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Upon the pathogen encounter, the host seeks to ensure an adequate inflammatory 
reaction to combat infection but at the same time tries to prevent collateral damage, 
through several regulatory mechanisms, like an endocrine response involving the pro-
duction of adrenal steroid hormones. Our studies show that active tuberculosis (TB) 
patients present an immune-endocrine imbalance characterized by an impaired cellular 
immunity together with increased plasma levels of cortisol, pro-inflammatory cytokines, 
and decreased amounts of dehydroepiandrosterone. Studies in patients undergoing 
specific treatment revealed that cortisol levels remained increased even after several 
months of initiating therapy. In addition to the well-known metabolic and immunological 
effects, glucocorticoids are involved in thymic cortical depletion with immature thymo-
cytes being quite sensitive to such an effect. The thymus is a central lymphoid organ 
supporting thymocyte T-cell development, i.e., lineage commitment, selection events 
and thymic emigration. While thymic TB is an infrequent manifestation of the disease, 
several pieces of experimental and clinical evidence point out that the thymus can be 
infected by mycobacteria. Beyond this, the thymic microenvironment during TB may 
be also altered because of the immune-hormonal alterations. The thymus may be then 
an additional target of organ involvement further contributing to a deficient control of 
infection and disease immunopathology.

Keywords: tuberculosis, immune-endocrine communication, inflammation, thymic involution, pathophysiology, 
hormones

TUBeRCULOSiS (TB) AND iTS MAiN PATHOPHYSiOLOGiCAL 
FeATUReS

Mycobacterium tuberculosis (M. tuberculosis), the etiologic agent of TB, is responsible for more 
deaths worldwide than any single pathogen with an estimated 10.4 million patients and 1.3 
million deaths, annually in 2016 (1). Most cases of primary TB infection are clinically and radio-
logically unapparent. These individuals remain persistently infected by M. tuberculosis consti-
tuting non-contagious carriers of the bacillus but setting the stage for subsequent reappearance. 
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About 5% of patients pass from latency to post-primary 
disease within 2  years of primary infection and another 5% 
do so in later lives. While most cases of post-primary TB in 
immunocompetent adults arise from reactivation from latent 
infection, molecular studies showed that exogenous reinfec-
tion accounts for a significant percentage of cases in some 
areas of the world. Adult post-primary TB typically affects the 
best aerated lung regions, preferably the upper lobes (2, 3). 
The histopathological hallmark is a granuloma composed of 
epithelioid cells with variable numbers of Langhans’ giant cells 
surrounded by lymphocytes and a central zone of caseation 
necrosis and variable degree of fibrosis (3–6). The structure is 
surrounded by a fibrous capsule which constitutes a conten-
tion barrier. A spectrum of lesions may be seen from a hard 
granuloma without necrosis and rare organisms to the one 
with multibacillary necrotic lesions in the central zone, even 
within the same patient (7, 8).

Human infection with M. tuberculosis can result in a varied 
degree of organic compromise, ranging from an asymptomatic 
process to frank lung pathology with cavity formation and 
high bacillary load. Such clinical spectrum relies on a complex 
series of interactions between M. tuberculosis and the host 
immune response (4). The defensive reactions mainly involve 
the microbicidal effect of activated macrophages and the capa-
city of cytotoxic lymphocytes to destroy infected macrophages. 
Upon phagocytosis macrophages can produce or receive the 
influence of different cytokines rendering them more effective 
in suppressing bacillary replication and possibly destruction of 
the mycobacterium, i.e., IFN-γ (4, 9). This cytokine is secreted 
primarily by T lymphocytes, particularly the so-called Th1 cells 
which are involved in the protective immunity toward the 
mycobacteria (2), although in some circumstances Th1 immu-
nity can also result in unbalanced pulmonary inflammation  
(9). Possibly, a better correlate of protection deals with the profile 
of cytokine production, since patients with TB disease showed 
elevated frequencies of M. tuberculosis-specific CD4 T  cells 
expressing only TNF-α or TNF-α+IFN-γ+CD4+ T cells, whereas 
cases with latent TB infection showed greater frequencies of 
polyfunctional TNFα+IFN-γ+IL-2+ M. tuberculosis specific CD4+ 
T cells (10–12).

In our laboratory, we have shown that patients with mild forms 
of TB have a suitable Th1 response pattern and that it is gradually 
reduced as the disease progresses (13, 14).

The other mechanism involved in protection comprises the 
elimination of infected macrophages by cytotoxic lymphocytes 
through the classical events of granules containing perforin and 
granzymes or the induction of apoptosis through the Fas-FasL 
interaction. Following the formation of apoptotic bodies, they 
are ingested by phagocytes via the efferocytosis. The efferosome 
surrounds the newly incorporated apoptotic cell followed by 
successive events of fusion with lysosomes, delivery of hydrolytic 
enzymes to this efferosome in maturation and gradual increase 
of its acidification to finally proceed with the destruction of 
apoptotic cells (15). Nevertheless, an increased apoptosis may 
sometimes spread the infection to neighboring macrophages 
considering the extensive apoptosis seen within caseating granu-
lomas of patients with lung TB (16).

THe ALTeReD iMMUNe-eNDOCRiNe 
COMMUNiCATiON iN TB

Tuberculosis constitutes a natural model wherein the essential 
processes required for mounting successful defensive strategies 
and homeostasis maintenance may result detrimental when the 
infection becomes chronic, as the accompanying inflammation. 
Our studies point out that such disorder not only affects the 
containment mechanisms but also the immune-endocrine com-
munication, favoring a more morbid disease course (17).

The bidirectional communication between the neuroen-
docrine and immune systems is well-known. While products 
from the immune response can modify the functioning of 
the endocrine system, hormones like adrenal steroids directly 
affect the activity of immune cells and hence the course of 
disease-states with an inflammatory, autoimmune, or infectious 
background. This interconnection between the immune and the 
neuroendocrine systems is partly due to the stimulatory activ-
ity of inflammatory cytokines on the hypothalamus pituitary 
adrenal (HPA) axis. Briefly, cytokines such as IL-6, IL-1β, and 
TNF-α stimulate the production of corticotropin-releasing 
hormone (CRH) in the hypothalamus with subsequent release 
of adrenocorticotrophin into the pituitary gland, which in turn 
promotes the secretion of steroid hormones at the level of the 
adrenal cortex: cortisol and dehydroepiandrosterone (DHEA) 
(18, 19). Both hormones are known to exert relevant immuno-
modulatory effects. For instance, glucocorticoids (GCs) can 
inhibit Th1 responses, whereas their natural antagonist DHEA 
is able to favor them (18, 19). As part of integrated physiological 
circuits, these endocrine reactions, particularly the HPA axis, 
represent a well-conserved mechanism to control/support 
an intense immune-inflammatory reaction as well as for the 
early mobilization of immune cells and their redistribution to 
mount an adequate defensive response. Nevertheless, when the 
inflammatory condition becomes persistent such prolonged 
immuno-inflammatory aggression leads to a misuse of these 
evolutionarily conserved control mechanisms contributing to 
exacerbate host damage (20, 21).

Regrettably, the implication of these reciprocities in the field 
of pathogenesis, prognosis and treatment of chronic infectious 
diseases remains underestimated.

Beyond inhibiting the development Th1 cells in favor of Th2 
responses (22, 23), GCs also interfere with gene expression for 
pro-inflammatory cytokines, by hindering nuclear factor kappa 
B (NF-κB) signaling (24, 25). More recent studies reveal that 
during the immune response GCs exert differential effects on 
effector and regulatory T cells with an intense inhibition in the 
proliferation of the former and a differential apoptosis of the 
latter (26). Under certain conditions, GCs may also have pro-
inflammatory effects by some not well characterized mechanism. 
These apparently opposing actions would work together to 
prepare the immune system to respond to the stressful stimulus 
(pro-inflammatory effect) and subsequently to restore homeo-
stasis—an anti-inflammatory effect—which is obviously the 
most prominent role of GCs (27). On its own, DHEA is also able 
to inhibit the secretion of pro-inflammatory cytokines such as 
IL-6 and TNF-α (28, 29).
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To ascertain the immunoendocrine alterations during TB, 
we initially studied the circulating levels of cytokines and hor-
mones such as IFN-γ, IL-10, IL-6, cortisol, DHEA, GH in male 
TB patients with different degrees of lung involvement and free 
from endocrine disorders, or treatment with corticosteroids or 
immunomodulatory drugs. Patients presented increased levels 
of IL-6, IFN-γ, and cortisol, whereas DHEA levels were well 
below the control values, the lowest levels corresponding to 
those with advanced disease (30). In line with this, other studies 
in active TB patients from Turkey and South Africa also revealed 
decreased DHEA levels (31–33), whereas cortisol concentrations 
appeared unchanged (31, 32) or slightly increased (33).

At the in vitro level, treatment of peripheral blood mononu-
clear cells (PBMCs) with cortisol, at slightly supraphysiological 
levels, resulted in a decreased proliferation and production of 
IFN-γ to mycobacterial antigen stimulation, with no changes in 
IL-10 production (34). DHEA, on its own, caused a significant 
decrease in the production of TGF-β by PBMCs of patients 
with advanced TB (34), a cytokine which is well known for its 
suppressive and harmful effects on TB (17). When studying the 
functional capacity of dendritic cells exposed to M. tuberculosis 
antigens, cortisol significantly inhibited the secretion of IL-12, 
IFN-γ, and IL-10 by these cells, whereas DHEA increased 
the expression of MHC-I, MHC-II, and CD86, in addition to 
improving IL-12 production and decreasing IL-10 secretion 
(35). DHEA also inhibited the intra-macrophage bacillary 
growth, which was related to a higher level of autophagy (36). 
Collectively, our studies are consistent with the view of a respec-
tive detrimental or favorable influence of cortisol and DHEA on 
the anti-TB immune response.

As part of this interrelation between the endocrine system 
and the immune system, culture supernatants of PBMCs from 
TB patients stimulated with mycobacterial antigens inhibited 
the secretion of DHEA by the human adrenal cell line NCI-
H295-R (30) whereas treatment with anti-TGF-β neutralizing 
antibodies reversed this inhibitory effect (37). This observation 
reinforces the close network of influences underlying immuno-
endocrine regulation, particularly the production level of 
adrenal steroids and immune mediators.

Changes in the immune-endocrine communication may 
be also implicated in situations further contributing to disease 
morbidity. In fact, we have demonstrated that the defective 
in  vitro immune responses of TB patients to mycobacterial 
antigens was related to their reduced body mass index (BMI), 
which was negatively correlated with IL-6 circulating levels (38). 
This cytokine is known to play a role in the regulation of lipid 
metabolism and studies in TB patients indicate that increased 
IL-6 concentrations were associated with loss of appetite (39). 
Regarding hormones, GCs may favor a loss of body mass since 
they mobilize lipid stores by inducing lipolysis in fat cells via 
stimulation of a hormone-sensitive lipoprotein lipase. Also, GCs 
inhibit protein synthesis and stimulate proteolysis in muscle 
cells (40), in addition to reducing food intake and inducing 
body weight loss, probably via increased hypothalamic CRH 
levels, which seems to be catabolic (41). In essence, the immune-
endocrine profile is adverse for the patient being involved in the 
reduction of body weight or consumption state during infections. 

This situation, defined as cachexia is a multifaceted metabolic 
disturbance present in several chronic inflammatory diseases 
or end stage neoplasms comprising weight loss, adipose tissue 
and skeletal muscle depletion, along with reduced appetite. 
The mechanisms underlying cachexia development are com-
plex, encompassing the participation of neurologic, metabolic, 
immuno logic, and endocrinological factors (42–44). In this 
con text, we have recently found that the lower BMI of patients 
coexists with reduced levels of leptin, whereas concentrations  
of IL-6, cortisol, IL-1β, and adiponectin were increased (45).

The basis for the above described alterations has to do with 
the acute phase response (46), an adaptive reaction trying to be 
beneficial for the host at least during the early infection (46). 
This leads to a new metabolic set point attempting to attain 
an optimal functioning of the immunological needs, without 
affecting requirements of some often-competing physiological  
functions (47, 48). Since energy is not a limitless resource, when 
the infection becomes chronic metabolic deficit establishes  
further affecting the defensive reaction and disease outcome.

The link between energy supply and the immune response is 
supported from a study carried out in Africa in which the meta-
bolic needs to cope with measles further impaired body weight 
in undernourished children (49). In turn, malnutrition may also 
affect the immune response through hormonal influences, given 
the respective reduced and increased leptin and GC levels in 
undernourished persons (50, 51). In addition to the inhibitory 
effects of GCs on cell-mediated immune responses (52, 53), 
leptin also displays immunostimulating effects (54, 55). Leptin 
deficient animals show atrophy of lymphoid organs, mainly the 
thymus, which can be reversed upon the leptin administration 
(56). Accordingly, it may be assumed that the consumption state 
of TB patients along with the decreased or increased leptin and 
GCs levels may impact negatively on thymus function.

THYMUS iNvOLveMeNT iN TB,  
FACTS, AND HYPOTHeSiS

Because of the continuous need to replenish mature peripheral 
T  cells that undergo normal turnover throughout life (57), 
preserved thymus during M. tuberculosis infection in the mam-
malian host may be essential for the development of an effective 
immune response against mycobacteria.

Animal studies showed that following erogenic infection, the 
thymus is as likely to be infected with M. tuberculosis as the lung 
tissue (58). Thymic compromise may be observed in bacterial 
infections, including those caused by mycobacteria, i.e., M. tuber-
culosis and M. avium (59–62). Despite some immunological com-
promise, thymus infection also displays compensatory strategies 
aimed at improving thymic function; that is the identification of 
Mycobacterium-reactive T cells within the thymus that migrated 
from the peripheral compartment (63, 64).

As regards to the clinical field, while historical histopathologi-
cal preparations from old patients identified the occurrence of 
thymic TB (65) thymic TB is an infrequent presentation of the 
disease, with a bit more of a dozen cases being reported in the 
literature (66, 67).
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Without being mutually exclusive, it can be assumed that the 
endocrine abnormalities present in TB may also affect the thymus 
by mechanisms that go beyond the infection per  se, resulting 
equally detrimental, i.e., a deficient immune competence or 
thymic selection. In normal conditions, bone marrow T-cell 
progenitors migrate to the thymus to undergo a broad process 
of differentiation and selection. Thymocyte positive selection 
is mediated by thymic epithelial cells (TECs), which not only 
display antigen-presenting activity, but also secrete compounds 
or express cell surface molecules essential for thymocyte develop-
ment. In the medulla, medullary TECs allow the T-cell recogni-
tion of self-antigens by facilitating the expression of tissue-related 
antigens and presenting them to developing thymocytes. Central 
T-cell tolerance also takes place in the thymic medulla, for which 
the removal of harmful and autoreactive T-cell clones is achieved 
(68–70). After entering the thymus, thymocytes representing 
different stages of development occupy distinct regions of the 
thymus. Thymocyte progenitors referred to as double negative 
cells (CD3−CD4−CD8−) locate at the cortico-medullary junction, 
where undergo rapid proliferation, mostly driven by IL-7, and 
further migrate through the cortex toward the medulla. Cells 
unable to rearrange their antigen receptor genes will endure 
apoptosis, whereas those experiencing gene rearrangements of 
the T-cell receptor genes and acquisition of both CD4 and CD8 
coreceptors (CD4+CD8+ double positive—DP cells) undergo 
positive (functional TCR) and negative (non self-reactive TCR) 
selection in the cortex and medulla. Most DP cells have nonfunc-
tional antigen receptors rendering them unable to receive surviv-
ing signals for which they undergo apoptosis (death by neglect). 
The surviving cells, which loss either CD4 or CD8 molecules and 
become single positive (SP) cells, undergo negative selection; 
that is an activation-induced cell death of cells with high affinity 
antigen receptor for self-antigens. Finally, cells leave the thymus 
as CD4−CD8+ (cytotoxic) or CD4+CD8− (helper), SP mature, 
naïve T cells (68–70).

Turning to the disturbed immune-endocrine responses seen 
in TB patients there is reason to believe that such changes, parti-
cularly the ones dealing with adrenal steroids and leptin may 
indirectly compromise thymus function, favoring gland involu-
tion. Thymic involution is the progressive loss of the thymus to 
sustain lymphopoiesis and the ensuing impairment for de novo 
T-cell production. Thymic senescence starts well advanced 
puberty and by 50  years of age 80% of the thymic stroma is 
replaced by adipose tissue. The maximum decline in the thymic 
weight occurs between 30 and 40  years of age (71, 72), which 
might account for some evidence of a lower thymic activity seen 
in individuals older than 40–50 years (73, 74).

Besides aging, thymic involution can be provoked by seve -
ral conditions and factors: among them pregnancy, severe 
infec tions, cancer, irradiation and hormones, like GCs (70). 
In mouse models, high doses of GCs cause thymocyte deple-
tion, involving especially DP thymocytes and TECs (70, 75). 
Some experimental studies also suggest that GC production at 
the thymic level may influence thymocyte differentiation and 
thymic homeostasis (76–78).

According to the neuroendocrine influence on thymic func-
tion, infectious diseases and the malnutrition state that may 

accompany in some cases, i.e., TB, are quite likely to affect thymic 
activity (79, 80).

Although at the experimental level low GCs concentrations 
may rescue thymocytes from the TCR-mediated apoptosis  
(81, 82), the scenario in TB patients is characterized by a chronic 
elevation of cortisol that while being of moderate intensity 
remained so even after several months of treatment initiation 
(83). Furthermore, TB patients also present quite reduced 
amounts of circulating leptin levels (45). This hormone prevents 
starvation-induced thymic atrophy (84) along with a protective 
effect on the loss of lymphoid and TEC populations occurring 
in the stress-induced acute atrophy of the thymus (85). It follows 
that increased cortisol and reduced leptin levels promote an 
unsuitable scenario for a proper thymus function.

Our study in TB patients showed decreased levels of testos-
terone and DHEA, in presence of augmented amounts of GH, 
not accompanied by increased IGF-1 levels, in parallel to modest 
increases estradiol, prolactin (PRL), and thyroid hormones (30) 
(a summary of immune-endocrine alterations is provided in 
Figure 1).

Pretreatment of mice with DHEA was found to result in a 
partial protection from the GC-induced decrease in thymus 
weight and thymocyte death (86, 87). Similarly, administra-
tion of DHEA to male mice partially or completely reversed 
the dexamethasone-inhibited blastogenic response to mitogen 
stimulation (88). Depending on the experimental conditions, 
in vitro treatment with DHEA may promote thymocyte apop-
tosis (89) or even exert an anti-apoptotic effect on these cells 
(90). Studies in rats undergoing a repeated immobilization 
stress showed that DHEA behaved as an anti-stress hormone 
(91), whereas DHEA supplementation in rats undergoing an 
experimental Trypanosoma cruzi infection led to an improved 
thymocyte proliferation and reduced TNF-α production (92). 
Collectively, these findings tip the balance toward a favorable 
role of DHEA on thymus function, for which reduced levels of 
DHEA in TB patients may be also disadvantageous. Hormones 
other than the HPA axis are also likely to influence the thymus 
gland [reviewed in Ref. (71)]. GH is known to increase the 
release of cytokines, chemokines and thymulin (93), and to 
augment the deposition of proteins implicated in cell migration 
(94, 95); whereas PRL facilitates the survival and proliferation 
of early T–cell progenitors (96). Aged rat recipients of cells from 
a pituitary adenoma secreting GH and PRL appeared recovered 
from the thymic involution (97), as well. The extent to which 
GH may be operative in our patient series is uncertain since 
increased GH levels were not accompanied by an increase in 
IGF-1 implying a state of resistance to GH (30). About PRL, 
the increase seen in TB patients was quite low as did thyroid 
hormones (30). In situations of greater exposure thyroid hor-
mones may be beneficial as seen in T3-treated mice (98) or 
the relation between hyperthyroidism with thymic hyperplasia 
because of the increased numbers of thymocytes (99). Since the 
increase in thyroid hormones of TB patients did not fit with a 
clear hyperthyroidism, we remain unsure on the role of these 
hormones on the thymic gland.

Some pieces of evidence point out that sex steroid have 
deleterious effects at the thymic level since thymus atrophy 
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FiGURe 1 | Main features of circulating immune-endocrine alterations in male tuberculosis (TB) patients. Cytokine release by immunocompetent cells  
stimulates the production of releasing factors (RFs) at the hypothalamic levels, like the corticotropin-releasing hormone leading to the pituitary synthesis of 
adrenocorticotropin hormone (ACTH). This is followed by the production of adrenal steroids, cortisol, and dehydroepiandrosterone (DHEA), which are, respectively, 
increased or decreased during TB. Such unbalanced cortisol/DHEA relation along with the altered production of gonadal steroids are much likely to favor a 
Th1→Th2 immune shift, further accompanied by reduced amounts of leptin, an immunostimulating compound. Presence of transforming growth factor beta 
(TGF-β) which is increased in TB, in turn, inhibits DHEA production by adrenal cells. TB patients also displayed increased amounts of growth hormone (GH)  
and prolactin probably related to the protracted inflammation, in addition to augmented levels of thyroid hormones. This pattern of hormonal alterations would 
favor a deficient infection control together with a catabolic status, as exemplified by the reduced body mass index (BMI) and leptin plasma levels seen in  
patients (represented in a separate box dealing with a metabolic component). Solid and dashed lines represent stimulating and inhibiting effects, respectively. 
Abbreviations: FSH, follicle-stimulating hormone; LH, luteinizing hormone; TSH, thyroid-stimulating hormone; IL-6, interleukin 6; IL-1β, interleukin 1 beta; IFN-γ, 
interferon gamma.
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accelerates at puberty (100), whereas administration of andro-
gens or estrogens in adult mice results in a remarkably decreased 
thymopoiesis linked to an increased apoptosis of cortical 
thymocytes (101). In our study, testosterone and estradiol were 
comparatively decreased or increased, respectively (30), for 
which the thymic role of both steroids in the TB scenario 
remains uncertain.

Collectively, the evidence discussed indicates a harmful influ-
ence of immune-endocrine alterations at the level of the thymus; 
however, these changes may be reversible and associated with 
the clinical improvement of patients, leading to an eventual 
normalization of the thymic function.

The scenario present in TB patients can be conciliated with 
the view wherein neuroendocrine hormones released in response 
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FiGURe 2 | Endocrine alterations in tuberculosis (TB) patients and the potential thymic repercussion. Detrimental effects of clinical and endocrine disturbances  
on the thymus gland and function during TB are presented by solid lines, which is the consumption state along with the increased amounts of cortisol and 
pro-inflammatory cytokines in presence of reduced levels of leptin and DHEA. While administration of androgens or estrogens in adult mice leads to a decreased 
thymopoiesis, the thymic influence of gonadal steroids in TB is uncertain, since patients displayed decreased or increased levels of testosterone and estradiol, 
respectively (dashed line). Levels of prolactin and thyroid hormones appeared augmented, but their increases did not reach the values able to mediate a clear 
beneficial effect on the thymus gland (dashed line). The extent to which GH may be favorable at the thymic level remains also unclear since its increased amounts 
were not accompanied by higher IGF-1 values compatible with state of GH resistance (dashed line). The resulting thymic involution mostly because of leptin and 
adrenal steroid changes together with a chronic inflammatory state are likely to lead to premature immunosenescence (dotted line) and the coexisting inflammaging. 
Most of these changes would contribute to worsen the disease course. The left panel represents the preserved (≈) homeostatic situation. Abbreviations: BM, bone 
marrow; BMI, body mass index; HPA, hypothalamic pituitary adrenal; HPG, hypothalamic pituitary gonadal; HPT, hypothalamic pituitary thyroid axes; GH, growth 
hormone; PRL, prolactin; GC, glucocorticoids; DHEA, dehydroepiandrosterone; IGF-1, insulin growth factor like 1; T3, triiodothyronine; T4, thyroxine; IL-6, interleukin 
6; IL-1β, interleukin 1 beta; IFN-γ, interferon gamma.

to psychosocial stress, chronic inflammation or persistent 
infections are likely to result in premature immunosenescence 
(102), particularly when considering the resemblance of immune 
changes seen during aging or chronic GC exposure. In fact, the 
immunosenescence pattern seen in healthy aging is comparable 
to the one observed in subjects under chronic stress or chroni-
cally exposed to GCs, i.e., thymic involution, declined thymic 
exportation of naive T cells, a Th1→Th2 cytokine shift, increased 
circulating levels of pro-inflammatory markers and shorter telo-
mere lengths, compatible with an accelerated aging [reviewed  
in Ref. (103)].

Notably, senescent cells remain metabolically active for 
which they may influence other cells through a process termed 
senescence-associated secretory phenotype (104, 105). That is, 
the secretions of several inflammatory mediators that exacerbate 
senescence in the same cell or propagate to the neighbor ones 
or even systemically amplifying a phenomenon termed inflam-
maging. Many tissues and cell types participate in producing 
pro- and anti-inflammatory stimuli dealing with Inflammaging 
(106). The basis for the establishment of age-related diseases 

involves an excessive production of pro-inflammatory media-
tors coupled to an inefficient anti-inflammatory reaction (107). 
Immunosenescence on its own affects both innate and adaptive 
immunity, thus providing a contributory mechanism to account 
for an increased morbidity (108–110).

A summary of the immune-endocrine alterations encompass-
ing TB and their eventual repercussion on thymic function is 
provided in Figure 2.

CONCLUDiNG ReMARKS

Tuberculosis is a disease wherein the immune response cannot  
cope with mycobacteria for which the infection becomes chro-
nic as did the accompanying immuno-inflammatory state. 
Such situation set the basis for the establishment of an altered 
immune-endocrine response that will not only impact on the 
clinical and metabolic status of patients but also on innate and 
adaptive immune responses. The bulk of evidence discussed 
here also suggests a still not envisaged view in the sense that 
immune-endocrine abnormalities, particularly the unbalanced 
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relationship between adrenal steroids along with decreased leptin 
levels, in a pro-inflammatory milieu, are much likely to impact 
adversely on thymic function.

Tuberculosis has taught us a great deal in relation to the physio-
pathogenesis which take place in the context of human infections 
and chronic inflammation, not least in identifying the complex 
networks of events underlying the clinical disease manifesta-
tion. Despite such successes much remains to be accomplished. 
Importantly future studies are needed to appraise the extent of 
thymic affectation during active disease, the eventual repercussion 
on the immunological status of patients, mainly in the context 
of progressive disease, multidrug-resistant TB, or HIV coinfec-
tion. An elucidation of these novel pathogenic avenues will lead 

ultimately to the development of better diagnostic or therapeutic 
tools facilitating a more integral strategy for disease control.
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