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Zebrafish has been established as a reliable biological model with important insertion in 
academy (morphologic, biochemical, and pathophysiological studies) and pharmaceu-
tical industry (toxicology and drug development) due to its molecular complexity and 
similar systems biology that recapitulate those from other organisms. Considering the 
toxicological aspects, many efforts using zebrafish models are being done in order to 
elucidate the effects of endocrine disruptors, and some of them are focused on tributyltin 
(TBT) and its mechanism of action. TBT is an antifouling agent applied in ship’s hull that 
is constantly released into the water and absorbed by marine organisms, leading to 
bioaccumulation and biomagnification effects. Thus, several findings of malformations 
and changes in the normal biochemical and physiologic aspects of these marine animals 
have been related to TBT contamination. In the present review, we have compiled the 
most significant studies related to TBT effects in zebrafish, also taking into consideration 
the effects found in other study models.
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inTRODUCTiOn

Zebrafish, Danio rerio, is a native teleost to the southeastern Himalayan region that has emerged 
as a reliable model for studying not only embryogenesis and regeneration, but also disease. The 
main advantages of zebrafish when compared to other biological models refer to their small size, 
the easy maintenance characteristics, and relatively low cost (1). Zebrafish has a high fertility rate 
that is characterized by dozens of embryos per matching couple, which allow a significant number 
of genetic approaches, such as morpholino antisense oligonucleotide technology to knock down 
several genes, study their function, and generate new disease models (2). Zebrafish has also been 
used in the field of drug discovery with great success, since it can be used for target identification, 
pharmacokinetic/pharmacodynamic, and toxicology studies (3). Due to its large and traditional use 
in the drug discovery field, the expertise of zebrafish model has been transferred to the analysis of 
endocrine disruptor effects.
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FiGURe 1 | Summary of tributyltin (TBT) effects on zebrafish brain. TBT is 
able to modulate gene expression in zebrafish brain by decreasing rxraa, 
dgat2, sox9, and dax1 mRNA expression.
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The anatomical structures are similar between zebrafish and 
human organs, which confirms that this model is versatile and 
useful. Compared to Caenorhabditis elegans and Drosophila 
melanogaster models, zebrafish has a greater number of genes 
with a higher homology to human genome (4). When it comes 
to Mus musculus comparison, zebrafish has about the same num-
ber of genes, although with less homology (70 versus 90%) but 
with a lower annual cost (4). Menke and coworkers showed the 
anatomic and histologic features of adult zebrafish, evidencing 
similarity in the hematopoietic system, spleen, thymus, heart, 
thyroid, kidney, gastrointestinal system, liver, pancreas, brain 
(with telencephalon, diencephalons, mesencephalon, meten-
cephalon, and myelencephalon), hypothalamus, pineal gland, 
pituitary gland, eye, and musculoskeletal system tissues, besides 
reproductive organs (5).

Therefore, the use of zebrafish for toxicology investigation 
comprises reproductive, developmental, neuro, cardiac, ocular, 
endocrine, vascular, and carcinogenic toxicity with several end 
points to be analyzed that should be chosen carefully for each 
purpose (6). Thus, the use of zebrafish for studying the effects 
of endocrine disruptors and/or their mechanism of action is 
convenient.

Endocrine-disrupting chemicals (EDCs) are natural occur-
ring or synthetic compounds that interfere with natural hormone 
synthesis, secretion, transport, binding, or elimination, leading 
to homeostatic imbalance (7). Gore et al. (2014) postulated that 
EDC can enter the human body by different routes of exposition, 
such as oral consumption of contaminated food or water, contact 
with skin and/or inhalation, intravenous administration, and bio-
logical transfer through the placenta or milk during lactation (8).

As one of the most widespread EDC, tributyltin (TBT) has 
gained special attention. TBT is an organotin (one or more 
covalent bonds between carbon and tin atoms) that is used as an 
antifouling agent in boat paints and is continuously released into 
the water. As a result, harbor areas are deeply affected by this com-
pound, which causes changes in the endocrine system of marine 
organisms, such as the development of male sexual anatomical 
characteristics in female gastropods, leading to sterility and death 
(9). TBT is rapidly absorbed by marine organisms, incorporated 
and accumulated in different tissues; after absorption, TBT can be 
metabolized and can generate other tin molecules, with different 
toxic properties and mechanisms of action (10).

The studies regarding TBT effects in zebrafish are rare com-
pared to other species and EDC. Li and coworkers showed that 
the exposure of common carp to TBT for 7 days leads to oxidative 
stress, the inhibition of antioxidant enzymes, and the inhibition 
of the Na+/K+ ATPase activity, acetylcholinesterase, and mono-
amine oxidase (11). Also, a diminished activity of Na+/K+ ATPase 
was found in Sebastiscus marmoratus, which corroborates with 
the idea of a toxic effect of TBT (12).

TBT, Gonads, and Sexual Bias
Regarding sexual development, intraperitoneal injections of 1 or 
5 mg/kg TBT in adult zebrafish lead to the reduction in mRNA 
levels of sox9 and Dax1 in brain, which is a conflicting result (13). 
TBT as a male-biased population agent usually causes a severe 
shift in organism end point toward masculinizing phenotype 

(14). sox9 gene encodes a transcription factor related to the male 
phenotype, while Dax1 encodes a nuclear receptor that acts in the 
female development (15), so the presence of lower levels of sox9 
in the brain, together with a male phenotype animal, shows how 
complex EDC treatment effects could be (Figure 1).

Tributyltin promotes a dose-dependent increase in the mas-
culinization rate of embryos treated for 70 days from hatching, 
reaching almost 100% of sex rate toward male with the concen-
tration of 100  ng/L. These animals show abnormalities and a 
decreased motility of spermatozoid, because this population pro-
duces a higher quantity of spermatozoids that lack flagella (16). 
This is in agreement with other reports in the literature which 
suggest that TBT is an imposex-inducing agent in other species 
(17–23) and with the finding of aromatase inhibitory ability of 
TBT. Aromatase is the enzyme responsible for the conversion of 
androgens into estrogens in cells (Figure 2). Considering this, the 
human granulosa-like tumor cell line KGN displayed a signifi-
cant suppressed aromatase activity when treated with TBT (24). 
Also, TBT might function as an agonist of the estrogen receptor 
alpha (ERα), since it has a proliferative effect on ER (+) breast 
adenocarcinoma cell line (MCF-7) (25). The treatment of HeLa 
cells transiently co-transfected with zebrafish estrogen receptors 
(zfERα, zfERβ1, and zfERβ2) with ethinyl estradiol results in a 
fourfold to sixfold increase in luciferase activity, an effect that 
was inhibited by TBT. By contrast, when cells were co-transfected 
with zebrafish androgen receptor and treated with testosterone, 
the treatment with TBT was not able to change luciferase activity, 
showing that imposex-inducing ability of TBT is widely complex 
and a multistep action (13).

The Obesogenic Role of TBT
Besides imposex, TBT is highly associated to increased adipo-
genesis and is considered as obesogenic (26). Little is known 
about TBT effects in brain, most of the studies being focused on 
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FiGURe 2 | Tribultytin (TBT) acting in sexual bias. TBT is an inhibitor of aromatase, the enzyme responsible for testosterone to estrogen conversion, besides 
inhibiting zebrafish estrogen receptor, decreasing the effects of ethinylestradiol. These molecular events point to male sexual differentiation of almost 100% of treated 
animals. TBT-treated animals also present increased spermatozoa abnormalities, increased lacking flagellae spermatozoa, and a decreased spermatozoa motility.
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gene expression alterations concerning enzymes involved in lipid 
metabolism and sexual hormones (13, 27). Studies using 10 or 
50 ng/L of TBT for 9 months in male and female animals showed 
the modulation of Retinoid X Receptor alpha (RXRα/α)-nuclear 
receptor and DiacylGlycerol O-AcylTransferase 2 (DGAT2)-
lipogenic enzyme in both genders, with no modulation of PPARγ 
levels in brain, besides gender-specific alterations of gene expres-
sion (Figure  1). TBT might exert its lipogenic and adipocyte 
differentiation effects through the well-known RXR–PPARγ 
complex ligand ability (28, 29). These results confirm zebrafish as 
a good model for studying lipid homeostasis, since the complex 
mechanisms underlying food intake control and obesity develop-
ment are similar to mammals.

The role of TBT as an obesogenic factor is well documented 
in the literature. Li and coworkers showed an activation of 
RXR-PPARγ heterodimer, triglyceride storage, and expression of 
adipogenic marker genes even in the presence of PPARγ agonist 
GW9662 in cultured preadipocytes (30). Indeed, TBT was shown 
to bind not only to RXR but also to PPARγ receptor (31), leading 
to weight gain, altered lipid homeostasis, lipid accumulation, 
raised expression of the adipocyte marker C/EBPα, reduced 
adiponectin expression, altered glucose metabolism, increased 
PPARγ expression, and hepatic inflammation (32–34).

Zebrafish treated with TBT shows an increase in adipogenesis 
at 15 days post fertilization and displays significantly increased 
adipocyte differentiation markers, with altered gene expression 
profile of adipogenic factors, like POMC (hypothalamic factor 
involved in feed behavior) and leptin (35). These data are consist-
ent with the findings showing that female rats treated with TBT 
for 15 days present hyperleptinemia (36).

Exposure to TBT in the nanomolar range for 3 days increases 
the percentage of adiposity in larvae (by Nile red staining of adi-
pocyte lipid droplets) with the induction of adipocyte hypertro-
phy despite fasting (37). Interestingly, human PPARγ antagonists 
did not block the in vivo obesogenic effect of TBT, but the human 
RXR antagonist UVI3003 fully abolished the effect, confirming 
that zebrafish adipose tissue is readily responsive to adipogenic 
molecules, even in a fasting state via RXR pathway (38). Zebrafish 
exposed to TBT for 9 months also presented altered body weight 
with increased triglycerides in male and the modulation of a 
range of lipogenic genes in liver, such as PPARγ, RXRα, C/EBPβ, 
and IGFIIα, all of them being adipogenic stimulators (27). Some 
recent work fully ratifies not only the zebrafish as an animal 

model for adipose tissue studies but also points to new techniques 
for assaying adipocytes dynamics in zebrafish (39–41) (Figure 3).

It was also reported that TBT could affect nutritional status by 
modifying yolk absorption. Yolk provides energy and nutrients 
for developmental phases in teleosts, since it is mainly composed 
of phospholipids and triacylglycerols packed into lipoprotein 
particles (vitellogenin) and surrounded by the yolk syncytial layer 
that functions to hydrolyze yolk molecules and transport them to 
embryos. TBT, as an obesogenic agent, causes a faster uptake of 
yolk (42).

Other TBT effects in Zebrafish
Regarding behavioral aspects, there are only few studies and most 
of them point to altered end points. Male Wistar rats treated with 
various doses of TBT showed a dose-dependent decrease in 
spontaneous motor activity during dark phase and an inhibition 
in the acquisition of shock avoidance responses also in a dose-
dependent manner, indicating that TBT exposure can cause a 
significant disturbance in rat behavior (43). Non-reproductive 
behavior alteration in teleost rare minnow was also documented, 
revealing that fish exposed to TBT had less group cohesion dur-
ing the course of a 10min period of observation, altered shoaling 
in novel tank test, shorter latency before leaving shoal mates, and 
they spent more time away from shoal than control fish, with 
increased anxiety (44).

Considering the antioxidant ability and immunity, an 8-week 
treatment with TBT reduced superoxide dismutase (SOD), 
catalase (CAT), and glutathione peroxidase (GPX) activities in a 
dose-dependent manner, with an increase in the relative expres-
sion of HSP70 and HSP90, IL-1β, IL-6, TNF-α, and NF-κB. Thus, 
TBT is an inducer of oxidative stress and plays an important role 
in the positive modulation of pro-inflammatory cytokines (45). 
This is consistent with data showing a decreased activity of SOD, 
CAT, and GPX in other species (46, 47), a higher expression 
of HSP70 in common carp (48), an increased IL-1β secretion 
by human immune cells (49), an increased IL-6 production in 
human peripheral blood mononuclear cells (50), and higher 
TNF-α levels in mouse serum (51).

It was also reported that TBT could affect nutritional status by 
modifying yolk absorption. Yolk in teleosts provides energy and 
nutrients for the developmental phase, being composed in major-
ity of phospholipids and triacylglycerols packed into lipoprotein 
particles (vitellogenin) and surrounded by the yolk syncytial layer 
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FiGURe 3 | Tributyltin (TBT) as obesogenic molecule. TBT-treated zebrafish 
presents increased preadipocytes differentiation, modulation of pomc, leptin, 
pparγ, c/evpβ, IGFIIα, and rxrα mRNA, increased adipocyte hypertrophy (that 
can be blocked by UVI3003) and increased triglyceride levels, culminating in 
an obese animal.
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that functions hydrolyzing yolk molecules and transporting them 
to embryo. TBT, as obesogenic agent, caused a faster uptake of 
yolk in an automatic method to segment and quantify yolk areas 
in zebrafish larvae (42).

Zebrafish larvae treated with TBT (0.03 nM) show increased 
death with diminished hatch rates, an abnormal body cur-
vature, a higher pericardial edema, and a dorsal curve rate. 
These data are controversial since Liang and coworkers (52) 
showed a higher hatch rate in embryos treated with higher 
concentrations of TBT (1  nM). Nevertheless, this could be 
due to EDC dose–response behavior that often show non-
monotonic dose–response curve in a U-shaped or inverted 
U-shaped curves (0.03 or 1 nM), probably belonging to any 
point of the curve with a hatch rate as end point (53). Also, 
a decrease in heart rate was reported, with the differential 
expression of important genes related to cardiac function and 
development, such as cav3 that encodes caveolin 3 protein and 
cmlc1, which encodes cardiac myosin light chain-1 (essential 
for zebrafish cardiogenesis) (54, 55). Other studies concern-
ing cardiac function in TBT-treated animals were published 
revealing that this organotin induces cardiomyopathy in clam 
Ruditapes (56) and increased collagen deposition in heart 
interstice, impaired coronary vascular reactivity to estradiol, 
and enhanced the number of mast cells proximate to cardiac 
vessels in rats (57).

Unprecedented studies in zebrafish assessing TBT effects in 
systems not widely rummaged are also available. TUNEL staining 
of zebrafish embryos displayed TBT-induced apoptosis restricted 
to retinal neuronal cells and unidentified cells around trigeminal 
neurons with macrophage accumulation, probably by higher 
accumulation of TBT in the optic tract (58), showing selective 
apoptosis in this tissue (59). Also, genotoxicity using zebrafish 
erythrocytes was reported in an erythrocytic nuclear abnormality 
(ENA) frequency assay in animals exposed for 4 months, exhibit-
ing a higher ENA frequency in TBT-treated conditions (60).

COnCLUSiOn

Studies concerning TBT as an EDC are rapidly growing every 
year based on its wide range of effects in humans and labora-
tory animals. These broad options of models comprising normal 
systems and diseases are of great importance for recognizing TBT 
actions due to its widespread usage in the world. Zebrafish is a 
reliable model for studying several diseases like cancer, obesity, 
and inflammation and has become a robust tool for assessing 
EDC effects. Studies using zebrafish as a biological model to 
access TBT effects are few but they corroborate the effects found 
in other classical animal models, such as murine ones. Brain 
effects of TBT related to behavior changes are well documented 
in the literature (44, 61–64) and absent in zebrafish, even 
though these animals possess similar structures and molecular 
complexity comparable to other models in order to test memory, 
anxiety, fear, and social behavior (65–67). Also, considering the 
hypothalamus–pituitary–thyroid axis, no study has been done yet 
to evaluate the effects of this compound in zebrafish, although an 
extensive and elucidating review described the action of TBT in 
other species (68).
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