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Editorial on the Research Topic

Trends in Regulatory Peptides

Regulatory peptides play crucial roles in the transfer of information within cells and tissues, between 
tissues and organs in the body, or between different organisms. They are produced by all species 
belonging to the different phylums, from bacteria to mammals. They display, by far, the most diverse 
structures of all signaling molecules. Regulatory peptides exert a broad spectrum of biological 
effects, acting notably as neurotransmitters, neuromodulators, hormones, pheromones, growth 
factors, cytokines, toxins, antibiotics, etc. In the animal kingdom, they control all physiological 
activities including neurophysiological, cardiovascular, gastrointestinal, renal, urogenital, respira-
tory, and immune functions. Not surprisingly, they are implicated in a number of physiopathological 
conditions such as pain transmission, Alzheimer’s disease, autism, stroke, tumorigenesis, infertil-
ity, diabetes, metabolic disorders, and cardiovascular and gastrointestinal diseases. Thus, a large 
proportion of drugs target peptide receptors including opiate, vasopressin, oxytocin, somatostatin, 
gonadotropin-releasing hormone (GnRH), melanocortin, growth hormone, insulin, glucagon, para-
thyroid hormone, and calcitonin receptors. In addition, a number of pharmacological compounds 
regulate the production or breakdown of regulatory peptides, e.g., angiotensin-converting enzyme 
(ACE) inhibitors, dipeptidyl peptidase IV (DPP-IV) inhibitors, and enkephalinase inhibitors. 
Various peptides are also currently used as vaccines, antibiotics, sweeteners, cosmetic ingredients, 
and food additives. As a result, biologically active peptides represent a fascinating multidisciplinary 
research field for chemists, biochemists, physiologists, and pharmacologists with strong potential for 
novel therapeutic approaches and drug development.

This Research Topic is a compilation of contributions from the Regulatory Peptide meeting 
(RegPep2016) held in Rouen, Normandy, France that illustrates the diversity of the investigations 
currently conducted across the world on biologically active peptides.

Many regulatory peptides exert their biological effects through G protein-coupled receptors 
(GPCRs) which, not surprisingly, are targeted by a large proportion of the drugs currently on the 
market. Pharmaceutical compounds acting through a given GPCR can differentially activate its 
downstream signaling pathways (1). This functional selectivity of GPCR agonists is called biased 
signaling. Gundry et al. described two examples of drug-biased ligands, i.e., dopamine D2 receptor 
agonists and μ-opioid receptor agonists, which could have practical implications for the treatment 
of psychiatric disorders and pain. They highlighted the potential limitations in the characterization 
of biased agonists and provided a general approach to assessing biased agonists that should help the 
development of this promising new class of drugs.

Fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer 
(BRET) technologies are widely applied to study GPCR activation and dimerization (2). Using 
fluorescent biaresenical hairpin binders as acceptors for BRET-based biosensors, Bourque et al. have 
compared the responses of type 1 angiotensin receptor, prostaglandin F2α receptor, and β2-adrenergic 
receptor to their respective ligands. Their data revealed marked differences in the magnitude and 
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kinetics of the receptor responses to ligand stimulation. This study 
demonstrates conformational heterogeneity of three GPCRs that 
belong to the same receptor family, i.e., class A GPCRs.

Neuropeptides represent one of the largest families of 
regulatory peptides and regulate many physiological functions 
in the central nervous system (CNS) and in peripheral organs. 
For instance, corticotropin-releasing factor (CRF) initiates 
the hormonal response to stress by stimulating the pituitary 
adrenocortical axis and the sympathetic system. CRF also acts as 
a neuromodulator within the brain to elicit stress-related behav-
iors (3). Stengel and Taché reviewed the different mechanisms 
through which somatostatin signaling suppresses CRF receptor-
mediated stress response. Somatostatin acts at the pituitary level 
to inhibit CRF-induced corticotropin secretion. Concurrently, 
somatostatin acts centrally to suppress stress-induced activation 
of the sympathetic system. Somatostatin attenuates the stress 
response caused by food restriction. Finally, somatostatin ago-
nists counteract the inhibitory effect of CRF on gastrointestinal 
motor functions. Specific somatostatin receptor agonists can thus 
be used in preclinical studies to selectively modulate the different 
components of stress responses.

Somatostatin-producing sensory neurons express the non-
selective cation channel TRPA1, a member of the transient 
receptor potential ankyrin channel family. The activity of TRPA1 
can be modulated by inorganic sodium polysulfide (POLY) and 
dimethyl trisulfide (DMTS), an organic compound naturally 
occurring in garlic (4). Bátai et al. have compared the effects of 
POLY and DMTS on sensory neurons in carrageenan-evoked 
hind paw inflammation. Using genetically modified mice lacking 
either TRPA1 or the sst4 somatostatin receptor, they show that 
somatostatin, acting through sst4, is an important mediator of the 
antihyperalgesic effect of POLY and DMTS.

There is strong evidence that neuropeptide Y (NPY) also attenu-
ates stress responses, anxiety, fear, and autonomic regulations (5). 
Serova et  al. showed that intranasal administration of the Y1R-
preferring NPY receptor agonist [Leu31Pro34]NPY prevents stress-
induced depressive-like behavior. Both NPY and [Leu31Pro34]
NPY inhibit the effect of a single prolonged stress on CRF mRNA 
expression. In contrast, [Leu31Pro34]NPY enhances, while NPY 
attenuates, stress-induced glucocorticoid receptor (GR) mRNA 
expression. The significance of the differential effects of NPY and 
its Y1R-preferring agonist on CRF and GR expression is discussed.

A number of neuropeptides play key roles in the regulation 
of glial cell function. Microglial cells, which are responsible for 
immune surveillance within CNS, express the two types of brady-
kinin receptors, B1R and B2R (6). Asraf et al. have examined the 
role of these receptors in microglial activation. In vitro, the B1R 
antagonist R-175, but not the B2R antagonist HOE 140, enhances 
the production of NO and the release of the pro-inflammatory 
cytokine TNF-α in lipopolysaccharide-stimulated BV2 microglial 
cells. In transgenic Alzheimer’s disease mice, intranasal adminis-
tration of R-175, but not HOE 140, augments amyloid burden and 
causes microglia accumulation in the cortex. These observations 
support the view that B1R modulation may be considered as a 
potential therapeutic strategy for Alzheimer’s disease.

Both neurons and astroglial cells express hemoglobin (Hb) 
(7), and the transcription of the Hb gene is enhanced during 

the preconditioning phase of ischemia (8). Amri et  al. showed 
that Hb exerts a protective effect on hydrogen peroxide-induced 
oxidative stress and apoptosis in cultured rat astrocytes. The 
glioprotective activity of Hb is mediated through the PKA, PKC, 
and MAK signaling pathways. These data suggest that Hb may 
confer neuroprotection in neurodegenerative diseases.

Activity-dependent neuroprotective protein (ADNP) is a glio-
protein which mediates the neuroprotective action of vasoactive 
intestinal polypeptide (VIP). Mutations of the ADNP gene have 
been reported in autistic patients (9). In their case report article, 
Gozes et  al. described the clinical phenotype of an 11-year-old 
girl carrying an ADNP p.Tyr719* mutation, also known as the 
Helsmoortel–Van der Aa syndrome. The patient exhibits craniofa-
cial asymmetry, autistic stereotypes, global developmental delay, 
motor skill deficit, and inability to talk. A short bioactive peptide 
fragment of ADNP, called NAP, represents a possible therapeutic 
option for patients with the Helsmoortel–Van der Aa syndrome.

Rehfeld has been involved for four decades in the study of the 
gastrointestinal regulatory peptide cholecystokinin (CCK) (10). 
In a comprehensive review, Rehfeld summarized the current 
knowledge regarding CCK and its receptors. CCK is expressed 
not only in intestinal endocrine I cells but also in brain neurons, 
peripheral nerves, endocrine cells, cardiocytes, kidney cells, and 
male germ cells, as well as in the immune system. Consistent with 
the widespread distribution of CCK and the CCK1 and CCK2 
receptors, CCK and related peptides exert a large array of biologi-
cal effects. Expression of CCK in various types of tumors suggests 
that CCK could serve as a tumor marker.

Various peptide hormones from the gastrointestinal tract are 
involved in the control of appetite and energy homeostasis (11), 
but little is known regarding the possible interplay between these 
different hormones. Lindqvist et al. have investigated the effect of 
ghrelin on glucagon-like peptide 1 (GLP-1), glucose-dependent 
insulinotropic peptide (GIP), and insulin secretion in mice. They 
show that intravenous injection of ghrelin induces a significant 
increase in plasma GLP-1 during a glucose tolerance test, but does 
not affect circulating levels of GIP, insulin, and glucose. In vitro, 
ghrelin inhibits proglucagon mRNA expression in the GLUTag 
cell line derived from a glucagon-producing enteroendocrine 
tumor. These data suggest that ghrelin exerts opposite effects on 
GLP-1 gene transcription and GLP-1 secretion.

Besides their role as nutriments, food-derived peptides can 
exert multiple regulatory actions. In particular, protein digestion-
derived peptides may control appetite through modulation 
of gut hormone secretion (12). Caron et  al. summarized the 
literature concerning the action of bioactive peptides originat-
ing from dietary proteins on the biosynthesis and release of the 
gastrointestinal hormones CCK and GLP-1. Alimentary peptides 
can also regulate the activity of the ubiquitous enzyme DPP-IV, 
which inactivates GLP-1 and GIP by cleaving off their N-terminal 
residues. Finally, peptides from food proteins can act as agonists 
of peripheral opioid receptors, whose activation inhibits gastric 
emptying and causes food intake-induced satiety. Food protein 
fragments thus represent a cornucopia of regulatory peptides for 
the control of food intake and glucose homeostasis.

The satiety effect of CCK is mediated by the vagal nerve that 
conveys the anorexic signal from the gut to the hindbrain (13). 
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Ndjim et  al. hypothesized that vagal sensitivity to CCK could 
be impaired in rats suffering from perinatal malnutrition. They 
showed that low-protein diet increases food intake after a fasting 
period, enhances the postprandial plasma CCK level, attenuates 
the sensitivity to CCK, and reduces the CCK1 receptor level 
in nodose ganglia. These data support the notion that reduced 
vagal sensitivity to CCK contributes to food intake disorders in 
undernourished rats.

Several peptides participate in the regulation of tumor cell pro-
liferation and migration. In particular, VIP inhibits proliferation 
of small-cell lung carcinoma (SCLC) (14). Since VIP receptors 
are expressed in bladder carcinoma, Mirsaidi et al. have studied 
the effect of VIP on bladder cancer cell proliferation in vivo and 
in  vitro. Intramuscular injection of MB49 bladder cancer cells 
causes increased mortality in VIP-KO mice as compared to wild-
type animals. In vitro, VIP reduces the growth of cultured MB49 
cells. These data suggest that VIP could be of therapeutic value 
for the treatment of bladder carcinoma.

Gastrin-releasing peptide (GRP) and neuromedin B are two 
mammalian counterparts of the frog skin peptide bombesin. 
All three peptides act through three types of GPCRs designated 
BB1R, BB2R, and BRS-3. Numerous cancer cells, including SCLC, 
express GRP, neuromedin B, and/or their receptor(s), and the 
peptides act as autocrine factors stimulating tumor growth (15). 
Moody et al. have synthesized small-molecule bombesin recep-
tor antagonists and tested their ability to antagonize BB1R, BB2R, 
and BRS-3 in various cancer cell lines. Two compounds, AM-37 
and ST-36, inhibit bombesin agonist (BA)1 binding and (BA)1-
induced cancer cell proliferation in vitro. These compounds may 
thus be useful agents for the treatment of BB1R-, BB2R-, and/or 
BBS-3-expressing tumor cells.

Gastrin is a peptide hormone produced by the stomach 
that stimulates gastric acid secretion. Gastrin is also produced 
by a number of malignant carcinomas called gastrinomas (16). 
Waldum et  al. reviewed the literature on the role of gastrin in 
the etiology of gastric cancer. Their report points out the pre-
dominant role of gastrin in gastric carcinogenesis. It thus appears 
that gastrin antagonists may prove useful for the prophylaxis of 
gastric cancer.

Melanoma cells overexpress the melanocortin type 1 receptor 
(MC1R). Since α-melanocyte-stimulating hormone (α-MSH) is 
the natural ligand of MC1R, several radiolabeled α-MSH analogs 
have been proposed for the diagnosis and/or radiopharmaceuti-
cal treatment of melanoma. However, high uptake of the labeled 
peptides in the kidney hampers their clinical applications (17). 
Bapst and Eberle have designed a new radiolabeled MC1R ligand, 
[111In]-DOTA-Phospho-MSH2-9, with an overall net charge of 
-1, which exhibits lower kidney uptake and retention. This com-
pound is an attractive novel lead MC1R ligand for the develop-
ment of clinically relevant melanoma targeting radiopeptides.

The SCLC cell line LU-165 expresses the antidiuretic peptide 
arginine-vasopressin (AVP) gene. Phenytoin, a voltage-gated 
sodium (Nav) channel antagonist, inhibits AVP release from the 
isolated rat neurohypophysis and is effective in the treatment of 
syndrome of inappropriate AVP secretion (18). Ohta et al. showed 
that phenytoin inhibits AVP mRNA expression in LU-165 cells 
and suppresses secretion of the C-terminal fragment of pro-AVP 

from these cells. This study suggests that Nav channels play a key 
role in AVP expression and secretion in neuroendocrine tumors.

There is clear evidence that GPCRs are implicated in various 
aspects of tumorigenesis including proliferation, survival, and 
migration of cancer cells, as well as promotion of angiogenesis 
(19). Various hormones, acting through GPCRs, play a critical 
role in progression and metastasis of ovarian cancers. Zhang 
et al. summarized the literature pertaining to the role of estro-
gens, GnRH, follicle-stimulating hormone, luteinizing hormone, 
thyroid-stimulating hormone, and kisspeptin GPCRs in ovarian 
tumorigenesis, as well as angiotensin II and endothelin GPCRs 
in neovascularization of ovarian tumors. The diversity of GPCRs 
regulating growth and metastasis of ovarian tumor cells allows 
the development of novel chemotherapeutic agents for the benefit 
of patients with ovarian neoplasms.

Autophagy is a catabolic lysosomal process through which 
cell compartments are degraded and recycled to maintain energy 
homeostasis (20). Autophagy plays a key role in cell expansion, 
chemotactic migration, and invasion (21). Coly et al. summarized 
the organization and molecular dynamics of the autophagy 
machinery and elaborated on the implication of chemokine and 
neuropeptide GPCRs (e.g., CXCR4 and UT, respectively) in the 
control of autophagosome biogenesis and cancer cell metabolism.

Regulatory peptides exert multiple functions in the cardio-
vascular system (22). In particular, the vasoactive peptide apelin 
enhances cardiac contractility and induces the release of vasodila-
tors. The major molecular form of apelin circulating in the plasma 
is pyroglutamyl apelin 13 ([Pyr1]apelin-13). Yang et al. reported 
that incubation of [Pyr1]apelin-13 with recombinant human 
ACE2 generates the [Pyr1]apelin-13(1-12) peptide in vitro and that 
endogenous [Pyr1]apelin-13(1-12) is present in the human cardio-
vascular endothelium. [Pyr1]apelin and [Pyr1]apelin-13(1-12) bind 
to human heart with similar affinity, and both peptides induce 
contraction of the saphenous vein with similar potency. In human 
volunteers, [Pyr1]apelin and [Pyr1]apelin-13(1-12) provoke similar 
dose-dependent increases in forearm blood flow. This study 
indicates that deletion of the C-terminal phenylalanine residue 
of [Pyr1]apelin-13 by ACE2 does not affect the cardiovascular 
activity of the peptide.

In plasma, apelin peptides have a short half-life of about 5 min 
(23). Flahault et al. described the development of metabolically 
stable and potent apelin analogs that can be used to investigate 
the cardiovascular and diuretic activities of the native peptide. 
They provided an extensive and critical look at the physiological 
effects of apelin on the hydromineral balance and focused on the 
central and peripheral actions of apelin agonists on cardiorenal 
functions.

In teleost fish, receptors for the vasoactive neuropeptide 
urotensin II (UII) are expressed in the brainstem, in the spinal 
cord, and in the cardiovascular system, suggesting that UII may 
act both centrally and peripherally to control cardiovascular 
activity. Consistent with this hypothesis, intracerebroventricular 
(ICV) or intra-arterial (IA) injection of UII in trout increases 
blood pressure (BP) (Vanegas et al.). Lancien et al. have studied 
the effect of UII on the cardiac baroreflex sensitivity (BRS) in 
unanesthetized trout. They showed that ICV administration of 
low picomolar doses of UII not only increases BP and heart rate 
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but also reduces BRS, whereas IA administration of UII elevates 
BP and decreases heart rate without affecting BRS. It thus appears 
that only the central urotensinergic system is implicated in regu-
lation of BRS.

In addition to its well established vasoactive properties, UII 
may exert various other biological effects (24). In particular, the 
genes encoding UII and its receptor UT are expressed in several 
tumoral cell lines, and UII triggers cancer cell motility. Based on 
these observations, Castel et  al. hypothesized that the UII/UT  
system could exert chemotactic activities. In support of this 
hypothesis, they point out the existence of a common proline 
residue in transmembrane domain 2 (P2.58) shared by UT and 
chemokine receptors. They also discuss recent studies suggesting 
that UII may exert pro-inflammatory and pro-migratory effects 
on tumor cells.

The antimicrobial peptide database (http://aps.unmc.edu/AP) 
contains currently over 2,850 antimicrobial peptides (AMPs) 
that generate hope for the treatment of bacterial resistant injec-
tions. However, to date, no AMP has led to the development of 
pharmaceutically useful compounds. Li et  al. highlighted the 
importance of understanding the mechanisms of action of AMPs 
on the bacterial membrane at the atomic level for the rational 
design of AMP-derived antibiotics.

The skin, which produces a number of biologically active 
peptides and expresses their cognate receptors, can be regarded 
as an authentic neuroimmunoendocrine organ (25, 26). For 
instance, in the human skin, sensory afferent C-fibers contain the 
neuropeptides substance P (SP) and calcitonin gene-related pep-
tide (CGRP). N’Diaye et al. described the regulatory actions that 
SP and CGRP exert on the cutaneous bacterial microflora. This 
report provides evidence for immunomodulatory functions of SP 
and CGRP in the maintenance of skin microbiota homeostasis.

Quorum sensing is a chemical communication process by 
which bacteria regulate gene expression in response to fluctuations 

in cell population density. Quorum sensing bacteria synthesize 
different types of auto-inducers: Gram-negative bacteria mainly 
produce homoserine lactone molecules while Gram-positive 
bacteria use modified oligopeptides (27). Verbeke et al. described 
various methods currently available for the identification and 
measurement of quorum sensing molecules with special empha-
sis on autoinducer peptides.

The review articles and original research papers gathered in the 
present e-book illustrate the importance of regulatory peptides 
in basic research and their huge potential for drug development.  
We hope that this Research Topic will become a major set of refer-
ences for all scientists involved in this rapidly expanding field.
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