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Kisspeptin was initially identified as a metastasis suppressor. Shortly after the initial 
discovery, a key physiologic role for kisspeptin emerged in the regulation of fertility, with 
kisspeptin acting as a neurotransmitter via the kisspeptin receptor, its cognate receptor, 
to regulate hypothalamic GnRH neurons, thereby affecting pituitary–gonadal function. 
Recent work has demonstrated a more expansive role for kisspeptin signaling in a variety 
of organ systems. Kisspeptin has been revealed as a significant player in regulating 
glucose homeostasis, feeding behavior, body composition as well as cardiac function. 
The direct impact of kisspeptin on peripheral metabolic tissues has only recently been 
recognized. Here, we review the emerging endocrine role of kisspeptin in regulating 
metabolic function. Controversies and current limitations in the field as well as areas of 
future studies toward kisspeptin’s diverse array of functions will be highlighted.
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iNTRODUCTiON

Historical Summary of Kisspeptin
The kisspeptin (Kiss1) gene was first identified in a screen of human genes that reduced the meta-
static potential of human melanoma cells (1). Since its discovery, kisspeptin has been a focus of 
study for a series of different fields including cancer biology, reproductive neuroendocrinology, 
reproductive biology, and, most recently, metabolism. While the kisspeptin gene and its activa-
tion of the kisspeptin receptor (KISS1R) were initially characterized by cancer biologists (1, 2), in 
2003, the study of kisspeptin accelerated following the demonstration by two groups of its essential 
role in regulating reproductive function (3, 4). This can be dramatically illustrated by performing 
a literature search for articles on kisspeptin from the years between 1996 and 2002 (18 articles) 
and the subsequent 7 years, 2003–2009 (458 articles), after the seminal studies from Seminara and 
de Roux. The studies from this latter period define a critical role for kisspeptin signaling in the 
regulation of GnRH neurons, demonstrating kisspeptin involvement with puberty (3, 4), mediating 
gonadal steroid hormone negative (5, 6) and positive (7, 8) feedback and serving as an afferent 
pathway for metabolic control of the reproductive hormone axis (9–11). Interest in kisspeptin has 
further accelerated in the past 7 years (1,540 articles) as novel peripheral roles for kisspeptin have 
been identified in both reproductive, metabolic, and developmental processes (12–14). The aim 
of this review is to provide a summary of studies describing a role for kisspeptin in the peripheral 
regulation of metabolism.

Kisspeptin and the KiSS1R
The kisspeptin gene, located on chromosome 1 in human, was originally reported to encode a 145 
amino acid preprotein (15), though recent updates to the human genome sequence include a one-bp 
change resulting in an earlier stop codon and indicating that the human protein product is likely 
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FigURe 1 | Mouse Kiss1 gene. Transcript variants of mouse Kiss1 are 
expressed from two different first exons, X3 (XM_006529681) and X4 
(XM_006529682), that are regulated by cyclic AMP response element  
binding protein at a CRE (19). The transcriptional start site for Kiss1X3  
and X4 is located in an exon of the Golt1a gene. Kiss1X1(XM_006529679) 
and X2 (XM_006529680) are regulated by ESR1 at an ERE (17). Kiss1 is a 
transcript including just the second and third exons (NM_178260.3). X1 and 
X3 include a larger second exon (including the shaded region) and X2 and X4 
include a smaller second exon. All variants produce the KISS1 protein. KP-10 
is the active region of all bioactive KISS1 peptides.
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138 amino acids. The preprotein can be further processed to the 
biologically active 54 amino acid C-terminally amidated peptide 
(Kp54, metastin) that was demonstrated to activate the KISS1R 
previously referred to as the orphan receptor GPR54 (2, 16). In 
mouse, the Kiss1 gene, as in human, is located on chromosome 
1, and in rat, the gene is located on chromosome 13. However, 
for the rat and mouse genes, regulation is complicated by the 
expression of multiple splice variants, although, in both, the 
protein precursor is also processed to Kp54. For example, the 
rodent Kiss1 gene (mouse gene shown in Figure 1) consists of a 
number of splice variants that produce the same protein product 
(17, 18), suggesting that key differences in cell-specific regulation 
may be mediated by alternative promoter elements. This has been 
borne out in studies which have defined cyclic AMP response 
element binding protein (CREB) (19) and estrogen receptor (17) 
regulation of the mouse Kiss1 gene (Figure 1).

The Kiss1 gene is expressed in a variety of tissues besides the 
brain (hypothalamus, amygdala) (20–23), including the liver 
(13, 24), testis (24–26), ovary (27, 28), fetal adrenal (12), heart 
(29) fat (24, 30, 31), and placenta (32). This provides a number 
of possibilities for sources of circulating kisspeptin, with strong 
experimental evidence suggesting that the liver and placenta 
can contribute to biologically significant levels in the circula-
tion (13, 32).

The KISS1R gene (Kiss1r, also called Gpr54, Axor12, and 
hOT7T175) is a member of the G-protein-coupled receptor family 
and is located on chromosome 19 in human and chromosome 10 
in mouse. It consists of five exons and encodes a 398 amino acid 
protein in humans and a 395 amino acid protein in the mouse (33).

The Kiss1R has significant homology in the transmembrane 
regions with the galanin receptors, yet has little affinity for galanin 
(34). Kiss1R was demonstrated to signal through a Gq/11-mediated 
pathway to increase intracellular Ca2+ (35, 36) and activate the 
extracellular signal-regulated kinase (ERK)-signaling pathway, 
stimulating GnRH secretion. Recently, in the GnRH neuron, 
KISS1R was also demonstrated to signal via a Gq/11-independent 
but β-arrestin-dependent pathway leading to the activation of 
ERK (37, 38).

Besides the hypothalamus (39, 40), Kiss1r has been reported 
to be expressed in peripheral tissues including the pituitary, adip-
ocyte, heart, spinal cord, gonads, and pancreas (13, 16, 29–31, 
41–43). These findings suggest that a range of physiological 
systems may be impacted by kisspeptin.

Though not activated by galanin, the Kiss1R has been dem-
onstrated to be activated by ligands other than the kisspeptins. 
RFamide-related peptide-3 (RFRP-3) and its receptor, neurop-
eptide FF receptor 1 (NPFFR1), are the mammalian orthologs 
of avian gonadotrope inhibitory hormone (GnIH) and its receptor 
GnIHR. RF9 is an antagonist to the GnIHR (44) that directly 
activates GnRH neuron firing (45) and LH secretion in a KISS1R- 
dependent manner (46). While kisspeptin independent activa-
tion of the KISS1R is documented, high levels of kisspeptin can 
also exert effects independent of the KISS1R (13) though the 
mechanism of action for these effects is not yet established. These 
data likely provide a biological rationale for the more severe 
reproductive phenotype observed in the Kiss1R KO mouse than 
in the Kiss1 KO mouse (47).

Kisspeptin Neurons Mediate Central 
Regulation of Reproduction by Peripheral 
Metabolic Signals
Since the initial observations describing an essential role for kiss-
peptin signaling in puberty (3, 4), it has emerged that kisspeptin 
neurons are also relays of steroid feedback regulation to GnRH 
neurons (5, 6, 21, 22, 39, 48, 49) and are important components of 
the circuitry controlling GnRH pulse generation (50–54).

Kisspeptin neurons in the brain have also been proposed 
to integrate signals relaying peripheral metabolic status to the 
reproductive hormone axis, specifically to the GnRH neurons 
[reviewed in Ref. (9, 55, 56)]. There is evidence for changes in 
central kisspeptin expression both in response to food restriction 
(negative energy balance) or in genetic or diet-induced models 
of obesity (positive energy balance). However, to date, reports 
on the modulation of kisspeptin expression by caloric surfeit 
and obesity vary and are at times conflicting such that no firm 
consensus exists on the topic.

In studies on calorically restricted models, most, but not 
all, investigators report a reduction in Kiss1 expression in both 
hypothalamic kisspeptin neuron populations. Long-term diet-
restricted ewes were shown to express reduced Kiss1 mRNA in 
both the ARC and POA when compared with normal weight 
ewes (57). And in fasted male mice, reduced hypothalamic Kiss1 
mRNA levels relative to fed controls were reported (58). In rats, 
one group reported 72 h of fasting caused a significant reduction 
in hypothalamic Kiss1 expression in both males and females 
(59). However, another group observed no change in ARC Kiss1 
expression in response to a 48-h fast and a reduction in AVPV 
Kiss1 mRNA only in ovariectomized/estrogen-replaced female 
rats (60). Clearly, more studies will be required to address the 
role of hypothalamic kisspeptin in mediating the suppression of 
the reproductive axis in states of negative energy balance.

In diet-induced obese female mice, Kiss1 expression in both 
the AVPV and ARC decreases relative to normal chow-fed 
controls (61), perhaps contributing to a reduced reproductive 
function. And in a genetic model of obesity, the leptin-deficient 
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Ob/Ob mouse, ARC Kiss1 mRNA levels are reduced (49, 61, 62) 
or unchanged (58) as compared to control mice. In the study 
by Smith et al., leptin treatment of Ob/Ob mice increased Kiss1 
expression, but this represented only a partial rescue of a reduced 
Kiss1 expression reported for the Ob/Ob mouse (21, 22, 49). 
Leptin has long been known to play a permissive role in repro-
ductive function (63) and signaling via the kisspeptin neurons, 
which may contribute to the functional regulation of fertility by 
leptin.

The gut-derived hormone ghrelin could also impact the repro-
ductive axis via kisspeptin neuronal afferents, though here again, 
the evidence is not clear. Some investigators have suggested that 
only the AVPV KISS1 neurons are regulated by ghrelin (64), and 
others have also identified the regulation of ARC KISS1 neurons 
by ghrelin, interestingly with a strong interacting effect by E2 
(65). Kisspeptin neurons have been shown to express the ghrelin 
receptor [GHSR (65)], though they are not thought to express 
the leptin receptor (62, 66), suggesting leptin-sensitive afferent 
neuronal regulation of kisspeptin and/or GnRH neurons (62, 66). 
ARC kisspeptin neurons send projections to the kisspeptin neu-
rons in the AVPV (67, 68), suggesting that for some processes, 
a two kisspeptin neuron circuit could be required. Therefore, 
the relative role that ARC or AVPV kisspeptin neurons play in 
mediating metabolic signals is not clear (60, 61, 64, 69, 70).

The Kiss1R Knockout Mouse exhibits 
Metabolic Dysfunction and Suggests  
a Key Role for Kisspeptin Signaling  
in Regulating Metabolism
Evidence for a broader role for kisspeptin signaling in the regula-
tion of metabolism comes from detailed analysis of the KISS1R 
knockout mouse (Kiss1r KO) (71). These studies reported strik-
ing differences in body weight and glucose metabolism in female 
mice, but also differences in body composition and increased 
circulating leptin in both sexes. Because of the well-established 
obesity associated with a reduced estrogen signaling (72–74), 
Tolson et  al. ovariectomized the female mice to assess those 
effects occurring independently of reduced estrogen. They found 
that a small, but significant, component of the obesity observed 
in female mice is due to loss of kisspeptin signaling and is not 
secondary to the reduction in estrogen levels, resulting from 
hypothalamic hypogonadism (71). However, Kiss1r KO males, 
because they exhibited no KISS1R-mediated weight difference, 
were not as carefully studied, despite having an increased adipos-
ity and circulating leptin compared to controls. In addition, not 
reported in either sex was any evaluation of gluconeogenic capac-
ity or whether there were differences in lipid metabolism despite 
an observed reduction in nocturnal respiratory exchange ratio 
(RER) in female KO mice compared to controls as assessed by 
indirect calorimetry. A reduced RER is suggestive of an increased 
use of lipids for energy metabolism (75). In follow-up studies in 
female mice, the Kauffman laboratory demonstrated that the 
changes in body composition, leptin levels, and RER were present 
in 6-week-old female KO mice, which preceded the increased 
body weight phenotype (76). The developmental progression of 
the phenotype observed in the male KO mice (increased adiposity, 

leptin levels, and reduced RER) remains still to be performed. 
The studies by the Kauffman laboratory have spurred a number 
of investigators to try to assess the tissue-specific mechanisms 
by which kisspeptin may regulate glucose and lipid metabolism, 
food intake, and body weight.

One possibility is that the body weight phenotype in Kiss1r 
KO mice is in part the result of an altered hypothalamic control 
of food intake or energy expenditure. Kisspeptin treatment alters 
both neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) 
neuronal activity in mice (77). In sheep, kisspeptin treatment 
increases Npy gene expression and decreases Pomc expression 
(57). Using optogenetic technology, ARC kisspeptin neurons were 
activated in mice and demonstrated glutamine, secreted from 
kisspeptin neurons regulation of both POMC and agouti-related 
peptide neurons. Interestingly, this resulted in the excitation of 
POMC neurons, via Gq/G11 coupled glutamate receptor and 
the inhibition of AgRP neurons, via a Gi/Go coupled glutamate 
receptor (78).

To address whether the underlying cause of the obesity in female 
Kiss1r KO mice was at the level of the hypothalamus, De Bond 
et al. used quantitative PCR and in situ hybridization histochem-
istry to examine the expression of key genes in the hypothalamic 
appetite-regulating system, including Pomc and Npy as well as the 
genes expressing the receptors for leptin, ghrelin, and the melano-
cortins (79). They established that there were no differences in the 
expression of any of these genes between ovariectomized Kiss1r 
KO and ovariectomized control mice, suggesting peripheral sites 
of action of kisspeptin as potentially being a primary contributor 
to altered metabolism in the Kiss1r KO mouse. However, these 
sorts of assessments of mRNA levels do not preclude possible 
changes in neuronal activity and/or neurotransmitter release. 
They also do not fully address heterogeneity of the relevant neu-
ronal populations and suggest that additional studies are needed 
to fully clarify a possible central role for kisspeptin signaling in 
energy metabolism. The following sections address the potential 
role of kisspeptin signaling in the major metabolic organs in the 
body, specifically the liver, muscle, fat, and pancreas.

Liver-Derived Kisspeptin Participates  
in islet Hormone Cross-Talk
A long-standing question in pancreatic islet biology is how 
glucagon, produced in α-cells in response to low glucose levels, 
influences insulin secretion from β-cells that occurs in states of 
hyperglycemia. These considerations have clinical relevance since 
patients with type 1 diabetes mellitus (T1DM) exhibit hypergluca-
gonemia (80). In addition, many patients with type 2 diabetes 
mellitus (T2DM) exhibit elevated glucagon levels and insufficient 
insulin secretion to control glucose levels (81, 82). High gluca-
gon levels are also apparent in prediabetic patients, who exhibit 
impaired glucose tolerance, suggesting that impaired glucagon 
suppression may contribute to the development of T2DM (83, 84).

The glucagon receptor is expressed on hepatocytes, where its 
activation rapidly stimulates cyclic AMP (cAMP) production 
(85), activating the PKA-signaling cascade. The PKA regulatory 
complex consists of two catalytic subunits (C) and two regulatory 
subunits (R). The C subunits are sequestered by the R subunits in 
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the absence of cAMP. Increases in cAMP result in the release of the 
C subunits which phosphorylate and activate CREB and increase 
the transcription of CREB-responsive genes. These include genes 
for the rate-limiting enzymes for gluconeogenesis, such as glucose-
6-phosphatase (G6pase) or phosphoenolpyruvate carboxykinase 
(Pepck) (86–88), providing the adaptive response of an increased 
hepatic glucose production in response to hypoglycemia.

Constitutive activation of liver PKA-dependent signaling stim-
ulates gluconeogenesis, leading to hyperglycemia, which would 
be expected to stimulate insulin secretion from β-cells. However, 
experimentally, the opposite has been observed. In 2005, the 
McKnight laboratory developed a mouse model with liver-
specific expression of a mutant PKA C subunit (tryptophan 196 to 
arginine, called CαR) that exhibits impaired binding to the PKA 
R subunit and is thus less sequestered (inactive) in the absence 
of cAMP. The CαR mice did not have an increased expression 
of the gluconeogenic enzymes G6pase or Pepck, but did have 
reduced hepatic glycogen levels and were found to have modest 
hyperglycemia, but this was not associated with higher insulin 
levels, but rather with a reduced insulin secretion (89). Similar 
results were observed by our group using a more robust model 
of constitutive hepatic PKA activation, one in which the PKA R 
subunit gene is completely disrupted by Cre/LoxP technology 
(L-ΔPrkar1a mice). These mice have an increase in G6pase and 
Pepck gene expression in the liver causing fasting hyperglycemia 
and, notably, insufficient insulin secretion to correct glycemia 
during intraperitoneal glucose tolerance tests (13). These data 
suggest that an increased PKA signaling in the liver could be indi-
rectly acting on pancreatic β-cells to suppress insulin secretion.

Evidence that a secreted factor was mediating this effect came 
from a bioassay in which plasma from L-Prkar1a mice suppressed 
insulin secretion from wild-type (WT) mouse islets in vitro (13).

To identify the factor, we compared hepatic gene expression 
in the L-ΔPrkar1a mouse with WT mice infused with glucose 
to achieve hyperglycemia equivalent to that in the L-ΔPrkar1a 
mouse. Of note, glucose-infused WT mice exhibited a robust 
and significantly elevated insulin secretion in contrast to the 
L-ΔPrkar1a counterparts. A liver gene expression array combined 
with bioinformatic analysis to identify genes for secreted proteins 
that were upregulated in the liver of L-ΔPrkar1a mice surpris-
ingly yielded a single candidate gene, Kiss1, that was significantly 
upregulated in L-ΔPrkar1a liver (13). This result was confirmed by 
direct assessment of liver kisspeptin mRNA expression by quan-
titative PCR as well as kisspeptin protein levels by immunoblot.

Glucagon is secreted during fasting to participate in adaptive 
energy mobilization in the liver and fat. We demonstrated that Kiss1 
expression was increased in overnight fasted WT mice, but not in 
mice with a liver-specific deletion of the glucagon receptor gene. 
These results suggest that liver glucagon receptor activation can 
both stimulate insulin secretion by increasing blood glucose levels 
and inhibit insulin secretion by stimulating kisspeptin production.

To confirm the functional regulation of insulin secretion by 
the kisspeptin receptor, we used mice with selective ablation 
of the pancreatic Kiss1r gene (Panc-Kiss1R mouse) using the 
pancreas-specific PDX-1 CRE driver mouse and a Kiss1r floxed 
mouse that we developed (40). Acute treatment of control mice 
with kisspeptin preceding a glucose injection resulted in impaired 

glucose toler ance and attenuated insulin secretion, while Panc-
Kiss1R mice injected with kisspeptin before glucose injection had 
glucose tolerance and insulin secretion similar to vehicle-injected 
mice (13).

Attempts to assess a role for kisspeptin on insulin secretion 
have yielded conflicting results with some noting that kisspeptin 
stimulates glucose-stimulated insulin secretion (GSIS) (90, 91) 
and others reporting the opposite (92, 93). We noted a wide range 
of concentrations for kisspeptin used in these various studies, 
with kisspeptin concentrations in the nM range usually sup-
pressing GSIS (92, 93) and μM kisspeptin concentrations usually 
stimulating GSIS (90, 91, 94). To directly address this controversy, 
we tested different concentrations of kisspeptin on GSIS in islets 
from control and Panc-Kiss1R mice. We found that kisspeptin at 
nM concentrations suppressed GSIS from control islets but not 
from islets lacking the KISS1R. By contrast, kisspeptin at μM con-
centrations stimulated GSIS even in the absence of the KISS1R 
(Panc-Kiss1R islets). Based on these studies, it is clear that the 
suppression of GSIS by nanomolar concentrations of kisspeptin is 
mediated by the KISS1R. At supraphysiological levels, kisspeptin 
stimulates GSIS through a non-KISS1R-mediated pathway.

We assessed liver expression of kisspeptin in mouse models of 
obesity. Both high-fat diet (HFD) fed obese and genetic models of 
obesity (db/db and Ob/Ob mice) had an increased liver kisspep-
tin expression as well as increased circulating plasma kisspeptin 
concentrations (13). To assess whether these results translated to 
humans, liver biopsies taken from patients diagnosed with T2DM 
were analyzed and exhibited a higher kisspeptin expression than 
liver tissue from non-diabetic subjects. This was associated with 
higher circulating kisspeptin levels in diabetic subjects than in 
non-diabetic subjects (13). These findings suggest that in 
T2DM, kisspeptin production is elevated in the liver and that 
this increased kisspeptin production is secondary to increased 
glucagon levels, and, indeed, treatment with a glucagon receptor 
antagonist in db/db mice reduced liver kisspeptin production and 
improved glucose homeostasis (13).

Therefore, these data demonstrate the existence of a hepatopan-
creatic circuit in which glucagon, from the pancreas, stimulates 
hepatic expression of the genes regulating gluconeogenesis and 
kisspeptin. While the increased expression of Pepck and G6pase 
increases hepatic glucose output, increases blood glucose levels 
and stimulates insulin secretion, the increased secretion of kiss-
peptin serves to suppress insulin secretion (Figure 2). Kisspeptin 
could therefore be developed as a therapeutic in the treatment of 
some metabolic disease.

Placenta is a Major Source of Circulating 
Kisspeptin in Humans
Our data suggest that the liver contributes to circulating levels 
of kisspeptin that in metabolically challenged states can increase 
2- to 10-fold above basal (13); however, these levels are far 
lower than those secreted in women at the end of pregnancy by 
the placenta [elevated nearly 10,000-fold (32)]. This dramatic 
increase has been corroborated in a recent study in which urine 
kisspeptin levels were over 200-fold higher in third trimester 
pregnant women than in non-pregnant women (95). Kisspeptin 
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FigURe 2 | Model of the proposed Hepato-Islet circuit. Glucagon  
secreted from the pancreatic α-cell activates its receptor on the liver 
increasing PKA activity and gene expression of gluconeogenic genes  
and the Kiss1 gene. Increased glucose output from the liver increases  
blood glucose levels, increasing insulin secretion from the pancreatic  
β-cells. Increased kisspeptin secretion from the liver acts to suppress 
glucose-stimulated insulin secretion from the pancreatic β-cells. 
Pharmacologically delivered kisspeptin can stimulate (μM levels) or  
inhibit (nM levels) GSIS. Figure adapted from Song et al. (13).
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levels decline rapidly after delivery, supporting the placenta as the 
source (32). Human term placenta was analyzed for Kiss1 mRNA 
by in situ hybridization and for kisspeptin by immunohistochem-
istry, and kisspeptin expression in the outer syncytiotrophoblasts 
was reported, ideally located for secreting kisspeptin into the 
maternal circulation (32). The authors noted that there are simi-
larities between invasive placental cells and invasive cancer cells 
(32), and during the establishment of the maternal–fetal interface, 
it is important to limit the interaction between the trophoblasts 
and uterine cells. Perhaps, kisspeptin plays a role in this process, 
mirroring its originally defined role as a metastasis inhibitor 
(1). Therefore, the increase in the production of kisspeptin in 
syncytiotrophoblasts in the first trimester may also play a role in 
negatively regulating trophoblast invasion, and kisspeptin signal-
ing might be required for implantation and placentation (96).

A metabolic role for placentally derived kisspeptin can also be 
envisioned. During normal human pregnancy, insulin resistance 
develops and peaks during late pregnancy [34–36 weeks of gesta-
tion (97)]. This may be an adaptive response to preserve a slight 
excess of energy substrates in the blood for use by the developing 
fetus. A number of hormones have been proposed to contribute to 
the development of insulin resistance, including human placental 
lactogen, human placental growth hormone, progesterone, corti-
sol, tumor necrosis factor α, and leptin (97). One could envision 
two possible explanations for the high kisspeptin levels late in 
pregnancy. If kisspeptin is acting via the KISS1R, it would serve 

to tamp down increased insulin secretion to maintain a modest 
excess in the blood levels of energy substrates (glucose, free fatty 
acids). Intriguingly, insulin sensitivity recovers very quickly after 
delivery in parallel with decreasing kisspeptin levels (32, 97). One 
could also propose that the very high levels of kisspeptin circulat-
ing late in pregnancy could act via a kisspeptin receptor inde-
pendent mechanism and serve to augment insulin secretion to 
compensate for the increased insulin resistance in late pregnancy.

Further investigation of placental kisspeptin will be difficult 
using many animal models. Very modest levels of placental kiss-
peptin expression have been reported in the rat, dog, and mouse 
(98–100). And while a gestational increase in kisspeptin expres-
sion was noted for mouse (99) and dog (98), circulating levels of 
kisspeptin are unlikely to reach the levels observed in humans and 
may not play the same role in these animal models as compared 
to humans.

Fat May Also Be a Source of  
Circulating Kisspeptin
The adipocyte could also be a source of circulating kisspeptin. 
Kiss1 mRNA has been detected in rat adipose tissue (30, 31), 
and food restriction increased Kiss1 mRNA in the fat of both 
male and female rats (30). T1DM but not T2DM was associated 
with roughly 100-fold higher Kiss1 mRNA levels in adipocytes 
compared to non-diabetic rats (24), suggesting that insulin 
plays a key role in the regulation of adipocyte Kiss1 expression. 
Interestingly, the large increase in Kiss1 mRNA was not associ-
ated with increased kisspeptin protein levels in the adipocytes 
of T1DM rats, suggesting either increased secretion or reduced 
protein translation. By contrast, Kiss1 mRNA was reduced in 
obese HFD fed and obese Zucker rats (30). The Wilkerson group 
also demonstrated a sex steroid regulation of adipocyte Kiss1 
expression. Estradiol stimulated expression in female adipocytes 
and testosterone stimulated expression in male adipocytes (30).

The adipocyte also expresses the KISS1R (101). Therefore, 
kisspeptins secreted by adipose tissue could either act as adi-
pokines or as autocrine/paracrine regulators of adipocyte func-
tion. To explore kisspeptin’s effects in fat, 3T3-L1 and primary rat 
hepatocytes were treated with Kp10 and lipid metabolism, glucose 
uptake and leptin and adiponectin secretion assessed (101). These 
studies demonstrated that Kp10 reduced adipogenesis in 3T3-L1 
cells, likely as a result of a reduced expression of peroxisome 
proliferator-activated receptor gamma (PPAR-γ) and CCAAT/
enhancer binding protein beta (CEBPβ), transcription factors 
involved in stimulating adipogenesis. Kp10 increased lipolysis in 
3T3-L1 cells and rat adipocytes by enhancing the expression of 
periliphin and hormone-sensitive lipase and decreased glucose 
uptake and lipogenesis. Kp10 also stimulated the secretion of  
leptin and decreased the secretion of adiponectin from rat adi-
pocytes. While these studies suggest a role for kisspeptin in 
regulating adipocyte development and function, the effects were 
largely seen at near μM levels of Kp10, calling into question the 
physiological relevance of the findings. It is possible that local 
levels of paracrine/autocrine secretion of kisspeptin could reach 
these levels, or that the very high levels of kisspeptin observed 
during human pregnancy could achieve levels that functionally 
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FigURe 3 | Peripheral metabolic regulation by kisspeptin. An overview of kisspeptin regulatory pathways is discussed in this review. Red lines indicate putative 
suppressive effects. Green lines indicate putative stimulatory effects. Solid lines indicate that specific experimental evidence is provided to support the pathway. 
Dashed lines indicate a speculative pathway based on the available evidence. KP indicates targets for which pharmacological roles for kisspeptin have been 
proposed. Figure of brain adapted from Dreamstime.com.
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regulate fat, although this is unlikely to play a role in mouse or rat 
given the relatively modest levels of kisspeptin during gestation 
in these rodent models.

Human fat has also been demonstrated to express Kiss1 (31). 
In women, a positive correlation between Kiss1 mRNA in visceral 
adipose tissue and body mass index (BMI) was reported (31). 
Exclusions for this study included women under 19 years old and 
those that were post-menopausal. Not excluded were subjects with 
diabetes. These findings agree with our observation that circulat-
ing kisspeptin levels are increased 2- to 4-fold in HFD fed and db/
db obese mice and nearly 10-fold in humans with T2DM when 
compared to lean mice and non-diabetic humans, respectively 
(13). These findings are at odds with the rodent data showing a 
reduced Kiss1 expression in obese rats (30), and they also appear to 
differ from studies showing decreased circulating kisspeptin levels 
in obese patients with BMIs above 35 kg/m2 when compared to 
non-obese controls with BMIs below 25 kg/m2 (102). However, the 
high BMI subjects in the Kolodziejskii study specifically excluded 
those with diabetes and they would not exhibit hyperglucagon-
emia and the resulting increased hepatic Kiss1 expression (102).

The contribution of fat to circulating levels of kisspeptin is 
unclear, making it difficult to discern whether kisspeptin from fat 
serves as an endocrine factor. A cell-specific KO of the kisspeptin 
gene from adipocytes would help address this question. These 
studies may ultimately demonstrate an exclusively paracrine/
autocrine role of kisspeptin in fat regulation.

Other Potential effects of Kisspeptin  
on Peripheral Metabolic Function
Evidence for the muscle as a target or a source of kisspeptin is 
limited. While skeletal muscle has not been demonstrated to 
synthesize kisspeptin or express significant levels of the KISS1R, 
there is evidence that smooth and cardiac muscles are regulated 
by kisspeptin.

Kisspeptin receptor has been localized in cardiomyocytes as 
well as the smooth muscle cells of the intramyocardial blood ves-
sels (29, 103), and kisspeptin has been demonstrated to induce 
inotropic actions on cardiac function with the effects confirmed 
to be mediated by the KISS1R (29). The relevance during normal 
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physiology is unclear, however, since no cardiac dysfunction is 
reported in either humans or mice lacking the KISS1R (29). It 
was proposed that the high levels of kisspeptin secreted from 
the placenta could play a role in the adaptive increase in cardiac 
output during pregnancy (29, 104). However, the local expression 
of kisspeptin-like immunoreactivity was noted in human, mouse, 
and rat vascular and endocardial endothelial cells and in human 
cardiomyocytes (29) and could also be a source of high kisspeptin 
levels. Local secretion of kisspeptin could be a mechanism for 
intracardial regulation of cardiac output. Interestingly, the level of 
kisspeptin immunoreactivity was significantly lower in the right 
atria of patients transplanted for ischemic heart disease when 
compared to controls. While these changes could be secondary to 
low oxygen levels, it could suggest a possible role for kisspeptin in 
maintaining proper blood flow to the heart during atherosclerotic 
arterial narrowing.

Regulation of gut motility also contributes to metabolic 
status. A recent report suggests that kisspeptin can stimulate 
gastrointestinal motility by both central and peripheral mecha-
nisms (105). While ICV infusion of kisspeptin stimulated gas-
trointestinal motility and fecal output at low nM concentrations, 
kisspeptin also exerted direct effects on the contractility of the 
circular smooth muscle of the colon. However, the peripheral 
effects of kisspeptin in the colon were only apparent at μM 
concentrations and could indicate a non-KISS1R-mediated 
mechanism of action such as observed for the effects of high 
kisspeptin concentrations on the beta cell (13). Local secretion 
of kisspeptin could achieve μM levels and represent an endog-
enous regulatory mechanism in the gastrointestinal system. 
Alternatively, these studies may help define a therapeutic role 
for pharmacological kisspeptin.

Kisspeptin does not appear to directly impact energy metabo-
lism of skeletal muscle, but the literature does indicate a potentially 
important role on cardiac function and gut motility. Leveraging 
conditional knockout mouse models of both kisspeptin and the 
KISS1R will be required to fully understand kisspeptin’s role in 
regulating heart contractility and gut motility.

Summary and Conclusion
As the study of kisspeptin enters its third decade, and new func-
tions are attributed to the peptide, more animal and human stud-
ies are needed to understand its complex pleiotropic effects. The 
widespread expression of kisspeptin and its receptor indicates 
an ever-expanding array of roles in normal physiology, but also 
during the extreme physiological, developmental, and metabolic 
challenges of pregnancy or in pathophysiological states such as 
diabetes (Figure 3). In reviewing the literature, several challenges 
emerge. The first is that a spectrum of kisspeptin doses is being 
used, both in vivo and in vitro, and more attention needs to be 
paid to whether the effects of kisspeptin are physiological or 
pharmacological. This is not meant to disparage the latter since 
there is evidence that kisspeptins show a therapeutic potential in 
a variety of systems. A second challenge is trying to understand 
whether kisspeptins’ effects are being mediated by the kisspeptin 
receptor and, if not, to determine those mechanisms of action not 
mediated by the cognate receptor. When possible, it is invaluable 
to validate the mechanism of action using the Kiss1R KO mouse 
(13, 29). The development of novel mouse models, including 
mice with floxed alleles of both the kisspeptin (in development) 
and KISS1R (40, 106) genes and optogenetic tools to assess 
neurobiological circuitries (50, 51, 107), will help define the 
sources of kisspeptin and the relevant sites of action. However, 
the development of additional animal and human models will be 
imperative to adequately study phenomenon not recapitulated in 
rodent models.
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