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Thyroid hormones are crucial in normal brain development. Transient and mild thyroid 
hormone insufficiency in pregnancy is also associated with impaired neurodevelopment 
in the offspring (e.g., 3–4 IQ score loss in association with maternal free thyroxine in the 
lowest fifth percentile). While inadequate iodine intake remains the most common under-
lying cause of mild thyroid hormone insufficiency in vulnerable populations including 
pregnant women, other factors such as exposure to environmental contaminants have 
recently attracted increasing attention, in particular in interaction with iodine deficiency. 
Endocrine-disrupting chemicals (EDCs) are natural and synthetic substances with 
ubiquitous exposure in children and adults including pregnant women. EDCs interfere, 
temporarily or permanently, with hormonal signaling pathways in the endocrine system 
by binding to hormone receptors and modifying gene expression. Other mechanisms 
involve alterations in production, metabolism, and transfer of hormones. Experimental 
studies have shown that exposures to EDCs affect various brain processes such as 
neurogenesis, neural differentiation and migration, as well as neural connectivity. Neuro-
imaging studies confirm brain morphological abnormalities (e.g., cortical thinning) con-
sistent with neurodevelopmental impairments as a result of EDC exposures at standard 
use levels. In this review, we provide an overview of present findings from toxicological  
and human studies on the anti-thyroid effect of EDCs with a specific attention to  
fetal and early childhood exposure. This brief overview highlights the need for additional 
multidisciplinary studies with a focus on thyroid disruption as an underlying mechanism 
for developmental neurotoxicity of EDC, which can provide insight into modifiable risk 
factors of developmental delays in children.

Keywords: thyroid, endocrine disrupting chemicals, neurodevelopment, children, brain

Observations of children born with cretinism in iodine deficient areas prompted scientists to discuss 
the impact of early thyroid function on brain development (1). Decades later, evidence confirmed 
that undetected or inadequately treated thyroid deficiency in pregnant women was associated with 
impaired cognition in the offspring, even in the absence of neonatal hypothyroidism (2). A series 
of influential studies by Morreale de Escobar and colleagues using experimental animal models 
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FiguRe 1 | Thyroid signaling pathway and endocrine-disrupting chemicals. 
Groups of chemicals act at: PCB and PCDD: 5, 7; PBDEs: 5, 6, 7, 8; pesticides: 
4, 5, 7; PFASs: 5, 6; NIS: 3; BPA: 2, 7; phthalates: 1, 2, 5, 8. Abbreviations: 
BPA, bisphenol A; NIS, sodium iodide symporters; PBDE, polybrominated 
diphenyl ethers; PCB, polychlorinated biphenyl; PCDD, polychlorinated 
dibenzodioxins; PFAS, perfluoroalkyl substances; TRH, thyroid-releasing 
hormone; TSH, thyroid-stimulating hormone; T4, thyroxine; T3, triiodothyronine. 
Image of thyroid: by P. J. Witt, AU from the Noun Project, Creative Commons.

TAble 1 | Endocrine disrupting chemicals (EDCs) and target of action in the 
hypothalamus–pituitary–thyroid axis.

groups of eDCs Target of action

Polychlorinated biphenyls and 
polychlorinated dibenzodioxins 
(PCDD)

Thyroid hormone transportation
Thyroid hormone receptors

Polybrominated diphenyl ethers Thyroid hormone transporters
Deiodinase activity in the thyroid gland
Thyroid hormone receptors
Thyroid hormone metabolism

Pesticides Histology of thyroid gland
Thyroid hormone transportation
Thyroid hormone receptors

Perfluoroalkyl substances 
(PFASs)

Thyroid hormone transportation
Deiodinase activity in the thyroid gland

Sodium iodide symporters (NIS) Iodine uptake into the thyroid gland

Bisphenol A and other phenols Expression of thyroid receptor genes  
in the pituitary
Thyroid hormone receptors

Phthalates Thyroid-releasing hormone receptor  
in the hypothalamus and pituitary
Thyroid-stimulating hormone receptor  
in the thyroid gland
Expression of genes related to thyroid hormone 
metabolism, synthesis, and transportation
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identified structural and functional abnormalities in the cerebral 
cortex and the hippocampus due to low thyroid hormones during 
gestation (3–5). Recently, epidemiological studies confirmed that 
transient as well as mild thyroid hormone insufficiency during 
critical windows of brain development were also associated with 
impaired cognition, psychomotor and language development, 
behavioral problems, and abnormal cortical and subcortical 
morphology (6–12).

While inadequate iodine intake remains the most common 
cause of thyroid insufficiency worldwide (13), other factors includ­
ing autoimmunity (14) and environmental chemicals in routine 
doses of exposure have recently attracted increasing attention 
(15, 16). Several experimental studies have shown that expo­
sure to endocrine­disrupting chemicals (EDCs) affects neural 
differentiation and migration and neural connectivity (17). 
Growing evidence on adverse health effects of certain EDCs, 
such as polychlorinated biphenyls (PCBs) and polybrominated 
diphenyl ethers (PBDEs), has led to stringent policies to control 
exposure. EDCs interfere with thyroid function at different lev­
els including the central regulatory system in the hypothalamus 
and pituitary, thyroid hormone production at the thyroid gland, 
thyroid hormone transfer, as well as hormone bioavailability, 
function, and metabolism (16) (Figure 1, Table 1). Many EDCs 
pass through the placenta and blood–brain barrier and are also 
secreted in breastmilk (18, 19). Since circulation of thyroid hor­
mones in the cerebral spinal fluid (CSF) resembles of the levels 
in the serum, EDCs potentially interfere with thyroid hormone 
carriers in the CSF when cross the blood brain barrier. Here, 
we briefly review seven groups of substances with anti­thyroid 
activities.

PCb AnD POlYCHlORinATeD 
DibenZODiOXinS (PCDD)

Polychlorinated biphenyls and polychlorinated dibenzodioxins 
(PCDD) are persistent organic pollutants, which are no longer 
produced due to their carcinogenic effects (20), but are present 
in several products manufactured prior to banning (21). PCBs 
and their metabolites bind to thyroid transport proteins such 
as transthyretin and interfere with thyroid hormone transport 
(22). The action of PCBs at the level of thyroid receptor (TR) 
activity is both agonistic and antagonistic, depending on PCB 
congeners and the target tissue. Specific PCB metabolites, if 
hydroxylated by the metabolic enzyme cytochrome P450 1A1, 
act as TR agonists and impact mRNA expression of well­known 
thyroid hormone­response genes in the liver and in the pituitary 
(23). PCBs can also bind to TR and antagonize triiodothyronine 
(T3) inhibiting TR­mediated gene activation. Experimental 
studies in rats have shown that thyroid regulated events during 
early development, e.g., neuronal migration in the cortex, are 
disturbed with PCB exposure (24). PCBs, in concentrations 
commonly observed in humans, interfere with thyroid hormone 
receptor signaling (mainly through TRβ complex) and disturb 
oligodendrocyte differentiation and white matter maturation 
during early development (25).
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Substantial evidence from epidemiological studies has shown 
associations between PCB or PCDD exposures and abnormal 
thyroid parameters. Cross­sectional examination of serum PCB 
and dioxin levels and thyroid parameters have shown positive 
associations between serum thyroid­stimulating hormone (TSH) 
and PCB congeners and PCDD and negative associations between 
PCBs and T3 and thyroxine (T4), with stronger associations 
among women (26–29). In cord blood, there is an inverse asso­
ciation between concentrations of organochlorine compounds 
and free T3 (fT3) and free T4 (fT4), but not TSH (30). Similar 
associations are shown in longitudinal studies (31, 32). Positive 
associations between serum PCB and T3 and T4 (33–35) and  
null associations between serum PCB and thyroid parameters are 
also reported (36). Methodological considerations (e.g., stand­
ardizing methods) might explain the differences in the observed 
associations (37). Overall, human studies support findings from 
animal models and show that concentrations of PCB and PCDD at 
levels commonly detected in the general population can interfere 
with thyroid function. Further studies are still needed, however, 
to assess whether the observed effects of PCBs on early brain 
development (38, 39) are partly (thyroid disruption together 
with direct neurotoxicity or other mechanism) or fully (entirely 
through disruption in thyroid signaling pathway) explained by 
their thyroid disrupting activities.

POlYbROMinATeD DiPHenYl eTHeRS

Polybrominated diphenyl ethers are organic compounds that 
are used as flame retardants in building materials, electronics, 
furnishing, and textiles. The usage of some PBDE congeners is 
increasingly being controlled; however, due to their high resist­
ance to degradation processes, people are still exposed to PBDEs. 
PBDEs have a similar chemical structure to thyroid hormones. 
Experimental studies have shown that PBDEs, at environmen­
tally relevant doses, bind to receptors, and inhibit binding of 
T3 to TRs, and suppress T3 actions (40, 41). Other mechanisms 
of actions are a competitive binding for serum transporters  
(e.g., transthyretin and thyroid binding globulin), upregulation 
of clearance enzymes (e.g., glucuronidases) and liver metabolism, 
and inhibition of thyroid deiodinase activity (42, 43). In zebra­
fish, decabromodiphenyl ether (BDE­209) exposure in parents 
induces a decrease in T4 and a downregulation in expression of 
TR genes (44). Similar inverse associations between exposure 
to PBDE congeners and thyroid hormones have been reported 
in other studies (45–47). While human studies confirm thyroid 
disruption by PBDEs, the direction of this association varies 
across studies and PBDE congeners. For example, BDE­153 
levels have been inversely associated with first trimester total T3 
(29) and TSH in pregnant women [but not with fT4 and total 
T4 (TT4)] (48). Another longitudinal study has shown positive 
correlations between maternal BDE­47, BDE­99, and BDE­100 
during pregnancy and T3 in cord blood (39). Both higher and 
lower levels of T3 have been reported in association with PBDE 
exposure in pregnant women (49, 50). A decrease in cord blood 
fT4 and maternal TT4 and fT3 at delivery are shown in relation 
to maternal PBDE exposure in early pregnancy (51). Considering 
that several epidemiological studies have shown the impact of 

prenatal PBDE exposure on neuropsychological, motor, and 
cognitive functioning in children (39, 52, 53), thyroid disrup­
tive properties of PBDE congeners can be one of the underlying 
mechanisms for the adverse effect on early brain development.

PeSTiCiDeS

Individuals are widely exposed to pesticides. Several pesticides 
are currently banned; however, they are still detectible in the 
environment from previous use (54). Chlorpyrifos, the top selling 
pesticide in the United States (US) have been increasingly used 
for corn production despite stringent regulations for domestic 
use (55). Toxicological evidence has shown long­term disruption 
of thyroid function by these chemicals (56–58) and human stud­
ies have confirmed the association (59, 60). The potential actions 
on the thyroid system are the perturbation of thyroid hormone 
transport as well as histological and histomorphometrical effects 
on the thyroid gland (58, 61). There is strong epidemiological 
evidence that show the effect of prenatal exposure to chlorpyrifos 
and other pesticides on neurodevelopment, including childhood 
tremor, delayed psychomotor and mental development, IQ loss, 
and ASD (62–65). A neuroimaging study in 40 six­ to eleven­year­
old children has found that higher neonatal levels of chlorpyrifos 
are associated with several brain morphological abnormalities 
including cortical thinning and abnormal morphological meas­
ures of cerebral surface, consistent with neurocognitive findings 
(66). Mechanistic studies and comparison of chlorpyrifos expo­
sure neuroimaging findings with brain influences of thyroid dis­
ruption will further unravel the mechanism for the neurotoxicity 
of chlorpyrifos and other pesticides.

PeRFluOROAlKYl SubSTAnCeS 
(PFASs)

Perfluoroalkyl substances are persistent chemicals which are widely  
used in textiles, furniture, and cookware (67, 68). Since 2002, 
major US companies have been phasing out two PFASs, perfluo­
rooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS). 
Nonetheless, PFOS and PFOA were detectible in children 
from the National Health and Nutrition Examination Survey 
(NHANES) 2013–2014 (69) suggesting that children born after 
voluntarily discontinuation have been exposed to PFASs. PFASs 
interfere with bindings of thyroid hormone to transthyretin (70) 
and upregulate deiodinase in the thyroid gland (71). Serum PFOS 
and PFNA have been associated with an increase in TT4 (72). 
Cord blood perfluoro n­pentanoic acid has been positively asso­
ciated with cord blood TT4 (73). In a sample of newborns, girls 
in the highest quartile of PFOA exposure during prenatal period 
showed increased T4 levels compared to the lowest quartile (74). 
In another study, cord blood concentration of perfluoro n­pentanoic  
acid and perfluorohexane sulfonic acid was associated with 
increased T4 and T3 levels (in the cord blood), while PFNA was 
associated with decreased TSH concentration in newborn girls 
(73). Inconsistent results have been reported regarding the effect 
of PFASs on child neurodevelopment such as cognition, behaviors 
and executive function, developmental milestones, psychomotor 
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development, and academic achievement (75). While some stud­
ies showing no association between maternal serum PFOA and 
PFOS in early pregnancy and child neurodevelopment (76–79), 
others found positive associations (80–83). Quaak et al. reported 
a sex­specific effect (84). Thyroid disruption together with influ­
ences on other parts of the endocrine system might explain these 
sex­specific effects (85, 86).

SODiuM iODiDe SYMPORTeRS (niS)

Perchlorate, thiocyanate, and nitrate competitively inhibit the 
NIS—a transmembrane protein responsible for iodide uptake 
into the thyroid gland at the membrane of thyroid follicular cells. 
They interfere with thyroid iodine uptake, and affect thyroid 
hormone production and bioavailability (87). Individuals are 
exposed to these contaminants through food or other sources 
(e.g., cigarette smoke for thiocyanate or rocket propellant and 
fertilizers for perchlorate and nitrate). Though these chemicals 
do arise naturally, anthropogenic activities are a major source of 
exposure. In the 2001–2002 NHANES data, there was an inverse 
association between urinary levels of perchlorate and TT4 and 
a positive association with TSH (88). A similar positive associa­
tion has been reported between urinary perchlorate, nitrate, and 
thiocyanate and fT4, with indications for a sex­specific effect 
(89). Adolescent boys and girls are vulnerable subpopulations to 
thyroid­blocking effects of NIS inhibitors (90). In the Controlled 
Antenatal Thyroid Screening Study, maternal perchlorate in the 
first trimester of pregnancy have been associated with reduced 
IQ in the children of hypothyroid or hypothyroxinemic pregnant 
women, suggesting that high exposures during sensitive windows 
of brain development in combination with maternal thyroid 
status might adversely influence neurodevelopment (91).

biSPHenOl A (bPA) AnD OTHeR 
PHenOlS

Bisphenols are organic synthetic compounds widely used in the 
production of aluminum cans, plastics, thermal paper receipts, 
and food packaging. Bisphenol A is detectible in >90% of urine 
samples in the US population (92). BPA is a weak estrogenic 
substance (93) but also interferes with thyroid function (94, 95). 
In vivo, BPA can impair thyroid hormone action by antagonizing 
T3­induced TR activation (TRα1 and TRβ1) and by suppressing 
its transcriptional activity in a dose­dependent manner (94). 
Another study suggests that BPA acts selectively as TR antago­
nists on TRβ—independent of its estrogenic effects—causing 
serum T4 to rise (95). Prenatal exposure to BPA in rats is shown to 
upregulate TRα mRNA expression in the fetal forebrain and alters 
neuronal migration patterns during corticogenesis (96). BPA and 
its structural analogs cause dysregulation of TR gene expression 
in pituitary cells and thyroid gland (97). Triclosan affects thyroid 
hormone­dependent metamorphosis in animals (98).

Cross­sectional studies have shown that higher urinary levels of 
BPA are associated with lower fT4 and TSH (99–102). In a cohort 
of pregnant women, modest associations have been reported 
between higher BPA and lower TT4, if measurements were close 
in time (103). In follow­up studies, negative correlations have 

been shown between maternal BPA and TSH in newborns (104). 
In boys, an inverse association has been shown between maternal 
BPA in the third trimester and serum TSH (103). The latter is in 
line with findings of epidemiological studies that have shown the 
sex­specific association between prenatal BPA and child behavior 
(105–110). In sum, BPA dysregulates thyroid function leading to 
a positive association with T3 and an inverse association with 
T4 and TSH. Estrogenic effects or other sex hormone disruption 
mechanisms of BPA exposure on the offspring’s thyroid para­
meters might explain differential effects observed on behavioral 
outcomes of boys and girls.

PHTHAlATeS

People are ubiquitously exposed to phthalates, non­persistent 
synthetic chemicals that are used in plastic and consumer pro­
ducts such as cosmetics, adhesives, and detergents. Some forms of 
phthalates such as di­2­ethylhexylphthalate (DEHP) are no longer 
used in baby toys; yet phthalates metabolites remain detectible 
in individuals across age groups (111, 112). Urinary phthalates 
are cross­sectionally associated with lower fT4 and higher TSH  
(99, 113, 114). One study has found an inverse association 
between non­DEHP and fT4 in girls only (113) and another study 
has reported inverse associations between DEHP concentrations 
and fT4 in girls (115). In the later, urinary concentrations of 
dibutyl phthalate have been inversely associated with fT3 in boys 
(115). Higher concentrations of phthalates in maternal prenatal 
urine samples have been associated with lower thyroid hormones 
(116). Longitudinal studies in pregnant women have also found 
that phthalate metabolites are inversely associated with TSH 
(117, 118) and positively associated with fT4 and TT4 (118). Null 
associations between prenatal DEHP exposure and infant thyroid 
hormones have also been reported (119).

Despite data suggesting thyroid dysregulation resulting from 
phthalate exposure, specific underlying mechanisms are poorly 
understood. A recent experimental study in rats has shown that 
DEHP can downregulate the thyroid­releasing hormone (TRH) 
receptor in the hypothalamus, upregulate the protein and mRNA 
levels of TRH receptor in the pituitary, and downregulate mRNA 
expression of TSH receptors in the thyroid (120). In zebra fish 
larvae, phthalate exposure alters the transcription of genes in the 
hypothalamic–pituitary–thyroid axis resulting in an increased T3 
and decreased T4 (121). To confirm the extent to which these 
findings from animal models translate into humans further stud­
ies are needed. Considering the potential link between phthalates 
and impaired neurodevelopment (122–125), future studies should  
focus on thyroid dysfunction as a mediating factor.

Concern is growing regarding the long­lasting effect of chemi­
cals, routinely found in the environment, on the fetal and child 
brain through anti­thyroid capacities. Thyroid disruption is of 
particular interest because several EDCs interfere with thyroid 
function in a sex­specific manner, which might explain the sex­
ual dimorphism in the brain effect of EDCs. EDCs comprise of 
various compounds with different mechanisms of anti­thyroid 
effects. This might explain a heterogeneous neurodevelopmental 
outcomes associated with EDCs. Thyroid disruptive effects 
of chemicals in combination with or independent of iodine 
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deficiency is another topic which has been sparsely considered in 
epidemiological settings.

Additional multidisciplinary studies with a focus on thyroid 
disruption as an underlying mechanism can strengthen the 
existing knowledge on the neurotoxicity EDC. Two such inter­
disciplinary efforts have been started in Europe and in the US. 
The LifeCycle Project is a European network of population­based 
birth cohorts which aims to examine the impact of early life stres­
sors on health and development using a life course approach. In 
the US, the Environmental Influences on Child Health Outcomes 
(ECHO) program uses information from 50,000 children and 
their families from across the US “to enhance the health of chil­
dren for generations to come” (126). This information comprises 
several key elements including demographics, environmental 
exposures, biological measures, and child health outcomes. 
ECHO, the LifeCycle Project and similar efforts can be used as a 

valuable platform for mechanistic studies of EDC exposure and 
child neurodevelopment, which subsequently provide insight 
into modifiable risk factors of developmental delays in children. 
Such research will further clarify the unfavorable effects of EDCs 
in the context of dietary factors and other health conditions such 
as autoimmunity (127, 128).
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