable, but still 
prone to a relatively high intraindividual variance. For example, 
the intraindividual coefficient of variation for fasting TGs is 
25–35% (37, 38). Since these analytes are feature variables in 

the machine learning classifiers, they introduce a further noise 
to the prediction.

As the aggregate statistics of variable importance shows, 
from the 22 initially selected feature variables, the top 5 
variables were fasting glucose, NEFA, TGs, HbA1c, C-peptide, 
and CRP. One could speculate that fasting glucose, TGs, and 
NEFA might reflect insulin resistance, while lower C-peptide 
levels associate with a dysfunction of insulin secretion. HbA1c 
directly correlates with glycemia, such that higher postprandial 
glucose levels that are present with IGT contribute to an eleva-
tion of HbA1c. Interestingly, in one of our recent works, NEFA 
emerged as a very robust proxy for the estimation of insulin 
resistance (39). The emergence of CRP among the top feature 
variables underlines the role of subclinical inflammation in the 
pathogenesis of IGT and prediabetes (40). In the aggregated 
variable, importance score fasting insulin is unexpectedly 
only the sixth most important variable closely following CRP. 
However, the best-performing RPART classifier just retained 
fasting glucose, HbA1c, insulin, C-peptide, and TGs. This and 
the relatively small difference among the aggregate importance 
scores of these variables suggest that some of the most impor-
tant feature variables at position 2–6 of the aggregate variable 
importance list relate to similar biological aspects and can be 
used interchangeably. This might be true for TGs and NEFA as 
well as, to some extent, C-peptide and insulin levels.

The most important limitation of our work is that we cannot 
generalize the classifier on different study populations and differ-
ent study settings. In our subset analyzes, the classifiers seemed 
to yield a higher accuracy in the insulin sensitive, and a lower 
accuracy in the insulin-resistant subgroup. Kappa was strongly 
influenced by the different IGT rates in the two subsets and was 
generally lower than in the original test set. The retraining of 
classifiers could improve model performance in study popula-
tions with substantially different insulin sensitivity distributions. 
A further limitation of our study is the large set of clinical and 
laboratory variables, some of which, e.g., NEFA or proinsulin, will 
not be easily accessible in every laboratory. Also, a precise deter-
mination of NEFA levels requires careful preanalytical handling.

Taken together, prediction of IGT from baseline variables 
with supervised machine learning is a feasible technique. 
However, in spite of the complex analytes as feature variables, 
predictive accuracy remains moderate. Therefore, stringently 
performed OGTT still remains the gold standard for determin-
ing IGT. Prediction of IGT with machine learning could be 
employed to fill in IGT status when OGTT is technically not 
possible or to retroactively estimate IGT status from stored 
fasting samples.
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