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The maintenance of a healthy deoxyribonucleotide triphosphate (dNTP) pool is critical 
for the proper replication and repair of both nuclear and mitochondrial DNA. Temporal, 
spatial, and ratio imbalances of the four dNTPs have been shown to have a mutagenic 
and cytotoxic effect. It is, therefore, essential for cell homeostasis to maintain the balance 
between the processes of dNTP biosynthesis and degradation. Multiple oncogenic signa­
ling pathways, such as c­Myc, p53, and mTORC1 feed into dNTP metabolism, and there is 
a clear role for dNTP imbalances in cancer initiation and progression. Additionally, multiple 
chemotherapeutics target these pathways to inhibit nucleotide synthesis. Less is under­
stood about the role for dNTP levels in metabolic disorders and syndromes and whether 
alterations in dNTP levels change cancer incidence in these patients. For instance, while 
deficiencies in some metabolic pathways known to play a role in nucleotide synthesis 
are pro­tumorigenic (e.g., p53 mutations), others confer an advantage against the onset 
of cancer (G6PD). More recent evidence indicates that there are changes in nucleotide 
metabolism in diabetes, obesity, and insulin resistance; however, whether these changes 
play a mechanistic role is unclear. In this review, we will address the complex network of 
metabolic pathways, whereby cells can fuel dNTP biosynthesis and catabolism in cancer, 
and we will discuss the potential role for this pathway in metabolic disease.
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inTRODUCTiOn

The maintenance of deoxyribonucleotide triphosphate (dNTP) pools is critical for multiple cellular 
pathways. For instance, imbalances in dNTPs are associated with genomic instability (1). Likewise, 
they have also been shown to disturb mitochondrial DNA (mtDNA) and consequently mitochon-
drial fitness, which may lead to mitochondrial diseases (MDs), such as diabetes, obesity, and cancer 
(2). Additionally, disorders of purine and pyrimidine metabolism (DPPM) profoundly affect cell 
metabolism, underlying the importance of nucleotides for cell behavior (3). Thus, both nucleotide 
synthesis and degradation must be exquisitely fine-tuned. In this review, we will focus on synthesis 
of dNTPs and the consequences of dNTP pool imbalances in cancer and MDs.

HeALTHY dnTP POOLS

A correct balance of dNTPs is necessary for the prevention of multiple pathologies. A healthy cell 
must maintain two asymmetric and spatial-temporal dNTP pools; one for nuclear DNA synthesis 
and repair and another for mtDNA replication and repair. Disruptions in dNTP balance are associ-
ated with enhanced mutagenesis, leading to genomic instability, which promotes cancer (4), and may 
have a role in metabolic disease (5).
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Cytosolic dNTP pool concentrations positively correlate with 
the cell cycle. In fact, the amount of dNTPs at the beginning 
of S-phase is not enough for a complete DNA duplication (6). 
The S-phase increase in dNTPs is necessary for faithful nuclear 
DNA replication. mtDNA is replicated continuously in post-
mitotic cells, and faithful maintenance of mtDNA also depends 
on correctly balanced dNTPs (7). Thus, both proliferating and 
non-proliferating cells need to fine-tune nucleotide and dNTP 
synthesis to allow for both nuclear and mtDNA replication and 
repair to maintain the health of the cell.

Anabolism and Catabolism of nucleotides
Cells possess two biosynthetic pathways to produce dNTPs:  
de novo and salvage (8). Purines and pyrimidines arise from two 
different de novo pathways that generate nucleotides starting from 
raw material (glucose, glutamine, aspartate, and HCO3) (9). The 
de novo nucleotide synthesis pathway is highly energy-intensive 
(9). Therefore, cells have developed a more energy-efficient route 
to synthesize nucleotides, termed the salvage pathway (10). The 
salvage pathway acts as a recycling plant taking free nitrogen 
bases and nucleosides arising from nucleic acid breakdown and 
diet (9). Nucleosides are hydrophilic compounds, thus proper 
function of nucleoside transporters (SLC29 and SLC28 families) 
is an essential requirement for salvage pathway function (11). 
Ribonucleotides obtained by either pathway can be reduced to 
their deoxyribonucleotide counterpart in a reaction catalyzed by 
ribonucleotide reductase (RNR) (12).

Turnover of RNA and other nucleotides occurs regularly to 
maintain homeostasis. Human cells cannot break down the purine 
ring. Purine catabolism involves a sequence of three reactions in 
which nucleotides are stripped step-by-step from their phosphates 
and sugar to finally become oxidized to the end product uric acid 
(UA), which is excreted into the urine (13). Conversely, uracil 
and thymidine rings can be completely degraded to β-alanine and 
β-aminoisobutyrate, respectively. Subsequently, both metabolites 
can be excreted or transformed into intermediates of the tricar-
boxylic acid (TCA) cycle (14). Biosynthesis and catabolism of 
nucleotides and dNTPs are highlighted in Figure 1.

iMPAiReD nUCLeOTiDe MeTABOLiSM in 
CAnCeR AnD MeTABOLiC DiSeASe

Deregulation of nucleotide metabolism is associated with a broad 
spectrum of pathological conditions, including cancer and MDs 
(15–17). Virtually all metabolic pathways have been implicated 
in dNTP biosynthesis. Thus, de novo and salvage pathways, as 
well as all involved anapleurotic reactions (Figure 1), need to be 
highly cross-regulated.

It is well known that cancer cells must increase dNTP biosyn-
thesis (18) to ensure rapid replication of the genome (17). This 
occurs through a variety of pathways (discussed below). In con-
trast, MDs are caused by congenital or acquired genetic defects 
in metabolic enzymes. DPPM are due to abnormalities in the bio-
synthesis, interconversion, and degradation of nucleotides (19). 
DPPM have a wide variety of clinical presentations, highlighting 
the importance of proper nucleotide metabolism for cell and 

organism function (15). Alterations in nucleotide metabolism 
are also present in other metabolic-related pathological condi-
tions, such as diabetes, obesity, and insulin resistance (20–22) 
(Table  1). In this section, we will summarize some important 
features affecting nucleotide metabolism in cancer and MDs.

Deregulation of Major Growth Signaling 
Pathways Leads to nucleotide Pool 
imbalances in Cancer and Metabolic 
Disease
The main growth signaling pathways (PI3K-AKT and ERK1/2-
MAPK) are induced and maintained during metabolic repro-
gramming of cancer (18). Additionally, deregulation of these 
pathways may contribute to different MDs, including diabetes, 
obesity, or steatosis resistance (33, 89, 90). These pathways sense 
and orchestrate nutrient utilization; therefore, is not surprising 
that alterations in these pathways affect energy and biomass 
production and cause a broad variety of diseases.

mTOR is a central signaling pathway that integrates environ-
mental inputs (e.g., nutrients and hormones) into downstream 
pathways to control many cellular processes (91). This includes 
regulation of metabolism, growth, and survival (32). Indeed, the 
mTORC1/2 pathway not only promotes glucose uptake and protein 
and lipid biosynthesis, but also promotes nucleotide biosynthesis 
(29, 30) and uptake of nucleosides through transporters (88). At 
least one member of this pathway is altered in 38% of human cancer 
(92). Altered metabolism induced by aberrant mTORC1 activation 
has also been shown to play a role in diabetes and obesity (32, 93).

c-Myc, one of the most commonly altered proteins in human 
cancer, is also regulated by PI3K-AKT and ERK1/2-MAPK 
pathways (94). c-Myc is a highly pleiotropic transcription fac-
tor considered a master regulator of cell metabolism (34, 35) 
through regulation of glycolysis, glutamine metabolism, and 
mitochondrial biogenesis (95, 96). Indeed, c-Myc has been shown 
to induce hepatic glucose uptake and utilization, while blocking 
gluconeogenesis and ketogenesis, suggesting a counteracting 
effect of c-Myc in obesity and insulin resistance (36, 97). In addi-
tion to regulating glucose and glutamine, substrates for purine 
and pyrimidine biosynthesis (Figure  1) (98), c-Myc also tran-
scriptionally regulates nucleotide metabolic enzyme gene expres-
sion (35). Thus, deregulation in c-Myc acutely alters nucleotide 
homeostasis in cancer (99), and it is interesting to speculate that 
the role of c-Myc in MDs is also related to nucleotide metabolism.

Previous publications from our laboratory and others have 
shown that DNA damage and DNA damage response (DDR) 
proteins regulate dNTP biosynthesis in the context of cancer 
(80, 100, 101). Interestingly, upregulation of p53, a key player in 
the DDR, in adipose tissue is associated with increased inflam-
mation and insulin resistance (102). Notably, wild-type p53 
negatively regulates G6PD activity (37), the rate-limiting enzyme 
of the pentose phosphate pathway and one of the most important 
sources of nucleotides (103). Upregulation of G6PD correlates 
with functional defects in liver, heart, and pancreas of obese and 
diabetic animals (104). Although the relationship between G6PD 
upregulation and increased oxidative stress has been studied in 
MD (105), the implication for nucleotide metabolism has not 
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FiGURe 1 | Pathways of deoxyribonucleotide metabolism in mammalian cells. Simplified representation of purine (blue) and pyrimidine (orange) metabolism and 
their crosstalk with the major metabolic pathways, the pentose phosphate pathway [(PPP), red] and the tricarboxylic acid cycle (green). Key metabolic enzymes 
(green), their principal reactive substrates (gray), and the four deoxyribonucleotide triphosphate (dNTP) end­products (magenta) are shown. Glucose and glutamine 
feed into both purine and pyrimidine metabolism to donate carbons and nitrogens to all dNTPs. Abbreviations: RAT, phosphoribosylpyrophosphate 
amidotransferase; GARS, glycinamide ribonucleotide synthetase; GART, glycinamide ribonucleotide transformylase; FGAMS, phosphoribosylformyl­glycineamide 
synthetase; AIRS, phosphoribosylaminoimidazole synthetase; AIRC, phosphoribosylaminoimidazole carboxylase; SAICAR, phosphoribosylaminoimidazole­
succinocarboxamide; ADSL, adenylosuccinate lyase; AICART, phosphoribosylaminoimidazolecarboxamide formyltransferase; IMPS, inosine monophosphate 
synthase; ADSS, adenylosuccinate synthetase; AK, adenylate kinase; NMPK, nucleotide monophosphate kinase; IMPS, inosine monophosphate dehydrogenase; 
GMPS, guanosine monophosphate synthetase; GK, guanylate kinase; XOR, xanthine oxidoreductase; HGPRT, hypoxanthine­guanine phosphoribosyltransferase; 
RNR, ribonucleotide reductase; CPS II, carbamoyl phosphate synthetase II; ATC, aspartate carbamoyltransferase; DHO, dihydroorotase; DHOD, dihydroorotase 
dehydrogenase; OPRT, orotate phosphoribosyltransferase; OMPD, orotidine monophosphate decarboxylase; CPTS, cytidine triphosphate synthetase; TS, 
thymidylate synthase; DUD, dihydrouracil dehydrogenase; DHP, dihydropyrimidinase; UP, ureidopropionase; Glut, glutamine; Gly, glycine; FTHF, N10­
formyltetrahydrofolate; Asp, aspartate; PRPP, phosphoribosylpyrophosphate; Q, ubiquinone; MTHF, N5,N10­methylenetetrahydrofolate.
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yet been addressed. More research is needed to understand the 
contribution of dNTP imbalances due to G6PD deregulation in 
diabetes and obesity.

An imbalance in nucleotides has been shown in two different 
studies related to diabetes (106, 107). Additionally, pyrimidine 
metabolism has been linked to fatty liver (26). Interestingly, 
increasing evidence suggests a link between obesity, a risk 
factor for non-alcoholic fatty liver disease (108), and cancer. 
Obese patients show many cancer-promoting features, such 
as chronic low-level inflammation (109), insulin-resistance/

diabetes (110), and deregulation of mTORC1 (111). Although 
the contribution of deregulated nucleotide pools promoting 
cancer has been extensively demonstrated (18, 112–115), their 
role in MD and metabolic-related diseases has not yet been 
elucidated. Based on these recent studies, we speculate that 
deregulation of nucleotide pools may in part contribute to the 
altered metabolic landscape promoting obesity and diabetes. 
Studying the implications of altered nucleotide pools in these 
diseases would open a therapeutic window based on modula-
tion of nucleotide metabolism.
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TABLe 1 | Genes, protein families, and pathways discussed in this review: role in deoxyribonucleotide triphosphate (dNTP) metabolism and expression in cancer and 
metabolic disease.

Gene/family/
pathway

Known role in dnTP metabolism expression in 
cancer

expression in metabolic disease

Purine/pyrimidine 
synthesis pathway

Necessary for de novo dNTP biosynthesis (8)a Increased (23) or 
mutated (24, 25)

Heptatic steatosis (uridine metabolism) (↓) (26)
Diabetesb (↓) (27)

MTOR Promotes glucose uptake (28); promotes de novo nucleotide  
biosynthesis (29, 30)

Increased (31) Diabetes (↑) (32)
Obesity (↑) (33)

MYC Induces glucose uptake and utilization (34); transcriptionally regulates 
nucleotide metabolic enzymes (23, 35)

Increased 
(oncogene) (23)

Insulin resistance (↑)c

Obesity (↑)c (36)

TP53 Negative regulator of pentose phosphate pathway through G6PD (37); gain­
of­function mutations increase gene transcription of genes for  
dNTP synthesis (38)

Decreased or 
mutated (tumor 
suppressor) (39)

Insulin resistance (↑)
Glucose intolerance (mut) (5)
Mitochondrial changes (mut)d (40)

PI3K­AKT pathway Oncogenic activation promotes glucose and glutamine uptake and 
catabolism (41)

Increased 
(oncogenes) (41)

Diabetes (↑) (42)
Nonalcoholic fatty liver disease (↑) (43)
Obesity (↑) (44)

ERK­MAPK  
pathway

Regulation of CPS II in de novo pyrimidine synthesis (45) Increased 
(oncogenes) (46)

Diabetes (↑) (47)
Obesity (↑) (48)

G6PD Rate­limiting for ribose­5­phosphate synthesis from the PPP (49)a Increased or 
mutated (50)

Obesity (↑) (51)
Diabetes (↑) (52)

RRM1 Catalytic subunit of the ribonucleotide reductase (RNR); catalyzes the 
reduction of deoxyribonucleotides from ribonucleotides (12)a

Increased or 
decreased (53)

Unknown

RRM2 Regulatory subunit of RNR (12); S­phase regulated (54); rate­limiting enzyme 
in the reduction of deoxyribonucleotides from ribonucleotides (55)a

Increased 
(oncogene) (53)

Unknown

RRM2B Regulatory subunit of the RNR (56); formation of deoxyribonucleotides from 
ribonucleotides for DNA damage repair and mitochondrial DNA (mtDNA) 
replication (57–59)a

Increased or 
decreased (53)

Mitochondrial disorders (↓) (60)

SLC25 family Mitochondrial nucleoside transporters (61)
Important for mtDNA pools through the salvage pathway (62)

Increased (63) Mitochondrial disease (mut)e

Mitochondrial dysfunction (↓)f (61)

SLC29 and SLC28 
families

Nucleoside transporters that are important for the salvage pathway  
(11, 64, 65)

Increased (11) Diabetes (mut)g (66)

TK2 Phosphorylates deoxycytidine to generate dCTP (67) Unknown Mitochondrial disease (↓) (68)

DGUOK Catalyzes the conversion of deoxyguanosine to dGMP (67)a Mutatedh (69, 70) Mitochondrial disease (mut) (69)

TWNK Mitochondrial helicase (71) Unknown Mitochondrial dysfunction (mut) (72, 73)

POLG Catalytic subunit of the mitochondrial DNA polymerase (74) Mutated (75–77) Mitochondrial disease (mut) (77–79)

Ataxia-telangiectasia 
mutated

Increases glucose/glutamine uptake and inhibits the PPP (80) Mutated (81) Mitochondrial dysfunction (mut)i

Insulin resistance (mut)i (82)

XOR Catalyzes the conversion of xanthine to uric acid (83)a Increasedj or 
decreased (84)

Metabolic syndrome (mut)k

Insulin resistance (mut)k

Diabetes (mut)k

Fatty liver disease (mut)k (85)

aThese genes/pathways are shown in Figure 1.
bThese studies show that purines and pyrimidines are downregulated in diabetes. It is not known whether changes in purine or pyrimidine synthesis genes are the mechanism behind 
this observation.
cIncreased MYC expression counteracts insulin resistance and obesity.
dOccurs in patients with Li–Fraumeni syndrome.
eSLC25A4 (86).
fSLC25A33 and SLC25A36 have only been tested in mouse models (87, 88).
gSLC29A3 is the only gene in this family that has been found to affect metabolic disease.
hWhile the data are limited, some patients with DGUOK mutations have hepatocellular carcinoma.
iOccurs in patients with ataxia-telangiectasia.
jIncreased XOR expression/activity is likely important for cancer initiation; however, XOR expression is decreased in most established tumors.
kOccurs in patients with XOR deficiency.
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RnR in Cancer and Metabolic Disease
Ribonucleotide reductase reduces ribonucleotides to the cor-
responding deoxyribonucleotides (116, 117). In mammals, RNR 
is a tetrameric enzyme composed of two homodimeric subunits, 

RRM1 and RRM2. Whereas, RRM1 is continuously expressed 
throughout the cell-cycle, expression of RRM2 is activated upon 
entry into S-phase (54, 118). Additionally, RRM2 is rapidly 
degraded via the proteasome in G2 (12, 119). Thus, RRM2 is 
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considered rate-limiting for RNR activity. RRM2B (RNR subunit 
M2B) is an alternative M2 subunit that is induced by p53 activa-
tion in response to DNA damage (56). RRM2B is not cell-cycle 
regulated per se, but it plays key roles in enhancing dNTP synthesis 
in cells under stress (120–122) and mediating mtDNA synthesis 
and repair (57–59).

The role of RNR in cancer is clear as it was one of the first 
identified DNA damage-induced enzymes (123). While RRM2 
overexpression is tumorigenic, leading to lung neoplasms in vivo, 
RRM1 reduces tumor formation, migration, and metastasis 
[reviewed in Ref. (53)]. Previous studies from our lab and others 
have shown the potential of RRM2 as a prognostic and diagnostic 
biomarker in multiple cancers (112, 124–127). However, the util-
ity of RRM1 and RRM2B as a tumor biomarker is still unclear 
[reviewed in Ref. (53)].

Although there is no study directly linking RNR with MD, 
RRM2B is required for mtDNA synthesis and healthy mitochon-
drial function (57). Deregulated mitochondria are associated with  
a higher risk of diabetes and obesity (discussed below). Therefore,  
it is possible that RNR function is linked to these MDs (Table 1). 
More mechanistic studies will be needed to determine the role 
for RNR in obesity and diabetes.

Mitochondrial Dysfunction in dnTP Pool 
Disruption During Cancer and Metabolic 
Disease
The mitochondria are one of the most important organelles 
for eukaryotic function (128). In addition to the production of 
ATP through oxidative phosphorylation, mitochondria are also 
the scaffold of several metabolic reactions for cellular building 
block synthesis (e.g., fatty acid beta-oxidation, one-carbon/folate 
cycle, TCA cycle, amino acid metabolism, etc.) (129). Hence, 
altered mitochondrial behavior has a broad impact on cellular 
metabolism.

Maintenance of mitochondrial dNTP pools is critical for 
proper mtDNA function. Alterations in nuclear genes involved 
in transport of cytosolic dNTPs (e.g., SLC25A4), the salvage 
nucleotide biosynthesis in the inner mitochondrial membrane 
(e.g., TK2 and DGUOK), and genes involved in mtDNA replica-
tion (e.g., TWNK and POLG) are implicated in both cancer and 
metabolic syndromes (63, 68, 77–79, 130–133). Moreover, dys-
function in the electron transport chain induces oxidative stress, 
which has been associated with impaired one-carbon metabolism 
(134, 135), an essential anapleurotic pathway for both purine 
and pyrimidine nucleotides. Mitochondrial genomic instability 
due to increased levels of reactive oxygen species (ROS) and/or 
mutations in mtDNA or nuclear genes involved in mitochondria 
function are underlying factors of MDs, and contribute to cancer 
and diabetes (136). Alterations in genes discussed above that are 
important for dNTP homeostasis and mitochondrial function are 
highlighted in Table 1.

Although the link between mitochondrial dysfunction and 
MD has been studied for the past two decades, the results are con-
tradictory (137). These contradictory results mainly arise from 
the complex relationship between mitochondria and metabolism, 
but also from the lack of global and standardized methodological 

strategies to phenotype insulin-resistance in humans (138). 
Dysregulation of nucleotide metabolism is an important aspect 
of mitochondrial dysfunction; therefore, their role in MDs should 
not be ignored.

Relationship Between DPPM and Cancer
It is clear that cancer is a metabolic disease; however, a predis-
position to cancer is not a foregone conclusion in patients with 
DPPM, who by definition have alterations in nucleotide supplies. 
Interestingly, while deficiencies in some metabolic pathways 
known to play a role in nucleotide synthesis are pro-tumorigenic, 
others confer an advantage against the onset of cancer. This 
highlights the large variability in the clinical presentation of these 
disorders.

Alterations in p53 or ataxia-telangiectasia mutated (ATM) 
lead to metabolic changes and predispose patients to cancer. 
Patients with germline TP53 (encoding for p53) mutations have 
Li–Fraumeni syndrome and are predisposed to cancer (139, 140). 
Interestingly, a recent report showed that nucleotide metabolism 
is regulated by the gain-of-function activity of mutant p53 (38). 
Consistently, wild-type p53 negatively regulates G6PD and PPP 
activity to decrease dNTP synthesis (37). Similarly, our group has 
previously shown that ATM (mutated in some ataxia-telangiecta-
sia patients) inactivation increases glucose uptake and enhances 
glucose flux through the PPP and ultimately increases dNTP 
biosynthesis (Figure  1) (80, 141). Indeed, patients with ATM 
mutations show alterations in glucose homeostasis (142, 143). It 
is well-known that these patients have an increased susceptibility 
to cancer (144). It is interesting to speculate that alterations in 
dNTP metabolism may play a role in the cancer predisposition 
in these patients; however, further studies are needed to support 
this notion.

Other DPPM confer a tumor suppressive benefit. For instance, 
patients with G6PD deficiency have a reduced risk of some cancers 
(145–147) (Table  1). This suggests that hyperactivity of dNTP 
synthesis is more likely to increase cancer risk than deficiencies 
in synthesis.

Finally, some DPPM have both a pro- and anti-tumorigenic 
effect. Deficiency in xanthine oxidoreductase (XOR), the enzyme 
that catalyzes the last step in purine catabolism (Figure  1), 
increases UA (148). There is a dual role for UA in cancer, the 
so-called the oxidant–antioxidant UA paradox (149). On one 
hand, extracellular UA is a potent ROS scavenger, thus protect-
ing cells against oxidative stress (150). On the other hand, high 
intracellular levels of UA in a XOR-deficient cellular background 
promote dNTP biosynthesis and tumor growth by shuttling XOR 
precursors (xanthine and hypoxanthine) into the purine salvage 
pathway (149). Additionally, intracellular UA is pro-inflammatory 
by inducing NADPH-oxidases that lead to oxidative stress and 
cancer (151, 152). This again emphasizes the complex nature of 
these disorders in relation to cancer (Table 1).

Together, the lack of consensus in predisposition to cancer in 
DPPM patients points to the significant redundancy in the dNTP 
biosynthetic pathways. This should not be surprising due to the 
fact that dNTP synthesis is critical for organismal survival and, 
therefore, we have evolved to have multiple metabolic arms feed-
ing into the same pathway. Understanding whether these patients 
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are predisposed or not to cancer will be incredibly important for 
the clinical management of these patients.

THeRAPeUTiC MODULATiOn OF 
DeOXYRiBOnUCLeOTiDe MeTABOLiSM 
in CAnCeR AnD MeTABOLiC DiSeASe

As described in this review, the balance of dNTPs must be tightly 
regulated in the cell. Many cancer types show alterations in dNTP 
levels, supporting their rapid proliferation. Likewise, defective 
mutations in anabolic and catabolic nucleotide enzymes, causing 
imbalances in the dNTP pools or in their precursors, are associ-
ated with different grades of disease severity in DPPM. Thus, it 
is not surprising that therapies for both cancer and DPPM focus 
on restoration of the normal balance of intracellular nucleotides.

Some of the first chemotherapeutic agents were cytotoxic 
nucleoside analogs and nucleobases (e.g., thiopurines and 
fluoropyrimidines) (153). These antimetabolites have a similar 
molecular structure to endogenous nucleotides and interfere with 
nucleotide metabolic pathways and DNA/RNA synthesis (154). 
Inhibitors of RNR were one of the first cancer therapies [reviewed 
in Ref. (53)] and are still used today. For instance, gemcitabine, 
a chemotherapeutic nucleoside analog, is used in pancreatic 
adenocarcinoma, but also in breast, bladder, and non-small 
cell lung cancer (155). Unfortunately, resistance to gemcitabine 
in common, often through an increase in nucleotide synthesis 
pathways or transport of nucleosides (156). Other successful 
chemotherapeutic regimens include methotrexate, which reduces 
substrates for purine and pyrimidine biosynthesis (157). Finally, 
specific inhibition of enzymes in the de novo pathway and/or in 
anapleurotic reactions (glucose and glutamine metabolism) has 
also been used as adjuvant therapies in cancer (154).

The spectrum of nucleotide therapies for DPPM is much 
broader in scope due to the high variability of deficiencies (3). 
Thus, deficiencies resulting in the overproduction of UA are 
treated with allopurinol, an inhibitor of xanthine oxidase (16). 
In other cases, patients can be treated with oral supplements of 

specific nucleotides they are lacking (16). What is clear is that 
cancer patients with DPPM cannot be treated with antimetabo-
lites such as 5-fluoro-uracil due to severe side effects (19). This 
suggests that cancer patients, DPPM must remain above a certain 
threshold of nucleotide pools to remain healthy. Finally, no 
nucleotide therapies are currently used for MDs, such as diabetes 
or obesity. More studies will need to be performed to determine 
whether nucleotide metabolism plays a contributing role to these 
pathologies before these types of therapies can be tested.

COnCLUSiOn

For decades researchers and clinicians alike have recognized the 
importance of fine-tuned dNTP levels for cellular homeostasis, 
as shown by the number of anti-cancer therapies based on the 
abolishment of nucleotide synthesis. In addition, the broad range 
of pathologies associated with congenital defects in nucleotide 
metabolic enzymes further demonstrates the importance of 
healthy intracellular dNTP levels. However, the association 
between cancer and MD and whether nucleotide pools are 
interconnected in these pathologies remains unclear. Future work 
will need to focus on mechanistic and population-based studies 
to determine whether nucleotide pool imbalances in MD lead 
to changes in cancer predisposition and whether targeting these 
pathways for cancer therapy affects metabolic homeostasis and 
function in normal cells.
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