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The brain is not only the target of steroid hormones but also is able to locally synthesize 
steroids de novo. Evidence of the local production of steroids in the brain has been 
accumulating in various vertebrates, including teleost fish, amphibia, birds, rodents, 
non-human primates, and humans. In this review, we mainly focus on the local pro-
duction of sex steroids in the hippocampal neurons of adult rodents (rats and mice), 
a center for learning and memory. From the data of the hippocampus of adult male rats, 
hippocampal principal neurons [pyramidal cells in CA1–CA3 and granule cells in dentate 
gyrus (DG)] have a complete system for biosynthesis of sex steroids. Liquid chromatog-
raphy with tandem-mass-spectrometry (LC-MS/MS) enabled us to accurately determine 
the levels of hippocampal sex steroids including 17β-estradiol (17β-E2), testosterone (T),  
and dihydrotestosterone (DHT), which are much higher than those in blood. Next, we 
review the steroid synthesis in the hippocampus of female rats, since previous know-
ledge had been biased toward the data from males. Recently, we clarified that the levels 
of hippocampal steroids fluctuate in adult female rats across the estrous cycle. Accurate 
determination of hippocampal steroids at each stage of the estrous cycle is of importance 
for providing the account for the fluctuation of female hippocampal functions, including 
spine density, long-term potentiation (LTP) and long-term depression (LTD), and learning 
and memory. These functional fluctuations in female had been attributed to the level 
of circulation-derived steroids. LC-MS/MS analysis revealed that the dendritic spine 
density in CA1 of adult female hippocampus correlates with the levels of hippocampal 
progesterone and 17β-E2. Finally, we introduce the direct evidence of the role of hippo-
campus-synthesized steroids in hippocampal function including neurogenesis, LTP, and 
memory consolidation. Mild exercise (2 week of treadmill running) elevated synthesis of 
DHT in the hippocampus, but not in the testis, of male rats, resulting in enhancement 
of neurogenesis in DG. Concerning synaptic plasticity, hippocampus-synthesized E2 
is required for LTP induction, whereas hippocampus-synthesized DHT is required for 
LTD induction. Furthermore, hippocampus-synthesized E2 is involved in memory con-
solidation tested by object recognition and object placement tasks, both of which are 
hippocampus-dependent.

Keywords: hippocampus, neurosteroids, estradiol, testosterone, dihydrotestosterone, estrous cycle, synaptic 
plasticity, neurogenesis
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inTRODUCTiOn

Extensive evidence has been accumulated that the systems of 
local steroid synthesis exist in the organs other than gonads and 
adrenal since 1980s (1, 2). Local production of steroids in the 
brain has been investigated in various vertebrates, including 
teleost fish (3, 4), amphibia (5–7), birds (8, 9), rodents (10–14), 
non-human primates, and humans (15–17).

For clinical purposes, the importance of neurosteroids is incre-
a sing. Because of the limitation to invade human brain tissues, 
quantitative determination of steroids in cerebrospinal fluid (CSF) 
has been applied to detect the alteration of the allopregnanolone 
(Allo) level under physiological/pathological conditions, includ-
ing epilepsy (18, 19), and reproductive mood disorders (20, 21).

Sex steroids including 17β-estradiol (17β-E2), testosterone 
(T), and dihydrotestosterone (DHT) are also synthesized in the 
brain. In this review, we mainly focus on the local production 
of sex steroids, particularly, E2, T, and DHT in the hippocampal 
neurons of adult rodents (rats and mice).

In addition to the genomic effects, sex steroids modulate 
neural functions in a rapid/non-genomic manner [reviewed in 
Ref. (22)]. Using the hippocampal slices of rodents, rapid effects 
of sex steroids have been extensively investigated. E2 modulates 
long-term potentiation (LTP) (23, 24) and long-term depression 
(LTD) (25, 26) in CA1 synapses. E2 induces LTP in CA1 under 
the weak theta burst stimulation (weak-TBS), which is not strong 
enough to induce LTP alone (27). Exogenous application of E2, T, 
and DHT to rat hippocampal slices, rapidly increases dendritic 
spines in CA1 pyramidal cells (27, 28).

Using exogenous application of steroids, these investigations 
demonstrated that rapid effects of sex steroids are mediated 
through estrogen receptors (ERα and ERβ) or androgen recep-
tors (AR), located at the pre/post synapses (25, 28–30), followed 
by the activation of kinases which phosphorylate the molecules 
essential for synaptic plasticity. Upon LTP-induction, E2 drives 
src tyrosine kinase and the extracellular signal-related protein 
kinase/MAPK (Erk MAPK), resulting in phosphorylation of 
NMDA receptor (23). In case of E2-induced LTP by weak-TBS, 
Erk MAPK, PKA, PKC, PI3K, and CaMkII phosphorylate NR2B 
subunit (27). In addition to postsynaptic modulation, E2 also 
activates ERs in presynapses, resulting in potentiation of gluta-
mate release (31) or disinhibition of GABAergic axon terminal 
(32). Concerning spinogenesis, E2, T, or DHT drives Erk MAPK, 
p38 MAPK, PKA, PKC, PI3K, and LIMK (27, 28), which may 
phosphorylate cortactin (33, 34) and cofilin (35, 36), leading to 
actin polymerization and spinogenesis.

Do the effects of hippocampus-synthesized E2, T and DHT 
share the common mechanism described above? It is difficult, 
however, to directly demonstrate the roles of hippocampus-
synthesized E2, T, and DHT, because of the supply of E2, T, and  
DHT from testis or ovary. It is necessary to perform the experi-
ment under the depletion of circulation-derived E2, T, and DHT, 
although the possibility is not excluded that peripherally pro-
duced precursors (e.g., pregnenolone and progesterone) convert 
into E2, T, or DHT in the hippocampus (Figure  1A). Several 
investigations are introduced in the Section “Physiological Roles 
of Hippocampus-Synthesized Steroids.”

STeROiD BiOSYnTHeSiS 
in THe HiPPOCAMPUS

Steroid Biosynthesis in the Hippocampus 
of Adult Male Rodents
Until about 15 years ago, it had not been elucidated whether adult 
hippocampal neurons have a complete system for synthesis of 
sex hormones (from cholesterol to androgens or estrogens) since 
P450(17α), which is required for synthesis of dehydroepian-
drosterone (DHEA) from pregnenolone (PREG), had been 
thought to be absent in the brain of mammals. Any effort to 
demonstrate the existence of P450(17α) or its enzymatic activity 
had been unsuccessful (38–41) despite the presence of DHEA in 
the rodent brain even after castration (1, 2).

By using the hippocampus of adult male rats, the localiza-
tion of P450(17α) in the principal neurons [pyramidal cells 
in CA1–CA3 and granule cells in dentate gyrus (DG)] was 
demonstrated (42, 43). Immunohistochemistry and in  situ 
hybridization studies revealed that StAR and other enzymes, 
including P450scc, 3β-hydroxysteroid dehydrogenase (3β-HSD), 
17β-HSD, 5α-reductase (types 1 and 2), and P450arom, are also 
localized in the hippocampal principal neurons of adult male rats 
and mice (37, 42–48). Studies with radioactive steroids directly 
demonstrated synthesis of PREG, DHEA, T, DHT, and E2 in 
slices or cultured hippocampal neurons from adult male rats in 
early 2000s (42, 43, 47, 49). These results suggest that complete 
systems for steroidogenesis exist in the hippocampal neurons of 
adult male rodents.

Interestingly, an electron microscopic (EM) analysis revealed 
synaptic localization of steroidogenic enzymes including P450 
(17α), P450arom, and 3β-HSD in the hippocampus of adult male 
rats (42, 50), implying the synaptic synthesis of sex steroids. EM 
and Western immunoblot analysis revealed localization of steroid 
receptors including ERα, ERβ, AR, and progesterone receptor 
(PR) in the hippocampal synapses of rodents (25, 28–30, 51, 52).

Although these results give information about the potential 
to synthesize steroids in the hippocampus, it remains unclear 
whether hippocampus-synthesized steroids are effective enough 
to modulate hippocampal functions. To answer this question, 
it is necessary to quantitatively determine the concentration 
of steroids in the hippocampus. From early 2000s, quantitative 
determination of steroids, such as PREG, DHEA, and T in brain 
with mass-spectrometry (MS) began to emerge (53–58). The 
presence of pregnenolone sulfate (PREGS) in the brain of mam-
mals had been a matter of debate (59).

To detect small amounts of steroids in the brain, purification of 
samples and selection of appropriate derivatization reagents are 
indispensable. Extracts from brain tissue contain various kinds of 
impurities (lipids and other steroids) which mask derivatization 
and ionization of the steroid of interest, resulting in decrease of 
detection efficiency of MS. Purification of the extracts by hybrid-
SPE cartridges before LC–ESI-MS/MS enabled the detection of 
PREGS in the rat hippocampus (60). Concerning the detection of 
sex steroids, we removed impurities from hippocampal extracts 
and separated into fractions containing an individual steroid, 
with C18 column and normal phase HPLC before derivatization. 

https://www.frontiersin.org/Endocrinology/
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FigURe 1 | (A) Biosynthetic pathway of steroids in rat hippocampus [modified from Ref. (11)]. Estrogens, androgens, and corticosteroids are represented with pink, 
blue, and orange boxes, respectively. (B,C) Relationship between the level of plasma T and those of hippocampal androgens [T and dihydrotestosteron (DHT)] (A), 
or that of hippocampal E2 (B). Vertical axis represents hippocampal steroids and horizontal axis represents plasma T, a precursor of DHT and E2. The regression 
lines and Pearson’s “r” are indicated [modified from Ref. (37)].
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Next, picolinoyl-derivatization was selected for steroids of inter-
est (E2, T, DHT, and E1) to increase ionization efficiency (61, 62). 
Concerning E2, further derivatization with pentafluorobenzyl 
was performed to elevate volatility. In combination with these 

improvements, LC-MS/MS enabled us to quantitatively determine 
the concentration of E2, T, DHT, and E1 in the hippo campus, with 
high accuracy and reproducibility (37). Caruso and collaborators 
also determined the levels of steroids including E2, T, and DHT in 
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TABle 1 | Mass spectrometric analysis of the concentration of steroids in the hippocampus and plasma of adult rats.

Male Femaleb

Proestrus estrus Diestrus1 Diestrus 2 OvX

(A) Hippocampusa

17β-E2 8.4c (nd = 6) 4.3 (n = 6) 1.0 (n = 4) 0.51 (n = 3) 0.67 (n = 4) 0.70 (n = 4)
T 16.9 (n = 8) 1.1 (n = 12) 2.3 (n = 4) 1.3 (n = 3) 1.2 (n = 4) 0.17 (n = 4)
Dihydrotestosteron (DHT) 6.6 (n = 8) 0.62 (n = 7)
Progesterone (PROG) 14.6 (n = 4) 55.7 (n = 4) 40.7 (n = 4) 87.0 (n = 3) 48.0 (n = 4) 24.5 (n = 5)
Androstenedione 1.5 (n = 4) 1.6 (n = 4) 0.7 (n = 4) 1.1 (n = 4) 0.83 (n = 4)
E1 0.015 (n = 4) 0.36 (n = 4) 0.045 (n = 4) 0.05 (n = 4) 0.10 (n = 4) 0.025 (n = 3)
Allopregnanolone 1.0 (n = 3) 16.4 (n = 3)

(B) Plasma

17β-E2 0.014 (n = 5) 0.111 (n = 6) 0.017 (n = 6) 0.009 (n = 5) 0.029 (n = 6) 0.005 (n = 5)
T 14.6 (n = 8) 0.10 (n = 4) 0.013 (n = 4) 0.020 (n = 3) 0.06 (n = 4) 0.005 (n = 5)
DHT 0.63 (n = 8)
PROG 6.8 (n = 4) 20.5 (n = 4) 16.7 (n = 4) 51.6 (n = 3) 24.1 (n = 4) 10.1 (n = 5)
Androstenedione 0.61 (n = 4) 1.0 (n = 4) 0.06 (n = 4) 0.119 (n = 4) 0.33 (n = 4)
E1 0.007 (n = 4) 0.082 (n = 4) 0.004 (n = 4) 0.009 (n = 4) 0.031 (n = 4) 0.002 (n = 4)

aHippocampus was homogenized immediately after dissection from a decapitated head. This condition reflects the basal concentration of steroids in hippocampus.
bFemale samples were prepared from rats at each stage of estrous cycle (Proestrus, Estrus, Diestrus1, and Diestrus 2) and ovariectomized (OVX) rats.
cData are expressed as mean and are represented as nanomolar. Concentration in nanomolar is calculated using the average volume of 0.14 mL for one whole hippocampus that 
has 0.14 ± 0.02 g wet weight (n = 86). We assume that tissue having 1 g of wet weight has an approximate volume of 1 mL, since the major part of tissue consists of water whose 
1 mL weight is 1 g (47).
dNumber of animals.
Modified from Ref. (37, 79, 81).
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rat hippocampus, with LC-MS/MS methods (63). These results 
support that the significant amount of sex steroids exists in the 
hippocampus.

Correlation between the level of hippocampal androgen  
(T and DHT) and that of plasma T (Figure  1) was observed 
(37, 64). Hippocampal estrogen (E2), however, did not correlate 
with plasma T (Figure 1) (37, 64). Using male and female rats, 
Melcangi’s laboratory extensively analyzed the correlation of 
steroid levels among plasma, CSF and various brain regions (63). 
According to this work, the levels of E2, T, and DHT in the hippo-
campus or CSF positively correlated with those in plasma, but no 
significant correlation of E2 level was observed between in the 
hippocampus and CSF (63).

Synthesis and Fluctuation of 
Steroids in the Hippocampus 
of Adult Female Rodents
Equally important is to clarify whether local steroid production 
occurs in female hippocampus, because sex hormones have a great 
impact on functions of female hippocampus [reviewed in Ref. (65)]. 
The knowledge of the hippocampus-synthesized steroids, however, 
had been biased toward the data from males (11–13) because of the 
estrous cycle in female animals. In case of rats and mice, estrous 
cycle comprises of four stages [proestrus: Pro, estrus: Est, diestrus1 
(also called metestrus): D1, and diestrus2 (also called diestrus): D2], 
and each stage switches in 1 day in this order (66). Hippo campal 
functions such as spatial memory (67–71), LTP (72, 73), and spine/
synapse density (74–78), fluctuate across the estrous cycle. To inves-
tigate hippocampal steroid synthesis in female rodents, therefore, 
fourfold as much data as those of male must be acquired.

LC-MS/MS analysis revealed the accurate concentrations of 
progesterone (PROG), androstenedione (ADione), T, E1, and E2 
in the hippocampus of adult female rats at each stage of estrous 
cycle (Table 1) (79). The levels of plasma steroids exhibit typical 
estrous cycle dependent changes, in agreement with the previous 
study (80). The level of hippocampal E2 highly correlates with that 
of plasma E2, in agreement with other study (63). Concerning 
the correlation of PROG level between in hippocampus and in 
plasma, our data exhibit highly positive correlation, whereas 
others have no correlation (63). It may be due to the difference 
of samples used for calculation of correlations, rats of both sexes 
(male and diestrus female) in Caruso et al. (63) and only female 
(all four stages of the estrous cycle) in our study (79).

Surprisingly, mRNA levels of steroidogenic enzymes, including 
StAR, P450(17α), 17β-HSD (types 1 and 3), 5α-reductase (types 1 
and 2), and P450arom, did not fluctuate in the hippocampus across 
the estrous cycle (79, 81). Steroid receptors, including ERα, ERβ, 
AR, and PR, also kept their expression level constant. Moreover, 
no sex difference was observed concerning these enzymes in 
the hippocampus whose expression levels are approximately 
1/300 ~ 1/1000 of those in gonads or adrenals(79, 81, 82).

Penetration of plasma E2 into the hippocampus, however, 
is not able to account for the level of hippocampal E2 because 
hippocampal E2 is much higher than that in plasma. There are 
two possibilities for explanation of hippocampal E2 fluctuation. 
The first is the fluctuation of blood PROG which is well known 
to fluctuate across the estrous cycle (80). This peripherally 
produced PROG may penetrate hippocampus and be converted 
into E2, resulting in E2 fluctuation. The other is the fluctuation 
of activity of kinases including MAPK, Akt, and LIMK, across 
the estrous cycle (72, 83, 84). The activity of P450arom  
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(E2 synthase) changes upon phosphorylation (85). If the activity 
of kinases fluctuates, then following the fluctuation of P450arom 
activity may generate hippocampal E2 fluctuation, even if the 
mRNA levels of steroidogenic enzymes do not change across the 
estrous cycle.

Female hippocampus is equipped with systems for androgen 
synthesis from PROG [P450(17α), 17β-HSD (types 1 and 3), 
5α-reductase (types 1 and 2)] and synthesizes DHT (Table 1) (81). 
In female hippocampus, a large amount of Allo is also synthesized 
from peripherally produced PROG because 5α-reductase is 
responsible for Allo synthesis (53, 63, 81).

Regulation of local Production  
of Steroids in Hippocampus
A stimulation with NMDA for 30  min increases the levels 
of PREG and E2 in the hippocampal slices of adult male rats  
(42, 43, 47), suggesting that neural activity-dependent Ca2+ influx 
drives local production of PREG and E2.

Reduction of P450arom activity by phosphorylation via 
kinases  (PKA and PKC) is an important mechanism which 
regulates E2 synthesis. Balthazart et  al. demonstrated that this 
phosphorylation occurred in the quail brain within 15  min 
(85–87). In the cultured hippocampal neurons of female rats, E2 
application facilitated the phosphorylation of P450arom, sugges-
ting negative feedback mechanism (88).

As slow/genomic modulators, cis-retinoic acid (89) and 
gonadotropin-releasing hormone (GnRH) (75) were examined 
using hippocampal slice culture from neonatal rats. Forty-  
eight-hour treatment with 1 µM of 9-cis-retinoic acid increased 
the expression levels of P450(17α) and P450arom in the cultured 
hippocampal slices from male rats, via retinoid X receptor 
signaling (89). On the other hand, 8  days of treatment with 
GnRH enhanced local E2 production (75, 90). Hippocampal E2 
synthesis was also increased by a stereotaxic injection of GnRH 
into the hippocampus of adult female rats (91).

Interestingly, behaviors, including social interaction (92, 93) 
and exercise (94), alter local production of steroids in the hip-
pocampus. Social isolation (housing individually for 8  weeks) 
upregulated the mRNA levels of P450arom and StAR in the 
hippocampus of adult male rats, compared with pair housed rats 
(92), whereas environmental enrichment (housing in a group of 
nine in a large cage for 8 weeks) increased the mRNA levels of 
5α-reductase type 1 and 3α-HSD (93).

PHYSiOlOgiCAl ROleS OF 
HiPPOCAMPUS-SYnTHeSiZeD STeROiDS

Hippocampus-Synthesized DHT enhances 
neurogenesis in Dg
Adult hippocampal neurogenesis occurs in DG throughout life 
in mammals (95). Sex steroids (96–99) and exercise (100, 101) 
enhance adult hippocampal neurogenesis of rodents, but the 
involvement of sex steroids in the exercise-induced neurogenesis, 
had been poorly understood.

Recently, Okamoto et  al. revealed that mild exercise  
(30  min/day for 2  weeks) increased synthesis of hippocampal 

DHT, resulting in the neurogenesis enhancement (94). Injection 
of flutamide, an AR antagonist, suppressed the exercise-induced 
increase in neurogenesis, suggesting the involvement of andro-
gens. However, surprisingly, castration (depletion of androgen 
from blood circulation) did not suppress this effect, suggesting 
the involvement of hippocampus-synthesized androgens. Indeed, 
the increase in DHT and 5α-reductase (DHT synthase) mRNA, 
were observed in the hippocampus of castrated rats after exer-
cise (94). This study provides the direct evidence of the role of 
hippocampus-synthesized steroids in hippocampal functions.

Modulation of lTP/lTD induced by 
Hippocampus-Synthesized Steroids
The physiological roles of hippocampus-synthesized sex steroids 
(E2 and DHT) in LTP/LTD were demonstrated in vitro studies 
using acute hippocampal slices and selective inhibitors of steroi-
dogenic enzymes. A perfusion with letrozole, a selective  inhibitor 
of P450arom, suppressed the magnitude of LTP in CA1–CA3 
 synapses of adult male rats (102), and in DG synapses of young 
(3- to 4-week old) male rats (103–104), within 10–20  min. 
ICI182,780, a selective antagonist of ERα/β, mimicked this sup-
pressive effect (102), suggesting that hippocampus-synthesized E2 
is required for full induction of LTP via synaptic ER. Conversely, 
hippocampus-synthesized DHT is required for the induction 
of LTD, from the data showing that low frequency stimulation 
(1 Hz, 15 min)-induced LTD was suppressed in the presence of 
finasteride, an inhibitor of 5α-reductase (105). In addition to sex 
steroids, the effect of hippocampus-synthesized PREG is reported, 
in which the application of aminoglutethimide, an inhibitor of 
P450scc, decreased the field excitatory postsynaptic potentials in 
granule cells in 20 min (103). Although the molecular mechanism 
underlying these effects remains unclear, a possible explanation 
may be provided by analogy from the data, showing that exog-
enous application of E2 rapidly (within 30 min) enhanced LTP 
by driving kinase network (Erk MAPK, PKA, PKC, PI3K, and 
CaMKII) in a non-genomic manner (27, 106).

Role of Hippocampus-Synthesized e2 
in Hippocampus-Dependent Memory
Recently, the role of hippocampus-synthesized E2 in hippocam-
pus-dependent memory consolidation was provided using OVX 
mice (107). Immediate after the training, bilateral infusion of 
letrozole into the dorsal hippocampus blocked the transient 
elevation of hippocampal E2 (within 30  min), and impaired 
object recognition and object placement memory consolidation 
(107). Under the same condition except for infusion of E2, this 
group previously demonstrated that E2 enhanced hippocampal 
memory consolidation via rapid activation of Erk MAPK and 
PI3K/Akt (108, 109), suggesting that learning experience-
induced E2 elevation in the hippocampus rapidly activates kinase 
cascades.

COnClUSiOn

Hippocampus-synthesized steroids as well as circulation-
derived ones, are of importance for hippocampal functions. 
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A possible molecular mechanism for rapid effect of hippocampus-  
synthesized steroids may be kinase networks which modulate 
hippocampal functions, including spinogenesis (106, 110), LTP 
(27), learning, and memory (108, 109).
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