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High levels of uric acid (UA) are associated with type-2 diabetes and cardiovascular 
disease. Recent pieces of evidence attributed to UA a causative role in the appearance 
of diabetes and vascular damage. However, the molecular mechanisms by which UA 
induces these alterations have not been completely elucidated so far. Among the mech-
anisms underlying insulin resistance, it was reported the role of a transmembrane glyco-
protein, named either ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) 
or plasma cell antigen 1, which is able to inhibit the function of insulin receptor (IR) and it 
is overexpressed in insulin-resistant subjects. In keeping with this, we stimulated human 
umbilical vein endothelial cells (HUVECs) with insulin and UA to investigate the effects 
of UA on insulin signaling pathway, testing the hypothesis that UA can interfere with 
insulin signaling by the activation of ENPP1. Cultures of HUVECs were stimulated with 
insulin, UA and the urate transporter SLC22A12 (URAT1) inhibitor probenecid. Akt and 
endothelial nitric oxide synthase (eNOS) phosphorylation levels were investigated by 
immunoblotting. ENPP1 binding to IR and its tyrosine phosphorylation levels were tested 
by immunoprecipitation and immunoblotting. UA inhibited insulin-induced Akt/eNOS 
axis. Moreover, UA induced ENPP1 binding to IR that resulted in an impairment of insulin 
signaling cascade. Probenecid reverted UA effects, suggesting that UA intracellular 
uptake is required for its action. In endothelial cells, UA directly interferes with insulin 
signaling pathway at receptor level, through ENPP1 recruitment. This evidence suggests 
a new molecular model of UA-induced insulin resistance and vascular damage.

Keywords: uric acid, insulin resistance, insulin signaling, ectonucleotide pyrophosphatase phosphodiesterase, 
endothelium, nitric oxide, vascular damage

inTrODUcTiOn

Uric acid (UA) is the end-product of purine metabolism, with both anti-oxidant and pro-oxidant 
properties; it has been demonstrated to have a key role in the redox process related to oxidative stress 
(1) that is involved in vascular damage and metabolic alterations (2–4). In addition, other pieces of 
evidence show that high levels of UA are able to predict myocardial ischemia and cerebrovascular 
events in general population (5, 6) and in post-menopausal women (7), and then mortality in 
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patients affected by heart failure (8) and coronary heart disease 
(9). Furthermore, data from Brisighella Study documented that 
UA levels are associated with abnormal cardiac performance and 
impaired cognitive function already in a preclinical stage (10, 11).

In keeping with this, we previously demonstrated that serum 
UA levels, independently from classical cardiovascular risk factors, 
are associated with endothelial dysfunction (12) and the appear-
ance of overt diabetes (13) in untreated hypertensive patients. In 
particular, we demonstrated that the increase of 1 mg/dl of serum 
UA levels reduces of 40% endothelium-dependent vasodilation. 
This phenomenon is due to a reduced bioavailability of nitric oxide 
(NO), secondary to an excess of reactive oxygen species (2, 14). 
In addition, recent pieces of evidence suggest that UA alone or in 
association with endothelial dysfunction plays a causative role in 
the appearance of incident diabetes (13, 15–17). This association 
may be justified by the pro-oxidant and pro-inflammatory actions 
of UA that affect both glucose homeostasis and insulin sensitivity, 
promoting clinically evident diabetes (18–20). Interestingly, we 
also demonstrated that UA levels are associated with an impair-
ment of glucose tolerance status during an oral glucose tolerance 
test in hypertensive subjects (21).

However, despite the well-known correlation existing 
between UA and the risk of diabetes, the molecular processes 
by which UA can induce insulin resistance are not completely 
clear. In particular, it is still uncertain whether UA can 
directly inhibit the insulin signaling pathway and whether it 
has a causal role in determining insulin resistance beyond the  
oxidative stress. Insulin resistance recognizes multiple abnor-
malities that may occur in the insulin signaling pathway. Some of 
these alterations involve the insulin receptor (IR), whereas oth-
ers may impair one or more of the downstream signaling steps 
(22). The plasma membrane enzyme, named ectonucleotide 
pyrophosphatase/phosphodiesterase 1 (ENPP1), also known 
as plasma cell antigen-1, has been shown to inhibit IR function 
and having high expression levels in cells of insulin-resistant 
subjects (23). ENPP1 is a transmembrane glycoprotein that 
regulates nucleotide metabolism (24), it is located in the plasma 
membrane and in the endoplasmic reticulum and expressed in 
all major insulin target tissues. ENPP1 is a homodimer with 
an enzymatic activity cleaving sugar-phosphate, phosphosul-
fate, pyrophosphate, and phosphodiesterase. There are pieces 
of evidence that ENPP1, binding to α-subunit of IR (IRα), 
impairs IR signaling by inhibiting its autophosphorylation, and  
consequently insulin receptor substrate-1 phosphorylation and 
glucose transport (25) contributing, thus, to the development 
of insulin resistance (26).

On the basis of these observations, we designed this study 
to evaluate the molecular effects of UA on insulin signaling 
pathway in human umbilical vein endothelial cells (HUVECs). 
In particular, we tested the hypothesis that UA can interfere with 
insulin signaling throughout the activation of ENPP1.

MaTerials anD MeThODs

cell culture
Human umbilical vein endothelial cells were obtained from 
ScienCell Research Laboratories (San Diego, CA, USA) and 

maintained in endothelial cell medium according to the manu-
facturer’s instructions. Growth medium was replaced every 
48/72 h and cells were grown until 95–100% confluent. We used 
the same batch of HUVECs from a single donor for all the experi-
ments, at different passages ranging from 2 to 6.

insulin signaling experiments
Human umbilical vein endothelial cells, seeded in 100 or 
150 mm tissue culture dishes, were cultured until 80% conflu-
ent. UA (Ultrapure, Sigma-Aldrich, Milan, Italy) was dissolved 
in pre-warmed (37°C) medium; the mixture was then warmed 
again (37°C, 30 min) and sterile filtered. Probenecid, a urate 
transporter (SLC22A12, URAT1) inhibitor, was added from a 
concentrated stock, prepared in NaOH at the maximal allowed 
concentration (50  mg/dl), to 1  mM treatment concentration 
(27). HUVECs were maintained in starvation medium (with-
out FBS and growth factor supplements, with 0.1% BSA) for 
18 h and then incubated with UA, resuspended in fresh starva-
tion medium, for 7 and 30  min. In the co-treatment experi-
ments Probenecid was added for 30 min to UA supplemented 
medium. When indicated, HUVECs were stimulated with 
insulin (10−7M) for the last 7  min of UA or UA+Probenecid 
incubation.

Western Blot analysis and 
immunoprecipitation assays
Cells were lysed in buffer containing 1.5% NP-40 and analyzed 
by immunoprecipitation and Western blotting as previously 
described (28–31). Briefly, equal amounts of cell lysates were 
either incubated overnight with anti-IRα antibody or directly 
loaded to SDS-PAGE gels. For immunoprecipitation experi-
ments, immune complexes were collected by incubation with 
protein A-Sepharose and resuspended in Laemmli buffer before 
loading to SDS-PAGE gels. Gels were then transferred to 
nitrocellulose membranes and immunoblotted with the appro-
priate primary antibodies, according to standard protocols.  
To evaluate ENPP1 binding to IR and IR tyrosine phosphoryla-
tion, the IRα immunoprecipitated proteins were immunoblot-
ted, with an anti-ENPP1 and or an anti-tyrosine phosphorylated 
proteins antibody. To normalize for protein levels, the blots 
were stripped and reprobed with primary antibodies against 
the total unphosphorylated form of the appropriate protein. 
Primary antibodies used for this study were purchased from Cell 
Signaling Technology, Beverly, MA, USA (eNOS, phospho-eNOS 
Ser1177, Akt and phospho-Akt Ser473, anti-IRα, and anti-ENPP1) 
or from Merck Millipore (clone 4G10). Blots were visualized 
using appropriate peroxidase-conjugated secondary antibodies 
followed by enhanced chemiluminescence detection, and band 
densities were quantified by densitometry using an ImageJ 
software.

statistical analysis
All results are given as mean fold variation ±  SE over control. 
Statistical differences were assessed by Student’s t-test. Values of 
P < 0.05 were considered statistically significant. Analyses were 
performed with GraphPad Prism version 6 software.
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FigUre 1 | Effects of uric acid (UA) on insulin-induced Akt (a) and endothelial nitric oxide synthase (eNOS) (B) phosphorylation at Ser473 and Ser1177, respectively. 
Exposure of human umbilical vein endothelial cells to insulin induces a rapid activation of Akt/eNOS axis; in presence of UA this effect is largely reduced, particularly 
at 30′. To normalize the blots for protein levels, after being immunoblotted with anti-phosphospecific antibodies, the blots were stripped and reprobed with anti-Akt 
or anti-eNOS total forms. Bars represent means ± SE, expressed as relative change in comparison with the basal value, for three independent experiments and 
autoradiographs of a representative experiment are shown. *P < 0.05 vs basal value; #P < 0.05 vs insulin.
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resUlTs

effects of Ua on insulin-stimulated 
activation of akt/endothelial nitric  
Oxide synthase (enOs) signaling
As well-known, insulin binding to IR is able to activate a dual 
signaling pathway: the PI3K/Akt signaling pathway, promoting 
metabolic effects, and the MAPK-related signaling pathway, 
promoting cellular proliferation, differentiation, and gene expres-
sion. In endothelial cells, the metabolic and hemodynamic effects 
of insulin are mediated by the activation of PI3K/Akt axis that 
induces a phosphorylation cascade leading to glycogen synthesis 
and glucose uptake and, above all, eNOS activation that increases 
NO production promoting in turn vasodilation and improving 
endothelial function.

As shown in Figure 1, the exposure of HUVECs to UA nega-
tively affected the insulin downstream signaling. In particular, 
UA inhibited the insulin-induced serine phosphorylation of Akt 
(Ser473, Figure 1A) and eNOS (Ser1177, Figure 1B), with maximal 
effect at 30′ exposition.

effects of Ua on enPP1 recruitment  
and related Tyrosine Phosphorylation 
inhibition of ir
Given the inhibitory effect of UA on Akt/eNOS signaling pathway, 
we hypothesized that UA could exert a direct action on insulin 
signaling at membrane level. Since preliminary results demon-
strated that the maximal inhibitory effect of UA is observed at 30′ 
exposure, we used this time point for subsequent experiments. 
Initially, we performed an immunoprecipitation test to evalu-
ate the molecular effect of UA on IR tyrosine phosphorylation.  
As shown in Figure 2, UA was able to reduce insulin-induced IR 
tyrosine phosphorylation.

We then speculated that this UA effect might be mediated by 
an increased binding of IR to ENPP1, a well-known inhibitor of 
IR auto-phosphorylation that has been shown to be overactive 
in condition of insulin resistance (24–27). In Figure 2, we can 
observe that UA induced ENPP1 binding to IRα in presence of 
insulin, suggesting a possible counter-regulatory mechanism.

effect of the Urate Transporter slc22a12 
(UraT1) inhibitor Probenecid on Ua-
Mediated effects on insulin signaling
To assess if the action of UA on insulin signaling required 
an intracellular uptake of UA, we treated HUVECs with 
Probenecid, a known organic anion transporter inhibitor. In 
fact, it has been demonstrated that Probenecid at 1 mM effica-
ciously inhibits SLC22A12 (URAT1)—mediated entry of UA in 
endothelial cells (28).

HUVECs exposure to Probenecid restored Akt insulin-induced 
phosphorylation levels in presence of UA and the increased 
Akt phosphorylation resulted, in turn, in an enhanced eNOS 
activation (Figure  3). Given the effect on insulin downstream 
signaling, we addressed the question if Probenecid could interfere 
with UA-mediated recruitment of ENPP1 and related ENPP1/IR 
association. As shown in Figure  4, Probenecid was able to re-
establish basal association levels of ENPP1 to IR in presence of 
insulin and UA.

DiscUssiOn

In this study, we demonstrated for the first time that UA promotes 
the binding of ENPP1 to IR, inhibiting its activation. This evidence 
clearly shows that UA directly interferes with the insulin signaling 
pathway in a way totally independent of its ability to increase the 
oxidative stress and the inflammatory burden at cellular level. Thus, 
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FigUre 3 | Effects of the SLC22A12 (URAT1) inhibitor Probenecid on uric acid (UA)-mediated effects on insulin downstream signaling in human umbilical vein 
endothelial cells (HUVECs). Exposure of HUVECs to Probenecid (1 mM, 30′) restores Akt (a) and endothelial nitric oxide synthase (eNOS) (B) insulin-induced 
phosphorylation levels in presence of UA. To normalize the blots for protein levels, after being immunoblotted with anti-phosphospecific antibodies, the blots were 
stripped and reprobed with anti-Akt or anti-eNOS total levels. Each bar represents the mean ± SD of three independent experiments and autoradiographs of a 
representative experiment are shown. *P < 0.05 vs basal value; #P < 0.05 vs insulin+UA.

FigUre 2 | Effects of uric acid (UA) on ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) binding to α-subunit of insulin receptor (IRα) and inhibition of 
tyrosine phosphorylation of IR in human umbilical vein endothelial cells (HUVECs). Insulin-induced tyrosine phosphorylation of IR, as first step in the insulin signaling 
pathway, is prevented by the exposure of HUVECs to UA; this effect might be explained by the binding of ENPP1 to IRα induced by UA. To normalize the blots for 
protein levels, after being immunoblotted with anti-ENPP1 or anti-p-Tyr total antibodies, the blots were stripped and reprobed with anti-IRα total levels. Each bar 
represents the mean ± SD of three independent experiments and autoradiographs of a representative experiment are shown. *P < 0.05 vs basal value; #P < 0.05 vs 
insulin.
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data obtained from this study demonstrate the hypothesis that UA 
has a primary role in the appearance and progression of insulin 
resistance and, then, in the development of diabetes. In fact, the 
demonstration that UA is directly able to impair the insulin signal-
ing pathway, by inhibiting the cellular trigger of insulin signal at 

receptor level, attributes to hyperuricemia a causal independent 
role in the pathogenetic mechanisms of insulin resistance beyond 
its mediator role in the oxidative stress and inflammation.

Identification of hyperuricemia as a risk factor for diabetes has 
been uncertain for many decades because it has been considered 
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a consequence of insulin resistance rather than a cause (32, 33). 
In the recent years, several studies have established that increased 
levels of UA are associated with insulin resistance (34), obesity 
(17), and new onset of type-2 diabetes (15–17, 35). UA levels are 
associated with oxidative stress (1, 14, 33) and mild-inflammation 
(18–20), which in turn contribute to the onset of diabetes (19, 36). 
Moreover, in a recent in vivo study it was seen that hyperuricemia 
caused by fructose plays a role in the pathogenesis of metabolic 
syndrome (37). Thus, our data contribute to explain all these find-
ings suggesting that high serum UA precedes the development of 
overt type-2 diabetes.

Notably in the present study, we were also able to show that UA 
has a key role in reducing Akt–eNOS axis activity that is involved 
in the normal vascular function; it is clearly demonstrated that its 
impairment induces endothelial dysfunction that represents the 
first step in the atherosclerotic process (38). We previously reported 
a linear relationship between UA and endothelial dysfunction 
(12) and, subsequently, we also observed that both high sensitiv-
ity C-reactive protein concentrations and impaired endothelial 
function are independent predictors of new diabetes (19). 
Recently, we showed that hypertensive subjects have an increased 
risk to develop type 2 diabetes if they present both an impaired 
endothelium-dependent vasodilation and hyperuricemia; this 

increased risk is likely mediated by a condition of mild inflam-
mation (13, 19). These findings agree with those of other studies 
demonstrating that oxidative stress caused by hyperuricemia has 
a role in the development of vascular damage. These pieces of 
evidence are reinforced by two potentially important biological 
actions of UA that lead to an impaired endothelium-dependent 
vasodilation: first, UA promotes mild-inflammation, as docu-
mented by increased CRP expression (38–40); second, it increases 
oxidative stress in several cell types, such as vascular smooth 
muscle cells and murine adipocytes, despite its antioxidant effect 
in an extracellular environment (41, 42).

Uric acid also stimulates vascular smooth muscle cells through 
a specific organic anion transport pathway, platelet-derived 
growth factor-dependent proliferation, monocyte chemoattract-
ant protein-1 and cyclooxygenase-2-dependent thromboxane 
synthesis, and through the activation of renin–angiotensin 
system (43, 44), all factors that participate to the development 
and progression of atherosclerosis. Physiologically, endothe-
lium regulates a number of biological processes implicated in 
vascular homeostasis, including the balance of pro-thrombotic 
and antithrombotic factors, platelet aggregation, leukocytes and 
monocytes adhesion, and vascular smooth muscle cells migration 
and proliferation (29, 45). Thus, endothelial dysfunction plays 
a central role in the pathogenetic mechanisms underlying the 
development and the progression of atherosclerosis (46).

Finally, UA crystals have been reported to be able to activate 
the NLRP3 inflammasome, which in turns promotes the cleavage 
of caspase-1 and the consequent increased production of pro-
inflammatory cytokines (47).

In this study, we demonstrated that UA is able to exert a direct 
effect on insulin signaling inducing NO synthesis, as observed in 
condition of insulin resistance. In fact, inhibitory effect of UA on 
IR in endothelial cells could affect the vascular integrity ensured 
by the protective action of insulin. Thus, in all clinical conditions 
associated with an insulin resistance status, such as diabetes, 
obesity, hypertension, and metabolic syndrome, the presence of 
hyperuricemia represents an important factor capable to induce 
and sustain endothelial damage.

In conclusion, data obtained from this study clearly demon-
strate that UA directly interfere with insulin signaling pathway, 
being able to inhibit the trigger of insulin signaling at receptor 
level through an ENPP1 recruitment. This evidence proposes 
a new molecular model of UA-induced insulin resistance that 
goes beyond the increase of oxidative stress and the promotion 
of inflammation. This finding attribute to UA the role of leading 
player in the pathogenesis of insulin resistance and endothelial 
dysfunction, suggesting that hyperuricemia can significantly con-
tribute to the pathophysiological mechanisms of atherosclerosis 
and to the appearance of new diabetes. This has several important 
clinical implications because the reduction of UA levels might 
represent an innovative treatment goal in the prevention of both 
diabetes and vascular damage, two conditions that significantly 
worsen cardiovascular risk profile. This is particularly important, 
especially in view of the fact that fructose is largely used in indus-
trial food. Importantly, since fructose is a precursor of UA (37), 
it would be strongly recommended to limit its use to avoid the 
onset of type-2 diabetes mellitus and other metabolic disorders.

FigUre 4 | Effects of the SLC22A12 (URAT1) inhibitor Probenecid on uric 
acid (UA)-mediated ectonucleotide pyrophosphatase/phosphodiesterase 1 
(ENPP1) binding to insulin receptor (IR) in human umbilical vein endothelial 
cells (HUVECs). In presence of insulin and UA, there is a significant reduction 
of IR binding to ENPP1 when HUVECs are treated with Probenecid.  
To normalize the blots for protein levels, after being immunoblotted with 
anti-ENPP1, the blots were stripped and reprobed with anti-α-subunit of 
insulin receptor (IRα) total levels. Each bar represents the mean ± SD of three 
independent experiments and autoradiographs of a representative 
experiment are shown. *P < 0.05 vs basal value; #P < 0.05 vs insulin; 
§P < 0.05 vs insulin+UA+Probenecid.
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