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Bone metastases are a common and devastating feature of late-stage breast cancer. 
Metastatic bone disease is a consequence of disturbed bone remodeling due to patho-
logical interactions between cancer cells and the bone microenvironment (BME). In the 
BME, breast cancer cells severely alter the balanced bone formation and bone resorp-
tion driven by osteoblasts and osteoclasts. The complex cellular cross talk in the BME 
is governed by secreted molecules, signaling pathways and epigenetic cues including 
non-coding RNAs. MicroRNAs (miRNAs) are small non-coding RNAs that reduce protein 
abundance and regulate several biological processes, including bone remodeling. Under 
pathological conditions, abnormal miRNA signaling contributes to the progression of 
diseases, such as bone metastasis. Recently miRNAs have been demonstrated to 
regulate several key drivers of bone metastasis. Furthermore, miRNAs are implicated 
as important regulators of cellular interactions within the metastatic BME. As a conse-
quence, targeting the BME by miRNA delivery or antagonism has been reported to limit 
disease progression in experimental and preclinical conditions positioning miRNAs as 
emerging novel therapeutic tools in metastatic bone disease. This review will summarize 
our current understanding on the composition and function of the metastatic BME and 
discuss the recent advances how miRNAs can modulate pathological interactions in the 
bone environment.
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inTRODUCTiOn

Breast cancer is one of the most common malignancies in the world. Approximately 12% of women 
are diagnosed with breast cancer during their lifetime (1). After successful treatment of the primary 
tumor that often comprises surgery, adjuvant chemo- and radiation therapy, and the administration 
of anti-hormonal drugs, patients frequently suffer from distant metastases even decades after a dis-
ease-free interval (2). Bone is the most common site for breast cancer metastases, and approximately 
70% of patients with advanced breast cancer suffer from osteolytic bone metastases (3). Osteolytic 
metastases are frequently associated with skeletal-related events (SREs), including fractures and 
spinal cord compression, that are often accompanied by severe pain and hypercalcemia (4).

In a physiological context, bone mass is maintained by the balanced activities of matrix-producing 
osteoblasts (OBs) that originate from mesenchymal cells and can become matrix-entrapped osteo-
cytes (OCYs), and bone-resorbing osteoclasts (OCs) that arise from the hematopoietic lineage (5). 
OC function and bone resorption is stimulated by the receptor activator of NFκB ligand (RANKL) 
that is expressed in membrane-bound and soluble forms by OBs and OCYs (Figure 1). The activ-
ity is restricted by osteoprotegerin, which is a soluble decoy receptor against RANKL (6). Under 
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FigURe 1 | Regulation of cellular interaction in breast cancer bone metastasis by microRNA (miRNAs). The bone microenvironment (BME) is composed of cellular 
entities, including hematopoietic stem cells (HSC niche), osteoblasts (OBs), osteoclasts (OCs), and adipocytes (endosteal niche) as well as vascular endothelial cells 
and pericytes (vascular niche). These niches are suggested to control survival, dormancy, and growth of disseminated tumor cells (DTCs) through production of 
cytokines (i.e., leptin, G-CSF, VEGF, etc.) and intracellular signals in addition to cell-to-cell contact. In a physiological context, the highly coordinated cross talk 
between bone-forming OBs and bone-resorbing OCs maintains bone mass. OC function is regulated via OB and osteocyte (OCYs) derived RANKL. In the context 
of metastatic breast cancer disease, breast cancer cells severely disturb the balance between bone formation and resorption through secretion of various growth 
factors and cytokines [i.e., interleukins (ILs), parathyroid hormone-related protein (PTHrP), matrix metalloproteinases (MMPs), RANKL]. Recently, it has also been 
suggested that cells from the primary tumor themselves modify the distant microenvironment, for example through systemic factors (i.e., VEGF, TGF-β, G-CSF, 
miRNAs), in order to make it more attractive for DTCs. Several components of the BME are negatively (red blocks) or positively (green arrows) regulated by miRNAs.
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pathological conditions, for instance in the context of metastatic 
breast cancer disease, breast cancer cells colonize the bone mar-
row microenvironment and severely disturb the balance between 
bone formation and bone resorption (7). This multi-directional 
process termed “vicious cycle” perpetuates metastatic bone 
destruction (8).

MicroRNAs (miRNAs) are small non-coding RNAs and key  
regulators of various biological processes including bone remode-
ling and cancer progression (9, 10). miRNAs bind to the 3′UTR  
of their target mRNAs, and depending on the degree of com-
plementarity interfere with the mRNA stability and/or by block 
protein translation (9). Abnormal miRNA expression has been 
implicated in the pathology of osteoporosis, primary bone tumors, 
and bone metastases of various cancers (11–14). Furthermore, 
in  vivo delivery of miRNA mimics or miRNA antagonists has 
been established as an attractive therapeutic approach to reverse 
bone degeneration, or to prevent cancer-induced bone diseases 
(15, 16). Thus, miRNAs can be used as therapeutic targets and 
may provide a novel tool to treat breast cancer-induced osteolytic 
disease.

Several miRNAs have been identified to regulate breast 
cancer cell-intrinsic oncogenic properties, such as proliferation, 

migration, and invasion (17–19). However, how miRNAs regu-
late non-cell autonomous interactions in the bone microenviron-
ment (BME) remains largely unknown. This review highlights 
the recent understanding of the role of miRNAs in the metastatic 
BME and their potential use as therapeutic targets to modulate 
the pathological environment and limit disease progression.

MeTASTATiC BOne DiSeASe

Bone is the most prevalent metastatic site for breast cancer cell 
colonization and growth. Bone metastasis is a complex multistep 
process starting from the dissemination of malignant cells into 
bloodstream, survival of these circulating tumor cells (CTCs) in 
the circulation, homing to distant organs and eventually metas-
tases formation in the distant site (2). Disseminated tumor cells 
(DTCs) can be detected in the bone marrow of approximately 
30% of breast cancer patients and predict for poor overall sur-
vival, breast cancer-specific survival, and disease-free survival 
compared to patients without DTCs (20).

Once bone metastases occur, the disease is incurable, and 
treatment remains palliative (21). The standard of care for patients 
with bone metastases comprises anti-resorptive drugs that reduce 
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the progression of bone destruction and increase survival (22). 
For instance, bisphosphonates are well established in the treat-
ment of osteolytic disease. Bisphosphonates are incorporated into 
the bone matrix and taken up by OCs during bone resorption, 
leading to OC apoptosis and a consecutive reduction of bone 
resorption (22). An alternative therapeutic approach is the use 
of the human monoclonal antibody Denosumab (Xgeva®) that 
inhibits RANKL and has been shown to delay the time to first 
and subsequent SRE in breast cancer patients (23). Although 
breast cancer patients greatly benefit from the use of bisphospho-
nates and Denosumab, a better understanding of the control of 
the “vicious cycle” in the BME and the underlying cellular and 
molecular mechanisms is needed as it is likely to help identifying 
novel therapeutic concepts to restrict SREs.

TUMOR MiCROenviROnMenT  
(TMe)—THe BMe in BReAST  
CAnCeR BOne MeTASTASiS

Over the last decade, a variety of preclinical studies have empha-
sized the contribution of the TME to disease progression (24–28). 
The TME comprises the cellular environment in which the 
tumor exists, the surrounding extracellular matrix, and signal-
ing molecules. Several aspects of how the TME impacts cancer 
growth are well established such as the role of endothelial cells in 
tumor angiogenesis (29, 30). However, others including the role 
of the TME in mediating tumor cell invasion, dissemination, and 
metastasis remain poorly defined (31).

Circulating tumor cells have a high affinity for bone, in 
particular areas of active bone remodeling (32). The highly bal-
anced cross talk between OBs and OCs, the presence of various 
other bone marrow-derived cell populations and soluble factors 
including osteopontin (OPN) and matrix metalloproteinases 
(MMPs) make bone an attractive site (“soil”) for DTCs (“seeds”). 
Nearly almost a century ago Steven Pagets’ “seed and soil theory” 
proposed that therapies to modify the TME might be of equal 
importance as therapies targeted against the tumor cells them-
selves (33). Hence, cells of the BME are becoming increasingly 
recognized as potential therapeutic targets for breast cancer bone 
metastasis (24–27, 34, 35).

Upon their arrival in bone, DTCs encounter a heterogene-
ous BME, which is composed of various cells originating from 
either hematopoietic or mesenchymal stem cells (HSCs, MSCs, 
respectively) (Figure  1). These include lymphoid and myeloid 
lineage cells (e.g., immune cells, megakaryocytes, erythrocytes, 
and macrophages such as OCs) as well as adipocytes and bone 
and connective tissue-forming cells (e.g., chondrocytes and OBs). 
In addition, the BME contains a dense, interconnected vascular 
system which maintains hematopoiesis and osteogenesis (36, 37).  
Within bone, these various cellular entities form supporting 
microenvironments, “niches,” which are thought to regulate tumor 
cell homing, survival, and dormancy (28, 38–41) (Figure 1). The 
most well-studied niches are the HSC-, endosteal- (OBs, OCs), 
and vascular niche (vascular endothelial cells, pericytes). Both, 
the endosteal and the vascular niche control self-renewal, differ-
entiation, and proliferation of HSCs through cell-to-cell contacts 

as well as by producing a variety of cytokines and intracellular 
signals (42–45). It is thought that tumor cells respond, similar like 
HSCs, to these signals. Among the most well studied pathways 
is the CXCL12/CXCR4 axis. CXCL12 or stromal cell-derived 
factor-1 (SDF-1) is produced and secreted by bone marrow 
stromal cells, primarily the OB, endothelial, and epithelial cells 
(46) (Figure  1). Its cognate receptor CXCR4 is expressed in 
high levels on various cancer cell lines, including MDA-MB-231 
(47). Overexpression of CXCR4 in MDA-MB-231 cells increases  
bone metastasis, and very recently, it has been demonstrated that 
both newly and established metastases were anchored in the bone 
marrow by CXCR4/CXCL12 interactions (48, 49). Further niche 
signals are suggested to include OPN, vascular adhesion mol-
ecule-1, intercellular adhesion molecule-1, chemokines such as 
Interleukins (ILs) and various growth factors, including bone mor-
phogenetic proteins, Transforming growth factor-β1 (TGF-β),  
and Vascular endothelial growth factor (VEGF) (50–52) 
(Figure 1). Emerging data also implicate the importance of the 
immune- and bone marrow adipocyte niche in bone metastasis 
(28, 53, 54). Studies by Templeton et  al. highlighted the role 
of adipocytes, one of the most abundant stromal components 
in the BME, in breast cancer cell osteotropism and early 
colonization by demonstrating that adipokines, including leptin, 
promote the migration of MDA-MB-231 breast cancer cells to 
human bone tissue fragments in vitro (28). Nevertheless, exact 
mechanisms that guide DTCs toward the metastatic site in 
bone remain to be established. Recently, it was proposed that 
cells from the primary tumor themselves modify the distant 
(bone) microenvironment, for example through systemic factors  
(i.e., VEGF, TGF-β, LOX, G-CSF, miRNAs), in order to make it 
more attractive for DTCs (27, 55, 56).

Given the heterogeneity of the BME, the fate of DTCs might 
be determined by the nature of their arrival site within bone.  
A recent review by Croucher et  al. suggests that long-term dor-
mancy might be supported when tumor cells face quiescent/static 
microenvironments (e.g., endosteal surfaces covered by bone 
lining cells or stable vasculature), whereas active, dynamic BMEs 
including areas of osteoclastic bone resorption and sprouting 
vasculature foster proliferation and/or reactivation of dormant 
tumor cells (26, 57).

Once activated, breast cancer cells secrete growth factors, such  
as Parathyroid hormone-related protein (PTHrP), ILs, and MMPs, 
which stimulate OBs to produce excessive amounts of RANKL 
and other cytokines (58–60). RANKL increases OCs activity 
and subsequent bone degradation. During bone resorption, 
matrix-derived growth factors, e.g., TGF-β1 are released into the 
metastatic microenvironment and further stimulate cancer cell 
proliferation (7). This “vicious cycle” perpetuates metastatic bone 
destruction leading to osteolytic disease (8). Therefore, targeting 
the BME, for instance by miRNAs, to disable this cycle is not only 
scientifically interesting but also clinically relevant approach.

TUMOR-DeRiveD miRnAs inFLUenCing 
THe BMe

MicroRNAs have been recently recognized as key regulators of 
various biological processes, including cancer progression and 
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metastasis. miRNAs are small (20–22 nucleotides in length), 
endogenous non-coding RNAs which posttranscriptionally 
regulate mRNA stability and protein translation (9). More 
than 1,800 miRNAs are expressed in humans and according to 
prediction tools, each miRNA regulates numerous target genes 
(61–63). An important feature of miRNAs is that miRNAs 
can be encapsulated in extracellular vehicles and released to 
bloodstream (64–66), which makes them attractive minimal or 
non-invasive source of biomarkers of various diseases, including 
bone disorders (67, 68).

MicroRNAs expressed by tumor cells can act as master regula-
tors of bone metastases formation by targeting metastasis-driving 
factors and consequently altering cancer cell behavior (17–19). 
In addition, tumor-derived miRNAs can exert their oncogenic or 
tumor-suppressive action by altering the BME. A specific feature 
of bone metastatic breast cancer cells is that they exhibit pathologi-
cally elevated expression of bone-related genes [e.g., Runt-related 
transcription factor 2 (Runx2)] and signaling pathways, including 
the Wnt pathway (69–71). Runx2 is necessary for normal bone 
formation but often dysregulated in bone metastatic breast cancer 
cells due to a downregulation of Runx2-targeting miRNAs, includ-
ing miR-135 and miR-203 (72). Runx2 promotes tumor growth 
in bone and knocking down Runx2 in cancer cells protects from 
breast cancer-induced osteolytic disease, positioning Runx2 as an 
attractive target to reduce bone metastatic burden (73). Indeed, 
pharmacological delivery of synthetic miR-135 and miR-203 
mimics into metastatic breast cancer cells reduces Runx2 protein 
abundance and consequently, diminishes tumor growth and 
spontaneous metastasis to bone (72). Furthermore, reconstitution 
of miR-135 and miR-203 greatly impairs tumor growth in the BME 
and alleviates osteolytic disease. The bone protecting effect occurred 
through downregulation of several metastasis-promoting Runx2 
target genes, including IL-11, MMP-13, and PTHrP, and subsequent 
inhibition of OC activity (72).

Similarly, Wnt signaling promotes OB differentiation and 
function under physiological conditions but a hyper activation of 
the signaling pathway is implicated in numerous cancers, inclu-
ding metastatic breast cancer (70, 74). In bone metastatic breast 
cancer cells, Wnt signaling induces the expression of PTHrP thus 
aggravating the vicious cycle (75). In OBs, Wnt signaling and 
miR-218 create a positive feed-forward loop through targeting 
of Wnt inhibitors, such as Dkk1 and sFRP1 by miR-218 (76). 
Similarly, miR-218 activates Wnt signaling in metastatic breast 
cancer cells (76). Consequently, miR-218 enhances MDA- 
MB-231 cell proliferation and increases the expression of Wnt  
target genes in a Wnt-dependent manner (76, 77). Furthermore, 
miR-218 promotes PTHrP secretion in cancer cells and sub-
sequent activation of RANKL in OBs, leading to an enhanced 
OB-mediated OC differentiation. Importantly, antagonizing miR- 
218 reversed these effects in vitro and prevented the formation 
of cancer-induced osteolytic lesions in vivo (77). Tumor-derived 
osteolytic cytokines are also regulated by miR-211 and miR-379 
(78). Both miRNAs prevented TGF-β-induced upregulation of 
IL-11 and downregulated several genes involved in TGF-β path-
way (78). Thus, miR-211 and miR-379 block the vicious cycle by 
preventing breast cancer cells from receiving signals from the 
metastatic BME.

Besides regulating the vicious cycle of bone metastasis, tumor-
derived miRNAs, including miR-126, have been established in 
pathological angiogenesis in the BME (79). miR-126, which is 
silenced in breast cancer cells with bone metastatic potential, 
suppresses endothelial recruitment and metastatic angiogenesis 
in a non-cell autonomous manner and, importantly, inhibits bone 
metastatic colonization of breast cancer cells. The underlying 
mechanism involves a coordinated targeting of two newly identi-
fied pro-metastatic genes; insulin-like growth factor binding pro-
tein 2 (IGFPB2) and c-Mer tyrosine kinase (MERTK). Metastatic 
breast cancer cells secrete IGFPB2 that acts on insulin-like growth 
factor (IGF1) type I receptor on endothelial cells and modulates 
IGF1 activation and subsequently endothelial recruitment. In 
addition, endothelial recruitment is promoted upon cleavage of 
cMERTK receptor from the breast cancer cells, which antagonizes 
the binding of GAS6 to endothelial MERTK receptors. A series of 
elegant loss-of-function and replacement experiments revealed 
individual components of the pro-angiogenic IGFPB2/IGF1/
IGF1R and GAS6-MERTK signaling pathways as direct targets 
of miR-126 and establish miR-126 as a crucial factor regulating 
endothelial interactions in the metastatic BME (79).

Recently, miRNAs released from cancer cells in microvesi-
cles or exosomes have been shown to directly control cell–cell 
interactions in the BME. For instance, miR-192, which is highly 
abundant in metastatic lung cancer, can be secreted from the 
cancer cells in extracellular vesicles and transferred to endothelial 
cells (80). Cancer cell-derived miR-192 is efficiently taken up by 
endothelial cells in vitro and in vivo, and inhibits tumor-induced 
angiogenesis leading to reduced metastatic burden and decreased 
osteolytic disease in mice.

TARgeTing THe BMe BY miRnAs

Since OC activity is a hallmark of metastatic bone disease, the 
current treatment as well as the majority of basic research is 
focusing on restricting OC activity and attenuating patho-
logical bone resorption. Along these lines, several studies have 
established miRNAs as crucial regulators of pathological OC 
differentiation. Especially miRNAs that suppress bone resorp-
tion provide an attractive approach to limit disease progression 
(81, 82). For instance, miR-34a was recently reported to inhibit 
physiological and pathological OC differentiation and to block 
osteoporosis and cancer-induced bone destruction (83). Using 
several genetic mouse models, Krzezinski et al. demonstrated 
that OC-targeted overexpression of miR-34a impairs bone 
resorption resulting in resistance of bone metastases. Conversely, 
deletion of miR-34a activated OCs leading to reduced bone 
mass and exacerbated bone metastasis burden. Mechanistically, 
miR-34a targets a homeodomain protein TG-interacting factor 
2, a novel positive regulator of osteoclast differentiation and 
function. In a therapeutically relevant setting, systemic delivery 
of miR-34a mimic oligonucleotides via chitosan nanoparticles 
diminished bone metastatic burden and osteolysis (83). Since 
miR-34a had no direct effect of cancer cell proliferation these 
effects are likely mediated by osteoclasts and possibly other cells 
in the BME emphasizing the importance of the TME in disease 
progression.
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In another comprehensive study, a group of miRNAs was 
shown to regulate tumor-induced osteoclast differentiation. Five 
miRNAs, miR-33a, miR-133a, miR-141, miR-190, and miR-219 
were downregulated during osteoclast differentiation under 
physiological and pathophysiological conditions (84). Among 
them, miR-133a, miR-141, and miR-219 impaired osteoclast dif-
ferentiation in vitro by targeting important osteoclast-promoting 
factors Mitf, Mmp14, Calcitonin receptor, and Traf5. In vivo 
administration of synthetic miR-141 and miR-219 oligonucleo-
tides reduced physiological bone resorption, impaired tumor 
growth in bone and prevented pathological bone destruction. 
In this study, two miRNAs, miR-16 and miR-378 secreted in 
exosomes by osteoclasts were found to be increased in patients 
with bone metastases compared to healthy controls and the 
expression correlated with bone metastasis burden (84). Inter-
estingly, miR-378 promotes tumor growth, angiogenesis, and 
tumor cell survival through the repression of tumor suppressors 
SuFu and Fus-1 (85). Although beyond this review, it is impor-
tant to emphasize that miRNA signatures are being pursued 
as novel clinical diagnostic targets for predicting metastasis or 
therapeutic resistance (1, 4).

miR-214 is strongly increased in bone specimen of breast 
cancer patients with osteolytic bone metastases compared to 
healthy controls and patients without bone involvement (86). 
Consistently, osteoclasts isolated from mice with bone metas-
tases express significantly higher levels of miR-214 compared 
to controls. In addition, miR-214 is elevated in bone tissue and 
serum of aged patients with fractures and miR-214 expression 
is accompanied with increased osteoclast activity and bone 
resorption, indicating that miR-214 regulates bone remodeling 
in health and disease (87, 88). Indeed, miR-214 is expressed 
and has a functional role in both OBs and osteoclasts. In OBs, 
miR-214 inhibits differentiation in  vitro and bone formation 
in  vivo by targeting the activating transcription factor 4. As 
a consequence, delivery of OB-targeted antagomiR-214 in 
osteoporotic mice increased bone formation and restored bone 
mass (87). In contrast, in osteoclasts, miR-214 promotes osteo-
clast function and bone resorption through inhibition of the 
phosphatase and tensin homolog and Traf3, a negative regula-
tor of NFkB signaling and osteoclast differentiation (86, 89).  
As a consequence, osteoclast-targeted deletion of miR-214 
reduced bone resorption and prevented the development of 
osteolytic lesions in mice (86). The number and size of non-
bone metastases was not changed in mice lacking miR-214 in 
the osteoclast lineage indicating that the tumor-suppressive 
effect of bone metastases is mediated by the BME. Importantly, 
pharmacological delivery of osteoclast targeted (d-Asp8)-
liposome conjucated antimiR-214 oligonucleotides reduced 

physiological and pathological bone resorption and protected 
from osteolytic bone metastases, suggesting that inhibition of 
miR-214 could provide an attractive therapeutic strategy to 
prevent pathological bone destruction (86).

Intriguingly, miR-214 is secreted from osteoclasts in exosomes 
into circulation and acts on local and distant OBs (88). Treatment 
of wild-type mice with exosomes isolated from mice with oste-
oclast-targeted overexpression of miR-214 reduced bone forma-
tion demonstrating that the osteoclast-derived miR-214 is fully 
functional in OBs. This was further supported by an increased 
bone formation after systemic administration of antagomiR-214 
encapsulated in osteoclast-targeted (d-Asp)8-liposomes (88). 
Given the dual bone anabolic and anti-catabolic effect of antago-
miR-214, a systemic delivery of antago-miR-214 might provide 
a potent strategy to not only prevent osteolytic disease but also 
reverse existing lesions.

PeRSPeCTiveS

MicroRNAs play a pivotal role in tissue development and homeo-
stasis. Therefore, dysregulation of individual miRNAs is impli-
cated in several pathological conditions, including the onset and 
progression of metastatic bone disease. While the role of miRNAs 
regulating oncogenic properties of tumor cells is relatively well 
established, the direct or indirect regulation of TME by miRNAs 
has only recently started to be uncovered. In particular, miRNAs 
that mediate cell–cell interactions in the BME provide a novel 
therapeutic approach to disable the pathological cross talk in the 
bone marrow. For instance, identifying and targeting miRNAs 
that are pathologically elevated in osteoclasts and promote 
the vicious cycle could offer novel strategies for diagnosis and 
treatment of bone metastases. Although the evidence is thus far 
exclusively based on preclinical data, the applications of using 
miRNAs as adjuvant tools in bone metastases targets are very 
promising. Therefore, a better understanding of the complex 
miRNA-mediated cellular interactions is not only scientifically 
interesting but also critical in transmitting the knowledge from 
the bench to bedside.
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