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Obesity has become a worldwide health problem, but we still do not understand the 
molecular mechanisms that contribute to overeating and low expenditure of energy. 
Leptin has emerged as a major regulator of energy balance through its actions in the 
hypothalamus. Importantly, obese people exhibit high circulating levels of leptin, yet the 
hypothalamus no longer responds normally to this hormone to suppress appetite or 
to increase energy expenditure. Several well-known hypotheses have been proposed 
to explain impaired central responsiveness to the effects of leptin in obesity, including 
defective transit across the blood–brain barrier at the arcuate nucleus, hypothalamic 
endoplasmic reticulum stress, maladaptive sterile inflammation in the hypothalamus, 
and overexpression of molecules that may inhibit leptin signaling. We also discuss a 
new explanation that is based on our group’s recent discovery of a signaling pathway 
that we named “NSAPP” after its five main protein components. The NSAPP pathway 
consists of an oxide transport chain that causes a transient, targeted burst in intracellular 
hydrogen peroxide (H2O2) to inactivate redox-sensitive members of the protein tyrosine 
phosphatase gene family. The NSAPP oxide transport chain is required for full activation 
of canonical leptin signaling in neurons but fails to function normally in states of over-
nutrition. Remarkably, leptin and insulin both require the NSAPP oxide transport chain, 
suggesting that a defect in this pathway could explain simultaneous resistance to the 
appetite-suppressing effects of both hormones in obesity.

Keywords: leptin, hypothalamus, obesity, energy balance, signaling

inTRODUCTiOn

In just the past few decades, obesity has become a worldwide health problem. The underlying cause 
is excessive food intake and a sedentary lifestyle, resulting in a chronic positive energy imbalance. 
The maintenance of a healthy energy balance is essential for the prevention of obesity. Successful 
strategies to achieve sustained weight loss to reverse obesity must address appetite and food intake as 
well as energy expenditure. Why has keeping a healthy energy balance become so difficult recently?

A major regulator of appetite and hence food intake is the adipocyte-derived hormone leptin  
(1, 2). Because blood levels of leptin rise chronically in proportion to body fat mass (3), this hormone 
indicates caloric prosperity. In addition, blood concentrations of leptin concentrations rise acutely 
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FigURe 1 | A novel pathway essential for canonical leptin signaling in 
hypothalamic neurons. Leptin activates signaling pathways to control the 
expression of appetite-regulating neuropeptides [proopiomelanocortin 
(POMC) and agouti-related peptide (AgRP)] in hypothalamic neurons. The 
canonical Janus kinase 2 (JAK2)–signal transducer and activator of 
transcription 3 (STAT3) signaling pathway is shown in blue. In red is the newly 
discovered NSAPP pathway that we showed to be essential for producing an 
intracellular burst of H2O2 that inhibits key protein tyrosine phosphatases 
(PTPases), thereby allowing canonical leptin signaling to propagate. Normal 
leptin signaling is required to suppress appetite and to stimulate white 
adipose tissue (WAT) browning and brown adipose tissue (BAT) thermogenic 
activity. Pointed arrowheads indicate stimulation of the immediately 
downstream molecule or process; flat arrowheads indicate inhibition. Specific 
phosphorylation sites are indicated within yellow ovals. The double line 
indicates the plasma membrane; all molecules above it are extracellular, and 
all named molecules below it in the schematic are intracellular. The leptin 
receptor (LepRb), NADPH oxidase-4 (NOX4), and aquaporins are 
transmembrane molecules. Solid lines represent experimentally 
demonstrated pathways; dotted lines are less well-characterized or  
putative. Adapted from Ref. (21–23).
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after a carbohydrate-containing meal, apparently stimulated 
by insulin (4, 5). Accordingly, leptin enters the central nervous 
system (CNS) where it provokes specific neuronal signals in the 
hypothalamus that mediate leptin’s appetite-suppressing effects 
(6, 7). In addition to these direct homeostatic actions in the 
hypothalamus, leptin has gained recognition as a modulator of 
neural circuits governing motivation and reward (8–10). Leptin 
acts via the mesolimbic dopaminergic “reward system” to sup-
press the motivational drive to seek and consume food (11, 12). 
Leptin also triggers responses in the CNS that can increase energy 
expenditure, e.g., via activation of non-shivering thermogenesis 
in brown adipose tissue (BAT) and the induction of BAT-like 
thermogenesis in white adipose tissue (WAT). This latter process 
is known colloquially as “browning” and is discussed in more 
detail below.

Obese individuals typically exhibit high circulating levels 
of leptin because overall fat mass is increased, yet the hypo-
thalamus no longer responds normally to leptin to suppress 
appetite (13–15). The exact molecular mechanisms responsible 
for the poor response to leptin in the brain remain unknown. 
Here, we review several well-known hypotheses that have been 
proposed to explain impaired central responsiveness to the 
appetite-suppressing effects of leptin in obesity. We also discuss 
a new explanation that is based on our group’s recent discovery 
of a signaling pathway—the NSAPP oxide transport chain—that 
is required for full activation of canonical leptin signaling in 
neurons but fails to function normally in states of overnutrition.

CenTRAL RegULATiOn OF eneRgY 
BALAnCe—nORMAL CAnOniCAL 
eFFeCTS OF LePTin

The first studies showing that a hormone from the circulation 
regulates feeding centrally took advantage of a pair of spontaneous 
mutant mice with severe heritable hyperphagia and obesity (16). 
One of these obese mice, ob/ob, was later used to identify the leptin 
gene, where the obesogenic mutation resides (2). The other obese 
mouse, db/db, carries two copies of a defective allele in the gene 
encoding the long form of the leptin receptor, LepRb (Leprdb/db).  
The db/db mouse is a key animal model of overnutrition, obesity, 
and type 2 diabetes mellitus. Restoration of CNS expression of 
functional LepRb in db/db mice is sufficient to normalize food 
intake and reverse their obesity (17).

The primary CNS site involved in the regulation of appetite by 
leptin is the arcuate nucleus of the hypothalamus (ARC). Within 
the ARC, leptin acts on LepRb, to inhibit neurons that express 
the orexigenic (appetite-stimulating) neuropeptide agouti-
related peptide (AgRP), while simultaneously stimulating nearby 
neurons that express the anorexigenic (appetite-suppressing) 
neuropeptide proopiomelanocortin (POMC). Both of these 
actions work together to reduce food intake (6, 7).

Although leptin drives AgRP and POMC expression in 
opposite directions, the hormone acts in those two types of ARC 
neurons primarily via the same signaling cascades. Binding of 
leptin to the LepRb, which has no intrinsic kinase activity, causes 
the receptor to recruit intracellular Janus kinase 2 (JAK2). The 

recruitment of JAK2 in turn activates diverse signal transduction 
cascades through autophosphorylation and phosphorylation of 
LepRb and signal transducer and activator of transcription 3 
(STAT3) (blue in Figure 1). Phosphorylation of STAT3 activates 
it, to silence the AgRP gene and drive expression of the Pomc 
gene. Leptin–LepRb binding also activates intracellular phospho-
inositide-3 kinase (PI3K) (18) and causes phosphorylation and 
hence nuclear exclusion of the transcription factor FOXO1 (19). 
Consistent with this model, unphosphorylated FOXO1 and phos-
phorylated STAT3 appear to act on the Agrp and Pomc promoters 
through squelching, meaning that the two proteins compete for 
binding to overlapping sites within the two promoters (19). Both 
JAK2–STAT3 and PI3K have been implicated in leptin’s anorexi-
genic effect [reviewed in Ref. (20, 21)].

Regarding energy expenditure, leptin activates additional 
pathways in the brain that trigger efferent outflow to adipose 
tissue to alter its metabolism. Thus, abundant adipose tissue pro-
duces leptin, a prosperity signal to the brain, and then the brain 
sends neuronal signals back to adipose tissue to increase energy 
expenditure. Importantly, there are two general types of adipose 
tissue in humans and other mammals. WAT stores chemical 
energy as triacylglycerols for use during periods of fasting or 
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starvation. BAT also contains triacylglycerols but is enriched in 
mitochondria and adrenergic (sympathetic) innervation, both of 
which contribute to its brown color. BAT expresses uncoupling 
protein-1 (UCP1), which causes its mitochondria to dissipate the 
energy from oxidation of macronutrients as heat rather than har-
nessing this energy to make ATP. In human infants and in small 
rodents, which have high surface area-to-volume ratios, a major 
function of BAT is to maintain body temperature during cold 
exposure. Research during recent years provided unequivocal 
evidence for the existence of metabolically active BAT in normal 
human adults as well (24–26).

Leptin action in the hypothalamus, in part through local 
activation of the extracellular signal-regulated kinase (ERK) 
(27), increases sympathetic outflow to β3-adrenergic receptors 
on BAT adipocytes, thereby stimulating UCP1 expression and 
thermogenic activity (28). Several hypothalamic nuclei have been 
shown to be involved in activation of BAT and browning of WAT 
by leptin and other factors [reviewed in (29)]. Leptin acts in the 
mediobasal hypothalamus also to suppress WAT lipogenesis in an 
STAT3-independent manner (30). The fact that db/db mice (17) 
and leptin-deficient ob/ob mice (Lepob/ob) (31) are cold intolerant 
supports a key role for leptin in heat production. Restoration of 
CNS expression of functional LepRb in db/db mice also restores 
cold tolerance (17). Abundance and activity of BAT or brown-
like fat is reduced or absent in obese humans (25, 32), suggesting 
that energy expenditure could be substantially increased in these 
individuals if therapies could be found to stimulate BAT thermo-
genic activity and the browning of WAT (33). Owing to issues of 
safety and efficacy, however, no pharmacologic agents (34, 35) or 
devices (36) that were designed primarily to stimulate BAT have 
yet achieved regulatory approval for weight loss. Some data indi-
cate pharmacological activation of the glucagon-like peptide-1 
(GLP-1) system might increase BAT thermogenesis. For example, 
central administration of GLP-1 and GLP-1 receptor agonists has 
been shown to increase BAT thermogenesis in mice (37, 38).

Stimulation of WAT to increase their content of mitochondria 
and UCP1, a process called browning, has been shown to increase 
energy expenditure and suppress high-fat diet-induced obesity 
in rodents (39–41). Recently, Dodd and colleagues demonstrated 
that leptin acts on POMC neurons to promote the browning of 
WAT (42). WAT browning has been demonstrated in humans as 
well (43). Per gram of tissue, WAT after browning shows a lower 
thermogenic capacity compared with BAT (44). Nevertheless, 
there is much more WAT mass than BAT mass, suggesting that 
browning of WAT could substantially increase overall energy 
expenditure.

DeFeCTive CenTRAL ReSPOnSeS TO 
LePTin in OBeSiTY

As noted earlier, obese individuals typically exhibit hyperleptin-
ema, yet this overabundant leptin loses its normal appetite-sup-
pressing effects (13–15). Strikingly, the ARC becomes selectively 
leptin resistant in mice with diet-induced obesity, whereas other 
hypothalamic and extrahypothalamic nuclei remain leptin 
responsive (15, 45). Also, there is evidence in diet-induced obese 

mice that exogenous leptin still activates BAT, even though leptin 
no longer suppresses food intake (45). Stellate cells in the liver 
also appear to retain their responsiveness to leptin in obesity; the 
hormone stimulates those cells to synthesize collagen and may 
thereby contribute to hepatic fibrosis and cirrhosis (46).

Several different mechanisms have been hypothesized to 
impair leptin responsiveness in the ARC in obesity [reviewed 
in Ref. (47)], including defective transit across the blood–brain 
barrier (BBB) that lines the ARC, hypothalamic endoplasmic 
reticulum (ER) stress, maladaptive sterile inflammation in the 
hypothalamus, and inhibited LepRb signaling owing to abnormal 
overexpression of suppressor of cytokine signaling 3 and protein 
tyrosine phosphatases (PTPases). Leptin transport across the 
BBB has been reported to be gradually impaired during high-fat 
feeding (48). In humans, the ratio of leptin concentrations in 
cerebrospinal fluid versus serum was found to be 4.3-fold higher 
in lean individuals than in obese individuals (49). Tanycytes, 
which are specialized glia in the BBB, have been reported to 
bring circulating leptin into the hypothalamus (50, 51), and 
there is evidence that leptin transport requires ERK activation 
in these cells (50). Recently, it was reported that ER stress in the 
ventromedial hypothalamus in obese Zucker rats leads to reduced 
BAT thermogenesis and weight gain, which could be rescued by 
overexpression of a chemical chaperone (52). Furthermore, it has 
been shown that histone deacetylase 5 activity is a regulator of 
leptin signaling (53). This picture is further complicated by evi-
dence of discrepancies between endogenous and exogenous leptin 
sensitivity (54). Using a leptin receptor antagonist, Ottaway and 
colleagues concluded that diet-induced obese mice have essen-
tially normal sensitivity to their endogenous leptin, despite other 
work indicating impaired sensitivity to exogenous leptin  and the 
fact that these mice continue to overeat. Different animal models 
of obesity can give different results, and we recently reviewed 
problems with high-fat-fed rodent models of obesity (21).

Hypothalamic neurons and other cell types contain PTPases 
that dephosphorylate specific tyrosyl residues in canonical 
leptin and insulin signaling cascades, thereby attenuating or 
terminating the action of these hormones [Figure 1; Ref. (55)]. 
Accordingly, abnormal increases in the abundance (and possibly 
activity) of hypothalamic PTPases have been implicated in high-
fat diet-induced obesity and central leptin resistance (56, 57). 
Conversely, genetic deletion of specific PTPases in the brain pro-
motes leptin signaling in the ARC in association with decreased 
food intake, increased energy expenditure, and hence reduced 
adiposity. For example, deletion of protein tyrosine phosphatase 
1B and T-cell protein tyrosine phosphatase enhances leptin 
signaling in POMC neurons and prevents diet-induced obesity 
by increasing WAT browning and energy expenditure (42).

Levels of PTPase activity in fasted, lean animals are sufficiently 
high to quickly undo the phosphorylation of key tyrosyl residues 
in LepRb, JAK2, and STAT3. Thus, for normal leptin signaling 
to propagate, hypothalamic neurons require a robust system 
to transiently inactivate PTPases that otherwise interfere with 
phosphorylation and activation of LepRb, JAK2, and STAT3. 
The enzymatic activity of PTPases depends on the presence of 
a reduced cysteine in a conserved motif, CX5R(S/T), within the 
active site (58, 59). Thus, certain members of the PTPase gene 
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family are among the most redox-sensitive molecules in the cell. 
PTPase activity is regulated by reversible oxidation of that key 
active-site cysteine, and any disturbance in this process will affect 
leptin signaling.

We and others have shown that leptin normally induces a 
transient burst in reactive oxygen species (ROS) in neurons and 
other cell types (22, 60–62). Leptin seems to induce an increase 
in an ROS species with a long half-life—namely, hydrogen 
peroxide (H2O2; see below). Importantly, Diano et  al. reported 
lower hypothalamic content of ROS in obesity and that central 
injection of low, non-toxic amounts of H2O2 mimicked the 
appetite-suppressing effects of leptin and restored leptin sensitiv-
ity in diet-induced obese mice (61). Nevertheless, the molecular 
mechanism by which leptin normally stimulates ROS production 
had remained uncharacterized.

THe newLY DiSCOveReD nSAPP 
SignALing PATHwAY iS eSSenTiAL  
FOR CAnOniCAL LePTin SignALing  
in HYPOTHALAMiC neUROnS

Recently, our group discovered a new signaling pathway that 
we named “NSAPP” after its major protein components [red in 
Figure 1; (21, 23)]. The pathway consists of an oxide transport 
chain, in which certain hormones stimulate NADPH oxidase-4 
(NOX4) to generate the superoxide ion O2

⋅−( ). NOX4 hands O2
⋅− to 

the nearby superoxide dismutase-3 (SOD3) for efficient conver-
sion into H2O2. This H2O2 is generated extracellularly and requires 
aquaporins to cross the plasma membrane to enter the cell. Inside 
the cell, the H2O2 is targeted to inactivate redox-sensitive PTPases 
and the closely related enzyme PTEN. We initially showed that 
the NSAPP oxide transport chain is required for normal, balanced 
insulin signaling through the PI3K–AKT pathway in liver and 
in endothelium (21, 23). The NSAPP pathway fails to function 
normally in states of overnutrition, thereby providing a molecular 
explanation for pathway-selective insulin resistance, also known 
as imbalanced insulin action (21, 23).

In recent work (22), we found that all proteins of the NSAPP 
oxide transport chain are present in rat hypothalamus. In murine 
hypothalamic cell lines, leptin induced a burst in intracellular 
staining by a fluorogenic probe for ROS that we definitively iden-
tified as H2O2 by its quenching by catalase. Inhibition of NOX4 
with diphenyliodonium abolished the leptin-induced H2O2 burst 

and blocked leptin signaling to key tyrosine phosphorylation 
sites on JAK2 and STAT3. Strikingly, knockdown of Sod3 also 
blocked leptin signaling to JAK2 and STAT3. Consistent with our 
findings, NOX4-deficient mice are unusually susceptible to diet-
induced obesity and early-onset insulin resistance for handling 
glucose (63). Moreover, the anorexigenic effect of insulin requires 
an increase in hypothalamic ROS mediated through NADPH 
oxidases that is blunted in high-fat diet-fed mice (64).

The NSAPP oxide transport chain finally provides a molecular 
explanation for how leptin normally provokes an ROS burst in 
hypothalamic neurons (22). Moreover, the NSAPP pathway is 
essential for canonical leptin signaling to JAK2 and then STAT3, 
which in turn regulates the expression of key neuropeptides, such 
as POMC and AgRP, that control appetite (Figure 1).

OUTLOOK

Remarkably, leptin and insulin both require the NSAPP oxide 
transport chain, suggesting that a defect in this pathway could 
explain simultaneous resistance to the appetite-suppressing  
effects of both hormones in obesity. Thus, we hypothesize that 
interference with the NSAPP signaling pathway in the hypo-
thalami of lean animals will produce defects in central control 
of food intake and energy expenditure, causing overeating, posi-
tive caloric imbalance, and weight gain. In the other direction, 
unraveling the molecular basis for NSAPP dysfunction in over-
nutrition has now become a top priority. At this point, restoration 
of normal hypothalamic NSAPP function in obesity should be 
considered as an attractive, but entirely unexplored, strategy to 
promote weight loss.
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