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Endometrial cancer (EC) is the most frequent gynecological cancer in developed 
countries. Most EC occurs after menopause and is diagnosed as endometrioid (type I) 
carcinomas, which exhibit a favorable prognosis. In contrast, non-endometrioid (type II) 
carcinomas such as serous tumors have a poor prognosis. Our goal was to identify 
novel blood-based markers associated with EC subtypes and recurrence after surgery 
in postmenopausal women. Using mass spectrometry-based untargeted metabolom-
ics, we examined preoperative serum metabolites among control women (n = 18) and 
those with non-recurrent (NR) and recurrent (R) cases of type I endometrioid (n = 24) 
and type II serous (n = 12) carcinomas. R and NR cases were similar with respect to 
pathological characteristics, body mass index, and age. A total of 1,592 compounds 
were analyzed including 14 different lipid classes. When we compared EC cases with 
controls, 137 metabolites were significantly different. A combination of spermine and 
isovalerate resulted in an age-adjusted area under the receiver-operating characteristic 
curve (AUCadj) of 0.914 (P < 0.001) for EC detection. The combination of 2-oleoylglycerol 
and TAG42:2-FA12:0 allowed the distinction of R cases from NR cases with an AUCadj 
of 0.901 (P < 0.001). Type I R cases were also characterized by much lower levels of 
bile acids and elevated concentrations of phosphorylated fibrinogen cleavage peptide, 
whereas type II R cases displayed higher levels of ceramides. The findings from our 
pilot study provide a detailed metabolomics study of EC and identify putative serum 
biomarkers for defining clinically relevant risk groups.
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inTrODUcTiOn

Endometrial cancer (EC) is the sole gynecological neoplasm with a rising incidence and mortality 
and is currently the most common gynecological cancer in the United States, Canada, and other 
developed countries (1). Occurring predominantly in postmenopausal women, EC is initially treated 

Abbreviations: EC, endometrial cancer; R, recurrent; NR, non-recurrent; MS, mass spectrometry; UPLC-MS/MS, ultra-
performance liquid chromatography–tandem mass spectrometry; ROC, receiver operating characteristic; AUC, area under 
the curve; MAGL, monoacylglycerol lipase; PENAO, 4-(N-(S-penicillaminylacetyl)amino) phenylarsonous acid.
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TaBle 1 | Summary of previous metabolomics studies of EC.

reference specimens Platform (nb of 
metabolites)a

Upregulated metabolites Downregulated metabolites

Trousil et al. (19) Tissue from n = 10 controls H1 NMR (68) Valine, leucine, alanine, proline, 
tyrosine, phosphatidylcholine

Glutathione, scyllo-inositol, myo-inositol, inosine/
adenosinen = 8 EC cases

Shao et al. (20) Urine from n = 25 controls UPLC-QToFb N-acetylserine, urocanic acid, 
isobutyrylglycine

Porphobilinogen, acetylcysteine
n = 25 EC cases
n = 10 EH cases

Gaudet et al. (21) Serum from n = 250 controls GC-MS (43) None C5-acylcarnitines, octenoylcarnitine, 
decatrienoylcarnitine, linoleic acid, stearic acidn = 250 EC cases

Bahado-Singh 
et al. (22)

Serum from n = 60 controls LC-MS/MS (181) 2-hydroxybutyrate, 3-hydroxybutyric 
acid, acetone, C10, C14:1, C14:2, 
C16, C18:1, C18:2, C2, C5-DC 
(C6-OH), C6 (C4:1-DC), C7-DC, C8, 
glutamate, SM C18:0

Asparagine, C3, histidine, hydroxyproline, kynurenine, 
l-methionine, lysoPC a C17:0, lysoPC a C18:0, lysoPC 
a C18:1, lysoPC a C18:2, methionine, several PC aa 
and PC aed

n = 56 EC cases H1 NMR (32)c

Troisi et al. (23) Serum from n = 130 controls GC-MS (259) Lactic acid, homocysteine, 
3-hydroxybutyric acid

Progesterone, linoleic acid, stearic acid, myristic acid, 
threonine, valinen = 118 EC cases

n = 30 OCa cases
n = 10 BED cases

EC, endometrial cancer; EH, endometrial hyperplasia; BED, benign endometrial disease; OCa, ovarian cancer; GC–MS, gas chromatography–mass spectrometry; H1 NMR, proton 
nuclear magnetic resonance; UPLC-QToF, ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry; LC-MS/MS, liquid chromatography–tandem MS; 
PC, phosphatidylcholines; PC aa, diacyl-phosphatidylcholines; PC ae, acyl–alkyl-phosphatidylcholines.
aThe number of metabolites examined is shown in parentheses.
bThe authors did not report the number of metabolites detected.
cMetabolites detected by H1 NMR were also detected by LC-MS/MS.
dPC aa and PC ae were PC aa C36:0, PC aa C36:1, PC aa C36:3, PC aa C36:5, PC aa C36:6, PC aa C38:0, PC aa C38:5, PC aa C40:2, PC aa C42:2, PC aa C42:6, PC ae 
C34:0, PC ae C34:2, PC ae C34:3, PC ae C36:1, PC ae C36:2, PC ae C36:3, PC ae C38:0, PC ae C38:1, PC ae C38:2, PC ae C38:5, PC ae C38:6, PC ae C40:1, PC ae C40:6, 
PC ae C42:1, PC ae C42:2, PC ae C42:3.
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by surgery including total hysterectomy, bilateral salpingo-
oophorectomy, and lymph node evaluation. Despite successful 
surgery, 10–15% of tumors recur within 5 years with poor treat-
ment outcomes and low survival rates (2).

Predictive and prognostic factors of EC include histological 
subtype with high-risk features such as high-tumor grade, stage, 
and deep myometrial invasion (3). Endometrioid type I carcino-
mas and especially those of low grade exhibit a favorable progno-
sis and may be cured by primary surgery (4). Type II carcinomas 
include non-endometrioid histologies better represented by the 
prototypical serous carcinoma and account for ~10% of EC. 
Type II neoplasms represent higher-grade tumors with a more 
aggressive clinical course, for which recurrence is more frequent 
and treatment remains a challenge (5). Candidate diagnostic bio-
markers such as CA125 and HE4 have been identified; however, 
their low sensitivity and/or specificity limit their use in the clinic 
(6, 7). ECs are strongly associated with cumulative estrogen expo-
sure, obesity, and other characteristics of metabolic syndrome 
(8–12). This does not apply only to type I carcinomas, as type II 
tumors can also be associated with hormonal, reproductive, and 
metabolic factors (8). Based on the recognition of the biological 
and prognostic differences between pathogenetic types of EC 
and given the poor prognosis for recurrent disease, it is critical to 
develop novel biomarkers.

Metabolomics is defined as the comprehensive analysis 
of metabolites in a biological specimen and includes a more 
focused form of metabolomics that surveys lipids (referred to as 
lipidomics). This approach is becoming a very powerful tool for 
biomarker discovery and has proven itself useful in the study of 

many metabolic diseases including cancer. For instance, discov-
eries related to oncometabolites have highlighted the possibility 
of unsuspected cellular pathways whose components could serve 
as diagnostic or prognostic biomarkers or may be therapeutically 
targeted for disease treatment (13). Still, very few studies have 
used metabolomics in the context of EC (Table 1). In contrast, 
more than 30 global and targeted mass spectrometry (MS)-based 
metabolomics studies have been conducted for ovarian cancer 
and have identified dysregulated metabolic pathways that under-
lie several histological types of carcinoma (14). These discoveries 
have led to the identification of potential new therapeutic targets 
and biomarkers that might improve diagnosis and prognostica-
tion (15–18).

In the present study, our goal was to identify non-invasive 
biomarkers of EC cancer and recurrence in postmenopausal 
women using global metabolomics and lipidomics profiling. 
We examined preoperative serum metabolites in control 
women as well as those from women with EC of both histologi-
cal types; these individuals were from a prospective study of 
women who underwent hysterectomy and were recruited from 
a single center. We used validated metabolomics platforms 
capable of identifying and quantifying multiple biochemical 
species simultaneously across all major metabolite classes as 
well as complex lipids including phospholipid, sphingolipid, 
and neutral lipid classes. In the first series of analyses, we 
identified putative EC biomarkers by comparing EC cases to 
control women. Then, we compared type I and type II EC 
cases to find biomarkers associated with histological type. 
In the third set of analyses, we compared matched recurrent 
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(R) and non-recurrent (NR) cases of both histological type I 
and type II to detect recurrence biomarkers of EC. Finally, to 
identify putative biomarkers that would be specific to either 
type I or type II carcinomas, we compared matched R and NR 
cases of individual histological type.

MaTerials anD MeThODs

study Population
All participants provided written informed consent for their 
participation in the study and for the use of their specimens. The 
current study was evaluated and approved by the local Ethical 
Research Committee of the Centre Hospitalier Universitaire 
(CHU) de Québec—Université Laval (2012-993) and was 
conducted in accordance with the Declaration of Helsinki. The 
recruitment and specimen collection have been described (8). 
Briefly, participants were all recruited at the Hôtel-Dieu de 
Québec Hospital (Québec City, QC, Canada), between 2002 and 
2014. All women were of postmenopausal status and underwent 
surgery (hysterectomy and bilateral salpingo-oophorectomy), 
either for EC treatment or for non-malignant conditions (n = 9 
for benign pelvic mass, n = 3 for prophylactic treatment, n = 3 for 
precancerous cervical lesion, n = 2 for fibroma, n = 1 for uterine 
prolapse). Fasting blood samples were collected on the morn-
ing of surgery and were rapidly processed and stored at −80°C 
until analysis. To be eligible, women must not have developed 
prior malignancies nor taken hormone replacement therapy 
(HRT) during the 3  weeks preceding specimen collection. 
EC recurrence was ascertained by computerized  tomography 
scan and further confirmed by histopathology when required. 
Nurses collected information regarding demographic and 
anthropometric data through standardized questionnaires. A 
pathologist assessed the histopathological characteristics of 
the hysterectomy specimens for women with EC. Systematic 
compilation and review of medical records were performed by 
one of the treating gynecologic oncologists (Jean Grégoire), for 
both cases and controls.

Recurrent EC cases consisted of endometrioid (n  =  12) or 
serous carcinoma (n  =  6). To reduce potential confounding 
factors, NR EC cases were matched to R cases according to (i) 
histological type, (ii) grade, (iii) a body mass index (BMI) within 
an interval of 5 kg m−2, and (iv) age. In addition, (v) myometrial 
invasion was also considered for the matching of R and NR type 
I cases. We achieved a perfect match for the first two criteria for 
both histological types, as well as myometrial invasion for type I 
carcinomas. The median difference in BMI was 2.0 kg m−2. For 
two pairs of matched cases, the differences in BMI were of 7.2 and 
11.2 kg m−2 (Table S1 in Supplementary Material). The median 
difference in age was 7 years. Control women were not matched 
to EC cases.

Metabolomics
Serum sample aliquots were analyzed for metabolites and lipids 
with the metabolomics platform at Metabolon Inc. (Durham, NC, 
USA). Global profiling was conducted as described (24). Briefly, 
samples were prepared using the automated MicroLab STAR 

system (Hamilton Company, Reno, NV, USA). A recovery stand-
ard was added prior to the first step in the extraction process for 
quality control purposes. Metabolites were extracted by vigorous 
agitation after precipitation of proteins with methanol. Samples 
were then split to enable analysis by different methods, utilizing 
a Waters ACQUITY ultra-performance liquid chromatography 
(UPLC) system coupled to a Thermo Scientific Q-Exactive high-
resolution accurate-mass spectrometer equipped with a heated 
electrospray ionization source and an Orbitrap mass analyzer. 
Raw data extraction, peak identification, and quality control 
processing were carried out using the Metabolon proprietary 
hardware and software. Compound identification was done 
through comparison with a library of chromatographic and MS 
data from authenticated standards.

Complex lipid profiling was conducted according to a modi-
fied version of a previously described protocol (25). Briefly, lipids 
were extracted from serum samples by a heptane/ethyl acetate 
mixture after addition of a butanol/methanol solution. Phase 
separation was induced by addition of aqueous acetic acid and 
centrifugation. MS analysis was conducted on a Shimadzu 
LC with nano PEEK tubing coupled to a Sciex SelexIon-5500 
QTRAP. The scan was performed in multiple reaction monitor-
ing mode. Peaks were quantified using the area under the curve 
(AUC) method, and data were normalized for inter-day signal 
differences. The analytical variability was ≤10% for both global 
profiling and lipidomics.

statistical analyses
The similarity between groups (EC cases vs. controls, R vs. 
NR cases) was assessed by Student’s two-sample t-test for 
continuous variables, with correction for variance unequal-
ity when required (Welch’s two-sample t-test). Chi-square 
tests were used for categorical data or Fisher’s exact test when 
appropriate. Metabolomics data were log-transformed prior to 
statistical comparisons, and fold changes (FCs) were calculated 
based on the geometric mean. The Welch’s two-sample t-test was 
conducted for all comparisons, as it offers a slightly better sta-
tistical precision than paired sample analysis, which could have 
been used for the comparison of R to NR cases (26). Pathway 
enrichment analyses were performed with Metabolon online 
tools and using their proprietary database. The enrichment score 
was calculated by dividing the ratio of statistically significant 
metabolites within a pathway by the overall proportion of statis-
tically significant metabolites.

Predicted probabilities, calculated with logistic regression, 
were used to build univariate and multivariate receiver operat-
ing characteristic (ROC) curves for EC and recurrence detec-
tion. Univariate regression models were made for each of the top 
four altered metabolites, and multivariate models were adjusted 
for age. BMI did not significantly contribute to the models 
(P > 0.80). Multivariate models were then optimized to give the 
best AUC with a maximum of four metabolites. The size of our 
group allowed the detection (α = 0.05, 1 − β = 0.80) of an AUC 
>0.700 for EC detection, and an AUC >0.730 for recurrence 
(27). Finally, because of the exploratory nature of the study, as 
well as the number of metabolites tested (n = 1,592), statistical 
adjustment for multiple tests was not performed.
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TaBle 2 | Demographics of control postmenopausal women and those who 
were newly diagnosed with endometrial cancer (EC).

ec cases (n = 36)

characteristic controls 
(n = 18)

non-recurrent 
(n = 18)

recurrent 
(n = 18)

continuous variable data Mean ± sD Mean ± sD Mean ± sD
Age (years) 58.9 ± 10.4a 66.3 ± 8.3 67.5 ± 9.4
Height (cm) 159.2 ± 5.3 157.9 ± 5.4 156.5 ± 6.7
Weight (kg) 70.1 ± 20.1 70.7 ± 16.9 68.3 ± 14.1
BMI 27.5 ± 7.2 28.4 ± 7.0 28.0 ± 6.4
Mean follow-up (months) NA 56.3 ± 26.5 65.4 ± 48.7

categorical data n (%) n (%) n (%)
Full-term pregnancy

No 4 (22) 7 (39) 8 (44)
Yes 14 (78) 10 (56) 9 (50)
Missing 0 (0) 1 (6) 1 (6)

OC use
No 8 (44) 10 (56) 12 (67)
Yes 10 (56) 7 (39) 5 (28)
Missing 0 (0) 1 (6) 1 (6)

Smoking
Never 12 (67) 11 (61) 13 (72)
Current 4 (22) 4 (22) 3 (17)
Ex-smoker 2 (11) 3 (17) 2 (11)

HRT
No 14 (78) 10 (56) 11 (61)
Yes 4 (22) 7 (39) 6 (33)
Missing 0 (0) 1 (6) 1 (6)

aControl women were slightly younger than EC cases (P < 0.05). No other significant 
differences were noted between cases and controls. No statistical differences were 
noted between R and NR cases. Student’s t-test was used for continuous variable 
data, with adjustment for variance inequality when required (Welch’s two-sample 
t-test). Categorical data were assessed using the chi-square test (χ2) or Fisher’s exact 
test, when applicable.
HRT, hormone replacement therapy; OC, oral contraceptive; BMI, body mass index; 
NA, not applicable.
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resUlTs

Markers of ec - comparison  
of all ec cases relative to controls
We examined preoperative serum metabolites from control 
women (n = 18) and from women with NR (n = 18) or R (n = 18) 
cases of either type I (n = 12 R and n = 12 NR) or type II (n = 6 R 
and n = 6 NR) carcinomas. To reduce biases that may be caused 
by menstrual cycling, all of the women were postmenopausal, and 
none of them had used HRT in the 3 weeks preceding specimen 
collection. All individuals were selected from a larger cohort 
recruited at a single center (8), and pairing of NR cases with R 
cases was based on pathological (histological type, grade, and 
myometrial invasion) and clinical (BMI and age) characteristics 
(Table  2; Table S1 Supplementary Material). A total of 1,592 
compounds of known identity across all major metabolite classes, 
and 14 different lipid classes were assessed by UPLC–tandem MS 
using global profiling and lipidomics.

When comparing EC cases to control women, 137 metabolites 
were significantly altered (115 up and 22 down, P < 0.05; Figure S1 
in Supplementary Material). Pathway enrichment analysis identi-
fied lipid- and glycolysis-related pathways as the most affected 

in EC cases (Figure  1A). Conjugated forms of lipids, such as 
acylcholines, monoacylglycerols, and acylcarnitines, were gener-
ally higher in EC cases as compared with control women, whereas 
free fatty acids were detected at lower concentrations, supporting 
a remodeling of fatty acid metabolism in EC (Figure 1B). Of note, 
the C5 acylcarnitine 2-methylbutyrylcarnitine was also elevated 
in EC cases (FC = 1.27, P = 0.023). Five of the top 10 most altered 
features in EC cases were peptides and amino acids (Table 3), with 
spermine (FC = 7.66, P = 0.0004), and isovalerate (FC = –2.56, 
P = 0.015) as the most changed metabolites in cancer cases.

To further assess our ability to distinguish EC cases from 
controls based on these metabolites, we constructed ROC curves 
based on univariate and multivariate logistic regression models. 
The combination of spermine and isovalerate resulted in an area 
under the ROC curve (AUC) of 0.875 [95% confidence interval 
(CI)  =  0.784–0.966], and an age-adjusted AUC (AUCadj) of 
0.914 (95% CI = 0.833–0.994), very similar to a more complete 
model that included spermine, isovalerate, glycylvaline, and 
gamma-glutamyl-2-aminobutyrate and resulted in an AUCadj of 
0.921 (95% CI = 0.843–1.000) (Figure 1C). These results support 
the capacity of these metabolites to discriminate EC cases from 
controls.

Markers associated with histological 
Types - comparison of Type i and  
Type ii ec cases
A total of 98 metabolites significantly distinguished type I from 
type II ECs (n  =  30 higher in type I, n  =  68 lower in type I, 
P < 0.05). The most different metabolites between histotypes were 
bradykinin, with higher levels in type I (FC = 2.70, P = 0.003), 
and heme, which was 4.52-fold higher in type II ECs (P = 0.030) 
(Table  3). Levels of saturated long-chain acylcarnitines were 
higher in type II, with C20, C24, and C26 acylcarnitines display-
ing FCs of 1.32 (P = 0.021), 1.33 (P = 0.027), and 1.38 (P = 0.005), 
respectively.

Levels of choline were higher (FC = 1.27, P = 0.010) in type II 
ECs, along with sarcosine (FC  =  1.42, P  =  0.023), which are 
both metabolites of the tetrahydrofolate-serine/glycine path-
way. Glycine levels tended to be elevated in type II ECs as well 
(FC  =  1.23, P  =  0.075). Levels of sulfated androgenic steroids 
differed significantly between the two histotypes, with type I EC 
having higher levels than type II for 10 out of the 18 androgenic 
compounds assessed by the method.

Markers of ec recurrence - comparison 
of r and nr cases of Both histological 
Types
Recurrent cases were characterized by an altered lipid metabo-
lism relative to NR cases. Among the 104 metabolites modulated, 
80 represented lipid metabolism (68/75 up and 12/29 down; 
P < 0.05). Pathway enrichment analysis (Figure 2A) identified 
many classes of lipids affected in R cases, such as monoacylgly-
cerols, for which 16:1, 18:1, 20:5, and 22:6 species of both alpha 
and beta isomers were significantly elevated (Figure 2B; Table 4).

In addition to modifications in lipid levels, other classes of 
compounds displayed significant alterations in R cases when 
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FigUre 1 | Comparison of endometrial cancer (EC) cases and controls reveals that lipid metabolism is perturbed in EC cases. (a) Pathway enrichment analysis is 
based on enrichment scores. Pathways containing at least three metabolites and having an enrichment score >3 are displayed. (B) Free fatty acid levels are lower in 
EC cases, whereas conjugated forms of fatty acids are elevated. Fold changes are displayed in radar graphs. Significantly enriched and depleted metabolites are 
marked in red and blue circles, respectively. (c) Receiver operating characteristic (ROC) curves of the most accurate regression models for detecting EC. †P < 0.10, 
*P < 0.05, **P < 0.01.
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compared with NR cases. For example, the pathway of glycine, 
serine, and threonine metabolism was affected, as both serine 
and threonine levels were lower in R cases, whereas the glycine 
precursor N-acetylglycine was elevated (Figure 2C). Even though 
higher levels of N-acetylglycine were observed, glycine was not 
affected, suggesting a rerouting of glycine metabolism intermedi-
ates in R cases.

Some metabolites had a similar association with recurrence 
in both type I and type II EC patients. This was the case of the 

monoacylglycerol 1-oleoylglycerol (18:1), the only metabolite 
observed among the top modulated metabolites for both histo-
logical types (Table 4), which displayed a FC of 3.77 (P = 0.045) 
and 2.29 (P = 0.018) for type I and type II, respectively. A similar 
observation was noted for other lipid metabolites, namely the 
acylcarnitine docosahexaenoyl carnitine (C22:6) (FC  =  1.51 
and 1.46 for type I and type II, respectively; P < 0.05) and the 
monohydroxylated fatty acids 2-hydroxypalmitate (2-OH-
C16:0, FC = 1.47 and 1.57 for type I and type II; P < 0.05) and 
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TaBle 3 | Top 10 modulated preoperative serum metabolites in endometrial 
cancer (EC) cases.

subpathway Biochemical name Fold 
change

P-value

Biomarkers of ec

ec cases (n = 36) vs. control postmenopausal women (n = 18)

Leucine, isoleucine, and valine 
metabolism

Isovalerate −2.56 0.0154

Gamma-glutamyl amino acid Gamma-glutamyl-2-
aminobutyrate

−1.72 0.0170

Fatty acid, dicarboxylate Adipate −1.64 0.0456
Nicotinate and nicotinamide 
metabolism

1-methylnicotinamide −1.47 0.0118

Histidine metabolism Trans-urocanate −1.45 0.0125
Methionine, cysteine, SAM, and 
taurine metabolism

Cystathionine 2.73 0.0011

Secondary bile acid metabolism Isoursodeoxycholate 3.40 0.0146
Glycogen metabolism Maltose 3.41 0.0005
Dipeptide Glycylvaline 3.92 0.0075
Polyamine metabolism Spermine 7.66 0.0004

Biomarkers of ec histological types

Type ii ec cases (n = 12) vs. type i ec cases (n = 24)

Polypeptide Bradykinin, des-arg(9) −2.70 0.003
Androgenic steroids Androsteroid monosulfate 

C19H28O6S
−2.33 0.030

Xanthine metabolism 1,3,7-trimethylurate −2.33 0.047
Androgenic steroids 5-alpha-androstan-3beta, 

17beta-diol disulfate
−2.17 0.025

Androgenic steroids Androstenediol (3alpha, 
17alpha) monosulfate

−2.08 0.017

TAG ester TAG42:1-FA12:0 2.92 0.049
TAG ester TAG46:3-FA18:3 3.05 0.030
TAG ester TAG44:2-FA12:0 3.26 0.038
TAG ester TAG44:2-FA18:2 3.38 0.041
Hemoglobin and porphyrin 
metabolism

heme 4.52 0.030
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2-hydroxystearate (2-OH-C18:0, FC = 1.30 and 1.56 for type I and 
type II; P < 0.05), suggesting a remodeling of lipid metabolism 
among R cases of both histological types when compared with NR 
cases. In addition, these four metabolites were not significantly 
different when comparing EC cases and control women (data not 
shown), suggesting their relevance as biomarkers of recurrence, 
independently of the histological type.

Receiver operating characteristic curves identified 2-oleoyl-
glycerol and TAG42:2-FA12:0 as the most effective metabolites to 
discriminate R cases from NR cases, with an AUC = 0.877 (95% 
CI = 0.730–0.990) and an AUCadj = 0.901 (95% CI = 0.796–1.000). 
These results are similar to the model including more metabolites, 
namely 1-oleoylglycerol, 2-oleoylglycerol, TAG40:0-FA12:0, 
and TAG42:2-FA12:0, which displayed an AUCadj = 0.904 (95% 
CI  =  0.807–1.000; Figure  2D), confirming the ability of these 
metabolites to predict recurrence.

Markers associated with recurrence 
according to histological Types - 
comparison of r and nr cases according 
to histological Type
Several metabolites were specifically associated with recurrence 
in type I endometrioid or type II serous cases. For instance, 

modifications in bile acid metabolism were mainly observed in 
type I R cases, which had lower levels of primary and secondary 
bile acid metabolites such as taurodeoxycholate (FC = –7.14, 
P  =  0.009), glycodeoxycholate (FC  =  –4.55, P  =  0.009), and 
taurocholate (FC  =  –3.85, P  =  0.038; Figure  3A; Table  4). 
Type  I recurrent cases were also characterized by an enrich-
ment in circulating levels of phosphorylated fibrinogen cleav-
age peptide ADpSGEGDFXAEGGGVR (FC = 1.68, P = 0.014; 
Figure 3B; Table 4); an association not found for type II R cases 
(P = 0.477).

In contrast, multiple classes of sphingolipids were significantly 
enriched in type II R cases, including ceramides, their precursors 
dihydroceramides, and their glycosylated derivatives lactosyl-
ceramides. Though the variations were modest with FCs between 
1.29 and 1.60 for significant metabolites, numerous metabolites 
of this pathway were similarly altered, underscoring the potential 
significance of these variations (Figure  3C). None of the cera-
mides were significantly different in type I R cases, suggesting that 
alterations in these pathways could be specific to type II R cases.

DiscUssiOn

In this study, we profiled 1,592 compounds in 54 postmenopausal 
women. To the best of our knowledge, this is the first study report-
ing metabolites associated with type I and type II EC carcinomas 
and their recurrence following initial surgical treatment. Our 
findings represent an important pilot study in the identification of 
putative serum biomarkers useful for detecting EC and predicting 
recurrence following initial surgery, to ultimately improve patient 
survival based on better stratification and informed treatment 
decisions.

We found that the levels of free fatty acids linoleic acid (C18:2) 
and myristic acid (C14:0) were lower in EC cases as compared with 
control women, consistent with previous reports comparing EC 
cases and controls (21, 23). Gaudet et al. (21) also observed modi-
fications in intermediates from the branched chain amino acid 
pathway, such as isovalerylcarnitine/2-methylbutyrylcarnitine 
(undistinguishable by the MS method), which were also altered in 
our set of EC cases compared with controls. Other comparisons 
between the two studies could not be extended, as their panel 
of metabolites was targeted to 69 compounds. In our dataset, 
additional metabolites related to amino acids were affected in EC 
cases, such as polyamines, which are involved in cancer progres-
sion, including endocrine-related neoplasms like breast cancer 
(28). Accordingly, the most elevated metabolite between EC cases 
and controls was spermine, a biomarker of EC possibly originat-
ing from EC cells. This is conceivable as polyamine synthesis and 
degradation are actively regulated in the endometrium, notably 
during the menstrual cycle and pregnancy (29–31).

Lipids were also considerably affected in EC cases when 
compared with controls, with lower serum concentrations of 
free fatty acids but higher levels of conjugated fatty acids such 
as acylcholines, acylcarnitines, and monoacylglycerols. This is 
consistent with a report from Bahado-Singh et  al. (22). They 
observed higher acylcholine levels in EC patients. However, 
very little is known about these lipids (no entries were found in 
either the Human Metabolome Database or Kyoto Encyclopedia 
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FigUre 2 | Monoacylglycerols and amino acids are remodeled in Recurrent (R) endometrial cancer cases when compared to Non-Recurrent (NR) cases.  
(a) Most-enriched pathways in R cases as compared with NR cases. Pathways containing at least three metabolites and having an enrichment score >3 are 
displayed. (B) Several species of monoacylglycerol are elevated in R cases. (c) The metabolism of glycine, serine, and threonine is perturbed in R cases in 
comparison to NR cases. Normalized levels of detected metabolites are displayed in dot plots, and means are represented by gray diamonds (♦). (D) Receiver-
operating characteristics (ROC) curves of the most-accurate regression models to detect recurrence. *P < 0.05, **P < 0.01.
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of Genes and Genomes database; accessed on December 15, 
2017), although some acylcholines, including palmitoylcholine, 
stearoylcholine, and oleoylcholine, enhance estradiol penetration 
through tissues (32). This could be important in the context of 
a hormone-sensitive cancer, potentially favoring the estrogenic 
activity of estradiol in the tumor. In addition, acylcarnitines have 
been linked to EC, as well as to breast cancer, where they are 
enriched in hypoxic tissues (21, 33). Acylcarnitines are synthe-
sized by cells to fuel mitochondrial fatty acid oxidation. However, 
the mechanisms by which they are found in circulation remains 
unclear, although their levels should reflect cellular activity and 
concentration (34, 35). It is thus possible that circulating levels 
of acylcarnitines could reflect the hypoxic status of tumor cells.

We also observed an accumulation of monoacylglycerols to 
the detriment of free fatty acids. Monoacylglycerols are mainly 
derived from enzymatic hydrolysis of triacylglycerols and 

diacylglycerols and can be further metabolized to free fatty 
acids through the action of monoacylglycerol lipase (MAGL), 
an enzyme previously identified to be downregulated in EC (36). 
Accordingly, a lower MAGL activity could explain, at least in part, 
the observed accumulation of monoacylglycerols in sera of EC 
cases as compared with controls. Of note, the monoacylglycerol 
1-oleoylglycerol (18:1) was strongly elevated in R cases of both 
tumor types and could represent a marker of EC recurrence. 
This is consistent with a role for MAGL in various aspects of 
tumorigenesis (37).

Modifications in lipid levels could also be related to brady-
kinin, a putative biomarker of type I EC that is known to activate 
phospholipase D in EC (38). As an inflammatory mediator, 
bradykinin triggers kinin-activated pathways. These have been 
associated with EC and breast cancer progression, support-
ing the role of bradykinin in tumors originating from steroid 
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TaBle 4 | Top 10 modulated preoperative serum metabolites in recurrent 
endometrial cancer cases.

subpathway Biochemical  
name

Fold 
change

P-value

Biomarkers of recurrence after initial surgery

r cases (n = 18) vs. nr cases (n = 18) for type i and type ii carcinomas

Ester TAG40:0-FA12:0 −7.14 0.0427
Ester TAG42:2-FA12:0 −5.00 0.0460
Primary bile acid metabolism Chenodeoxycholate −2.86 0.0263
Glycogen metabolism Maltose −2.78 0.0028
Secondary bile acid metabolism Glycoursodeoxycholate −2.00 0.0343
Fatty acid metabolism (acyl 
glycine)

Hexanoylglycine 2.04 0.0454

Monoacylglycerol 1-palmitoleoylglycerol 
(16:1)

2.73 0.0484

Monoacylglycerol 2-palmitoleoylglycerol 
(16:1)

2.86 0.0283

Monoacylglycerol 2-oleoylglycerol (18:1) 2.95 0.0076
Monoacylglycerol 1-oleoylglycerol (18:1) 3.37 0.0046

Biomarkers of recurrence after initial surgery by histological type

r cases (n = 12) vs. nr cases (n = 12) for type i endometrioid 
carcinomas

Secondary bile acid metabolism Taurodeoxycholate −7.14 0.0093
Secondary bile acid metabolism Glycodeoxycholate −4.55 0.0088
Primary bile acid metabolism Taurocholate −3.85 0.0383
Glycogen metabolism Maltose −3.45 0.0065
Primary bile acid metabolism Glycocholate −3.23 0.0263
Free fatty acids FFA(22:5) 1.66 0.0006
Fibrinogen cleavage peptide ADpSGEGDFXAEGGGVR 1.68 0.0135
Oxidative phosphorylation Phosphate 1.76 0.0250
Ester TAG58:10-FA20:5 1.88 0.0032
Monoacylglycerol 1-oleoylglycerol (18:1) 3.77 0.0450

r cases (n = 6) vs. nr cases (n = 6) for type ii serous carcinomas

Fatty acid metabolism (Acyl 
Carnitine)

3-hydroxybutyrylcarnitine −2.17 0.0494

Pentose metabolism Ribitol −1.56 0.0192
Purine metabolism (Hypo)
xanthine/inosine containing

Allantoin −1.45 0.0481

Histidine metabolism Histidine −1.45 0.0028
Glutathione metabolism 2-aminobutyrate −1.39 0.0132
Fatty acid metabolism (acyl 
choline)

docosahexaenoylcholine 2.18 0.0413

Monoacylglycerol 1-docosahexaenoylglycerol 
(22:6)

2.28 0.0036

Monoacylglycerol 1-oleoylglycerol (18:1) 2.29 0.0175
Phospholipid metabolism Glycerophosphoinositol 2.38 0.0022
Monoacylglycerol 2-docosahexaenoylglycerol 

(22:6)
2.55 0.0067
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sensitive tissues (39, 40). Sulfated androgens were also higher 
in type I EC cases, consistent with the reported implication of 
sulfated steroids in this histotype (8, 41–44). Furthermore, our 
data identified heme as a putative biomarker of type II EC and 
highlighted modifications in pathways closely related to heme 
synthesis, namely the tetrahydrofolate-serine/glycine pathway 
(45). Heme consumption might participate in endometrial 
carcinogenesis, being associated with a moderate increase in EC 
risk (46). Targeting this pathway is currently being tested for the 
treatment of ovarian cancer and other solid tumors using a new 
drug, 4-(N-(S-penicillaminylacetyl)amino) phenylarsonous acid 
(PENAO), acting through the induction of heme degradation by 
heme oxygenase-1 (47, 48).

Putative biomarkers of EC recurrence were also identified. 
Compared with patients with non-recurrent type I carcinomas, 
those who experienced recurrence after surgery presented 
alterations in bile acid levels. Bile acids contribute to cholesterol 
homeostasis, a precursor of the steroids that drive the develop-
ment and progression of this histological type of EC (10). 
Recently, we showed that higher levels of circulating steroids 
are linked to an increased risk of recurrence (43). Numerous 
enzymatic pathways are involved in the conversion of both bile 
acids and steroids, including reduction by aldo-keto reductases 
(49), conjugation by uridine diphospho-glucuronosyltransferases 
(50), sulfotransferases (51), and sulfatase (52). The reduced lev-
els of bile acids may reflect an altered activity of some of these 
metabolic pathways in R type I cases, consistent with previous 
findings (8, 42). Bile acids might also act synergistically with 
steroids by stimulating EC cell growth, as they enhance myo-
metrium sensitivity to hormones such as oxytocin (53). Finally, 
bile acids might initiate signaling events, as some of them display 
inflammatory functions (54, 55). In accordance with modifica-
tions in the inflammatory status of R type I cases, inflammatory 
response markers such as the phosphorylated cleavage peptide of 
fibrinogen were elevated in these patients. This is reinforced by 
studies that have linked the overexpression of procoagulants with 
gynecologic malignancies including EC, and further associated 
this overexpression with more aggressive tumor types (56–60). 
Although fibrinogen may confer a potential advantage to cancer 
cells in terms of aggressiveness and dissemination, the underlying 
mechanisms remain unclear.

For the type II ECs analyzed here, all of which were serous 
carcinomas, our observations revealed enhanced concentrations 
of numerous ceramides in preoperative sera of R cases compared 
with NR cases. Others have linked alterations of sphingolipids 
and ceramides in EC with the differentiation status of the tumors, 
but they did not include type II carcinomas (61–64). Tanaka et al. 
(65) showed that serous ovarian cancers exhibit elevated levels 
of glycosylated ceramides, consistent with high expression of 
galactosyltransferase in tumors. As ovarian serous cancers share 
similarities with type II serous EC, this raises the possibility that 
alterations in ceramide metabolism may be common to both tis-
sues (66, 67). These bioactive lipids participate in tumor progres-
sion and the metastasis process (68) and, therefore, may represent 
promising biomarkers for non-invasive detection of recurrent 
type II EC. However, their metabolism in endometrial malignant 
tumors has been poorly characterized and our investigation is 
the first to present complex data on ceramide metabolism in the 
context of EC. Additional studies are thus warranted.

We identified putative cancer-specific and recurrence bio-
markers using an unbiased metabolomics approach for type I 
and type II EC in postmenopausal women. Although explora-
tory, our study has several strengths including the analysis of 
postmenopausal cases and controls, as well as R and NR cases of 
two of the most common histological EC subtypes, in addition to 
the quantification of an extensive panel of metabolites through 
a validated metabolomics platform. This approach is powerful 
for screening a large and diverse set of metabolites but is limited 
in terms of absolute quantification. Additional limitations to 
our study include a restricted number of prospective EC cases, 
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FigUre 3 | Metabolic alterations of Recurrent (R) endometrial cancer differ between the histological subtypes. (a) R cases of type I histology are associated with 
reduced bile acid levels. Metabolites in bold were significantly altered (P < 0.05), whereas a trend (P < 0.10) was detected for underscored metabolites. Bile acids 
can be conjugated with glucose (G-), taurine (T-), glucuronic acid (-GA), or sulfate (-S). CA, cholic acid; DCA, deoxycholic acid; UDCA, ursodeoxycholic acid; IUDCA, 
isoursodeoxycholic acid; CDCA, chenodeoxycholic acid; LCA, lithocholic acid. (B) Normalized levels of the phosphorylated fibrinogen cleavage peptide 
ADpSGEGDFXAEGGGVR were higher in type I R cases. (c) Ceramide levels were significantly altered in type II R cases. Fold change is shown, and significant 
metabolites (P < 0.05) are identified by a black background, whereas a trend (P < 0.10) in metabolite differences is shown by gray shading. Cer, ceramide; -FA, fatty 
acid group; DEGS, dihydroceramide desaturase; CEGT, ceramide glucosyltransferase; GALT, galactosyltransferase; Gal, galactose; Glu, glucose.
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whereas the study design likely reduced variations through sam-
ple matching. Even though enrolled women must have not taken 
HRT during the 3 weeks prior to blood draw, it is not known if 
this period is sufficient to fully restore circulating metabolite lev-
els potentially affected by HRT. Nonetheless, HRT use was similar 
between groups, which likely reduced the potential bias it might 
have introduced. The putative biomarkers identified in this pilot 
study will require validation in larger cohorts using quantitative 

methods. Their specificity to EC must also be confirmed, notably 
in comparison to other gynecological malignancies (ovarian 
cancer, mixed Müllerian cancer) and benign conditions (hyper-
plasia, endometriosis, etc.), which will facilitate their translation 
to the clinic. Finally, mechanistic studies are needed to help gain 
insights into the underlying biological processes driving the 
observed changes in metabolites in EC cases and those experienc-
ing recurrence after surgery for curative intent.
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