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Kisspeptin is a neuropeptide, encoded by kisspeptin 1 (KISS1)/Kiss1 gene, which pri
marily acts as the regulator of reproductive functions via its receptor, kisspeptin receptor 
(KissR) in vertebrates. In the brain, Kiss1 gene is mainly expressed in the hypothala
mic region, but KissR gene is widely distributed throughout the brain, suggesting that  
kisspeptin–KissR system may be involved in not only reproductive, but also non 
reproductive functions. In nonmammalian vertebrates, there are two or more kisspeptin 
and KissR types. The zebrafish (Danio rerio) possess two kisspeptin (Kiss1 and Kiss2) 
and their respective receptors [Kiss1 receptor (KissR1) and KissR2]. In the brain of 
zebrafish, while Kiss2 is expressed in the preoptichypothalamic area, Kiss1 is predo
minantly expressed in the habenula, an evolutionarily conserved epithalamic structure. 
Similarly, KissR1 is expressed only in the habenula, while KissR2 is widely distributed in 
the brain, suggesting that the two kisspeptin systems play specific roles in the brain. The 
habenular Kiss1 is involved in the modulation of the raphe nuclei and serotoninrelated 
behaviors such as fear response in the zebrafish. This review summarizes the roles of 
multiple kisspeptin–KissR systems in reproductive and nonreproductive functions and 
neuronal mechanism, and debates the biological and evolutional significance of habenular  
kisspeptin–KissR systems in teleost species.

Keywords: kisspeptin 1, teleosts fish, zebrafish, non-hypothalamic, Gpr54/Kiss1r

inTRODUCTiOn

During the past decade, the field of reproductive neuroendocrinology has shifted from its major 
focus on the hypothalamus–pituitary–gonadal (HPG) axis comprising gonadotropin-releasing hor-
mone (GnRH), gonadotropins [luteinizing hormone (LH) and follicle-stimulating hormone (FSH)], 
and gonadal steroids to the next level with the discovery of RFamides, which include kisspeptin 
and gonadotropin-inhibitory hormone (also known as LPXRFamide). Kisspeptin is a neuropeptide, 
encoded by kisspeptin 1 (KISS1)/Kiss1 gene which was originally identified as a metastasis suppressor 
gene (1). Kisspeptin binds to its receptor, kisspeptin receptor (KissR), which was originally identified 
as an orphan G-protein-coupled receptor-54 (GPR54, also known as hOT7T175) (2). Kisspeptin 
consists of core peptides, including 54-, 14-, and 13-amino acids peptides and its processed mature, 
biologically active 10-amino acid peptide (Kiss1-10). In 2003, two studies reported consecutively the 
role of kisspeptin–KissR signaling in reproduction, particularly the control of GnRH-LH secretion 
during the onset of puberty in mammals (3, 4). Since then, numerous studies have demonstrated the 
role of kisspeptin–KissR signaling, neuroanatomy, and neuro-molecular mechanisms underlying 
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the control of reproductive physiology in mammalian species 
(5). We have been interested to understand the importance of 
kisspeptin–KissR signaling in the vertebrate reproduction from 
an evolutional perspective using non-mammalian vertebrates. In 
2004, we were the first to identify the non-mammalian KissR-like 
sequence from a cichlid fish, Nile tilapia (Oreochromis niloticus) 
and also demonstrated their gene expression in GnRH neurons 
using a laser capture microdissection technique (6). As for kiss-
peptin in teleosts, fish Kiss1 gene was first reported in zebrafish 
(Danio rerio) (7, 8). Interestingly, we found another gene encod-
ing kisspeptin-like structure, which is slightly different from 
Kiss1 in the zebrafish and medaka (Oryzias latipes), we, therefore, 
named it Kiss2 (9). Similar to kisspeptins in teleosts, there are two 
or more KissR types, which are distributed in different patterns in 
the brain (10), suggesting specific role for two kisspeptin types in 
fish brain. Although in the mammalian species, kisspeptin–KissR 
system primarily targets GnRH neurons, in fact, kisspeptin neu-
rons actually send their projections to a large number of brain 
areas and KissR are widely distributed in the brain (11–13). In 
addition, Kiss1 gene is also expressed in some extra-hypothalamic 
regions, such as the hippocampal dentate gyrus (14) and the 
medial amygdala (15). Surprisingly, in the zebrafish and medaka, 
knockout of two kisspeptins (kiss1 and kiss2) and KissRs [Kiss1 
receptor (kissr1) and kissr2] genes had no obvious effect on their 
reproductive capability (16, 17). These observations indicate that 
kisspeptin–KissR system may play roles in processing several non-
reproductive functions. In fact, a functional MRI study in humans 
has recently revealed that kisspeptin modulates limbic brain 
activity in response to sexual and emotional stimuli, and influ-
ences mood in healthy men (18). Given that the zebrafish model 
has clear distinct neuroanatomical patterns of two kisspeptin– 
KissR systems, the zebrafish is believed to be an ideal model 
to understand differential role and regulatory mechanism of 
the two kisspeptin–KissR systems. We have been particularly 
interested to understand the role of Kiss1 in the habenula. The 
habenula is an evolutionary conserved epithalamic structure, 
which is involved in certain forms of emotive decision making in 
primates. Recent discoveries in primates by Dr. Hikosaka’s group 
indicate that the habenula plays a prominent role in emotive 
behavioral choice through neuromodulation of the dopamine 
and the serotonin systems (19). In addition, the habenula is 
involved in behavioral responses to pain, stress, anxiety, sleep, 
and reward. The dysfunction of the habenula is associated with 
neurological problems, such as depression, schizophrenia, and 
drug-induced psychosis (20). Therefore, the habenula has been a 
recent focus as a potential therapeutic target for neuropsychiatric  
disorders.

The anatomy, molecular biology, functions, and regulatory 
mechanism of hypothalamic kisspeptin–KissR system have been 
extensively studied, and summarized in a number of review articles 
for mammalian species (5, 21–23) and for non-mammalian spe-
cies (10, 24–29). However, the knowledge on non-hypothalamic  
kisspeptin–KissR system is still limited (14, 30–33). The role of 
non-hypothalamic kisspeptin signaling is scarcely examined 
in non-mammalian vertebrates. In this review, we provide an 
overview and recent updates of non-hypothalamic kisspeptin–
KissR systems in non-mammalian vertebrates, with specific 

emphasis on the habenular Kiss1-KissR1 system in the zebrafish  
model.

TwO KiSSPePTinS AnD KissR TYPeS  
in FiSH

Since their first identification in zebrafish and medaka (9), two 
kisspeptin types have been identified in several teleost species 
(24, 25), but some fish species, such as tilapia (34), Astatotilapia 
burtoni (27), red seabream (35), Atlantic halibut (36), flatfish 
Senegalese sole (37), black rockfish (38), Japanese flounder (39), 
and puffer fish (40) are likely to possess only one (Kiss2) type. 
Similar to multiple kisspeptin forms, multiple KissR (KissR1, 
KissR2, KissR3, and KissR4) types have also been identified in 
various fish species (25, 28, 41). In zebrafish, there are two KissR 
types, KissR2 and KissR3 (also designated as KissR1a and KissR1b, 
respectively) (41, 42). Pharmacological assays verified the ligand-
receptor affinities for two kisspeptins and their receptors (28). 
In zebrafish, while zebrafish Kiss1 peptide (zfKiss1-10) activates 
KissR3 more efficiently than zebrafish Kiss2 peptide (zfKiss2-10), 
KissR2 is activated by both zfKiss1-10 and zfKiss2-10 in zebrafish 
(42). Distribution of two KissR types in the brain further verified 
the classification of their relationship with two kisspeptin types. 
In zebrafish, KissR3 gene is widely expressed in the brain, whereas 
KissR2 gene and its protein product are mainly expressed in the 
habenula (43–45), where Kiss1 gene is expressed. Therefore, 
based on these characteristics, we designate zebrafish KissR2 
and KissR3 as KissR1 (kissr1) and KissR2 (kissr2), respectively in 
our articles (10). However, in some teleost species, relationship 
between multiple kisspeptins and their receptors has not been 
clearly characterized because multiple kisspeptins and receptors 
can cross talk with each other and have different neuroanatomical 
distributions. Nevertheless, it is very clear that two kisspeptin–
KissR types are highly conserved in teleosts species, which are, 
however, involved in wide range of functions in the brain.

Similar to mammalian species, several functional assays have 
revealed the major role of Kiss-KissR systems in the control of 
reproduction in fish. In some fish, including zebrafish, in  vivo 
assays show that Kiss2 (Kiss2–10 or Kiss2–12) rather than Kiss1 
(Kiss1–10 or Kiss1–15) mainly exhibits its stimulatory effect on 
gonadotropin synthesis and release (9, 46–48). In chub mackerel, 
Kiss2 dodecapeptide (Kiss2–12) but not Kiss1 pentadecapeptide 
(Kiss1–15) administration alters GnRH1, LHβ, and FSHβ genes 
expression (47), which is further supported by co-expression or 
proximity of KissR2 in preoptic-hypothalamic GnRH neurons 
reported in several fish species (6, 49, 50). On the other hand, 
in some species, such as medaka, Kiss1 seems to be more potent 
than Kiss2 in the regulation of gonadotropin stimulation. In chub 
mackerel, Kiss1–15 is more potent than Kiss2–12 on stimulation of 
gonadal maturation when it was administered chronically (51, 52).  
In male yellowtail kingfish, Kiss1–10 and Kiss2–10 administra-
tion resulted in different effects depends on duration of treatment 
and reproductive stages of fish (53). These results indicate that 
regardless of kisspeptin types, fish kisspeptin can stimulate 
reproductive functions, which, however, may vary dependent on 
reproductive stages, gender, fish species, and treatment methods.
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eXPReSSiOn OF Kiss1–KissR1 in  
THe TeLeOST HABenULA

Expression of Kiss1 gene in the ventral part of the habenula has 
been shown in the zebrafish (9, 44, 45) as well as in the medaka  
(9, 54), goldfish (55), European sea bass (56), and the orange spot-
ted grouper (57). However, unlike zebrafish Kiss1 gene expression, 
in other fish species, Kiss1 gene is also expressed in some brain 
regions, such as the preoptic-hypothalamic area, suggesting that 
Kiss1 can act on multiple action sites and have different roles in 
these species. In contrast to habenular kisspeptin, the expression 
of habenular KissR1 in the zebrafish, is seen in only a limited fish 
species. In medaka, KissR1 gene is expressed in the habenula and 
preoptic nuclei (58). In the European sea bass, not only KissR1 
but also KissR2 expression has been reported in the habenula 
(56). Interestingly, in some species such as the chum mackerel and 
striped bass, KissR1 gene is expressed in the ventral habenula and 
preoptic area, in spite of the lack of Kiss1 gene expression in the 
habenula (50, 59). These results suggest that expression of KissR1 
in the habenula is conserved at least among teleosts species that 
possess two kisspeptin types. In zebrafish, immunohistochemi-
cal localization using antibodies specific to zebrafish-Kiss1 and 
KissR1 reveal that habenular Kiss1/KissR1 cells project to the 
ventro-anterior corner of the median raphe (vaMR), a subregion 
of the MR [a division of the superior raphe (SR)] through the 
fasciculus retroflexus (FR) (44, 45, 60), which has also been 
confirmed in a kiss1:mCherry transgenic zebrafish (61). However, 
in the zebrafish brain, the KissR1 antibody also labeled cells in 
other brain area, such as the telencephalon, diencephalon, and 
spinal cord regions (60). This is because of the cross-reactivity 
of the KissR1 antibody against kissr1b-derived protein 2, an 
alternative splice variant of the KissR1 gene, which shares the 
epitope of the KissR1 antibody (62). Zebrafish KissR1 gene pos-
sess four additional alternative splice variants encoding different 
protein lengths (KRBDP 1–4), which, however, are functionally 
incapable of mediating kisspeptin-derived cellular responses 
(62). In the zebrafish, Kiss1 and its receptor are co-expressed in 
the same neurons within the habenula (63). Furthermore, central 
administration of Kiss1 peptides significantly suppresses Kiss1 
gene expression, suggesting an autocrine regulation of the Kiss1 
gene (63).

MODULATiOn OF SeROTOnin AnD iTS 
ReLATeD BeHAviORS BY HABenULAR 
Kiss1/KissR1

Habenular Kiss1/KissR1 cells send projections in the vicinity of 
serotonin [5-hydroxytryptamine (5-HT)]-containing neurons 
located the median raphe (60). Mammalian habenula consists 
of two major subnuclei, the medial and lateral habenula. The 
medial habenula projects to the interpeduncular nucleus (IPN), 
while the lateral habenula directly projects to the ventral teg-
mental area and raphe, which are dopaminergic and serotonergic 
structures, respectively (64). Similar to mammalian habenula, 
the fish habenula can also be neuroanatomically subdivided 
into two major nuclei, the dorsal and ventral habenula based on 

difference in their cytoarchitectual structures (65). In zebrafish, 
the dorsal habenula project to the IPN via FR, while the ventral 
habenula project to the vaMR (60, 66). In addition, the dorsal 
habenula express the POU-domain transcription factor brn3a, a 
marker for the mice medial habenula (67, 68), while the ventral 
habenula express protocadherin 10a, a specific marker of the rat 
lateral habenula (66, 69). Therefore, the fish dorsal and ventral 
habenula have been elucidated as the homolog of the mam-
malian medial and lateral habenula, respectively. In mammals, 
the lateral habenula has been implicated as a pivotal regulator of 
dopaminergic and serotonergic neurons (19, 70). Furthermore, 
the lateral habenula is involved in sleep, locomotion, motiva-
tion, reward, and behavioral stress responses (19). In the brain of 
zebrafish treated with zfKiss1–15 peptides, expression of genes 
associated with serotonin, pet1 and sert (slc6a4a), and c-fos genes 
are significantly upregulated within the raphe nucleus (63). 
Central administration of zfKiss1–15 has no effect on anxiety, 
but shows a trend in anxiolytic effect (increase in number of 
transition) in zebrafish (45) when observed using a novel-tank 
diving test (71). Fish administered with zfKiss1–15 peptides 
failed to exhibit fear (45), characterized by erratic and freezing 
behaviors in response to an aversive stimulus from skin extract 
(alarm substance) (72, 73). Such effects were not observed when 
zfKiss2–10 was administered, suggesting these effects could 
be mainly modulated by Kiss1–KissR1 pathway. In addition, 
injections of zfKiss1–15 peptides conjugated with saporin; a 
ribosome-inactivating cytotoxic protein (74) induced cell death 
of Kiss1 neurons, the immunoreactivity of KissR1 was signifi-
cantly reduced in the habenula and median raphe, and in these 
fish, alarm substance-induced fear response was significantly 
reduced (45). A recent study using kiss1-mutant fish revealed 
the potential involvement of habenular Kiss1 neurons to avoid 
punishment (75). These Kiss1 gene-mutants have a stop codon 
upstream of the active Kiss1 peptide, which causes deficiency in 
learning to avoid a shock that is predicted by light. These stud-
ies suggest that Kiss1–KissR1 signaling modulates behavioral 
response to uncontrollable aversive stimuli in the habenula. 
However, possible involvement of KissR2 or other receptor 
signaling pathways in this behavioral response should not be 
ignored, because KissR2 or other GPCRs are also activated by 
both Kiss1–10 and Kiss2–10 (42, 76).

MeCHAniSM OF SeROTOneRGiC 
MODULATiOn BY Kiss1–KissR1 
SiGnALinG

zfKiss1–15 administration effects serotonin-related genes, although 
KissR1 is not expressed in serotonergic neurons (60, 63), indicat-
ing that Kiss1 neurons act indirectly through interneurons on 
serotonergic system in zebrafish. Habenular Kiss1 neurons are 
glutamatergic in nature and their axons form close association 
with either glutamatergic or GABAergic interneurons in the 
median raphe region (60) (Figure  1). This suggests that Kiss1 
might regulate serotonergic neural activities via the modulation 
of glutamatergic presynaptic neurotransmission. We speculate 
KissR1 might function as a presynaptic autoreceptor on habenula 
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FiGURe 1 | Schematic drawing of hypothetical neural circuit of habenular kisspeptin 1 (Kiss1) neurons. Kiss1 (red dot) modulate ventral habenular (vHb) neuronal 
activities via concentrationdependent mechanism through coexpressing Kiss1 receptor (KissR1). Photomicrograph shows a coronal brain section image of kiss1 
mRNA expression in the vHb (red) but not in the dorsal habenula (dHb, green) expressing brn3a, a marker gene for the dHb in transgenic (brn3a-hsp70:GFP) 
zebrafish. Habenular Kiss1 neurons send their projections to the median raphe (MR), a division of the superior raphe (SR). Kiss1 cells are glutamatergic in nature and 
it is hypothesized that the presynaptic action of the Kiss1/KissR1 system causes the release of glutamate (blue dot) in Kiss1 cells from the vHb that potentially 
regulates the serotonin (5HT) system in the SR directly or via glutamatergic and GABAergic neurotransmission. Abbreviations: dIPN, dorsal interpeduncular nucleus; 
vIPN, ventral interpeduncular nucleus modified from Nathan et al. (60).
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Kiss1 nerve terminals to facilitate glutamatergic transmission on 
serotonergic neurons, which remains to be confirmed.

In the zebrafish, although Kiss1 inhibits alarm substance-
induced fear response, but its involvement through the sero-
tonergic system remained unclear. The effect of Kiss1 on alarm 
substance-induced fear responses was blocked in the presence 
of serotonin receptor antagonists (77). Interestingly, treatment 
with different antagonist against two serotonin receptor types 
(5-HT1A and 5-HT2) results in different behavioral responses. 
Anxiolytic effect of Kiss1 is modulated via 5-HT1A receptor, while 
inhibitory effect of Kiss1 on freezing behavior is modulated via 
5-HT2 receptor (77). Further, calcium imaging study has shown 
that Kiss1-gene mutant zebrafish larvae have reduced activation 
of raphe neurons by aversive stimulus (75). These studies indi-
cate that Kiss1–KissR1 signaling is involved in the modulation 
of serotonergic neural activity under uncontrollable aversive 
conditions. Administration of exogenous Kiss1 or ablations of 
Kiss1 neurons suppresses alarm substance-induced fear response 
(45). Surprisingly, administration of Kiss1 also elevates c-fos gene 
expression by cellular excitation in the ventral habenula neurons 
(63). Optogenetic stimulation of ventral habenula neurons 
evokes place avoidance behavior (78), which is contradictory 
to the results of c-fos expression. This issue has been recently 
resolved by an electrophysiological approach (75), where Kiss1 
has been shown to have a concentration-dependent effect on 
ventral habenula neurons: depolarizing at low concentrations 

and hyperpolarizing at high concentrations. Furthermore, c-fos 
expression was induced by a concentration of 10−11 mol/fish of 
Kiss1 peptides, but not with a higher concentration of 10−9 mol/
fish (63). Therefore, suppression of alarm response by exogenous 
Kiss1 peptides could be due to hyperpolarization of ventral 
habenula neurons, which, however, remains to be further exam-
ined by functional assays.

Although Kiss1–KissR1 signaling modulates serotonin in 
response to uncontrolled aversive stimulus, but it remains unclear 
what regulates Kiss1 neurons, including Kiss1 peptide synthesis 
and secretion and Kiss1 neuronal activities. More importantly, 
the role of Kiss1–KissR1 signaling within the habenula neurons 
is still unknown. It is also important to identify the upstream con-
trol of the ventral habenula neurons, which could be from several 
afferent projections from brain regions, such as the entopedun-
cular nucleus, preoptic area, and hypothalamus (79, 80). Recent 
studies have revealed a functional connection between a thalamic 
nucleus and the habenula in zebrafish, and this pathway mediates 
light-evoked locomotor activity, including circadian behavior  
(81, 82). In mammals, the habenula (lateral habenula) neurons 
have been suggested to act as circadian oscillators (83–85). In 
addition, in the goldfish, Kiss1 and KissR gene expression are 
influenced by different light spectra (86). Therefore, Kiss1–
KissR1 signaling in the habenula could be involved in mediating 
circadian controlled innate behaviors, such as sexual behavior 
and sleep–wake cycle, which remain to be studied.
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TABLe 1 | Kisspeptin and kisspeptin receptor (KissR) types and their expression in the habenula.

Species Kisspeptin types expression (cell body)  
in the habenula

KissR types expression in  
the habenula

Reference

Rat Kisspeptin 1 (Kiss1) − Kiss1R + (11)

Mouse Kiss1 − Kiss1R + (13, 87, 89)

Syrian hamster Kiss1 − Kiss1R + (99)

Xenopus laevis Kiss1
Kiss2

−
−

GPR541a
GPR541b
GPR542

ND
ND
ND

(42)

Zebrafish (Danio rerio) Kiss1
Kiss2

+
−

Kiss1 receptor (KissR1)
KissR2

+
−

(9, 44, 63)

Medaka (Oryzias latipes) Kiss1
Kiss2

+
−

KissR1
KissR2

+
−

(9, 54, 58)

Goldfish (Carassius auratus) Kiss1
Kiss2

+
−

KissR1
KissR2

ND
ND

(55)

Striped bass (Morone saxatilis) Kiss1
Kiss2

−
−

KissR1
KissR2

+
−

(50)

European sea bass (Dicentrarchus labrax) Kiss1
Kiss2

+
−

KissR1
KissR2

+
+

(56)

Orangespotted grouper (Epinephelus coioides) Kiss1
Kiss2

+
−

KissR1
KissR2

ND
ND

(57)

Chum mackerel (Scomber japonicas) Kiss1
Kiss2

−
−

KissR1
KissR2

+
−

(59)

Sapphire devil (Chrysiptera cyanea) Kiss1
Kiss2

+
−

KissR1
KissR2

ND
ND

(100)

Nile tilapia (Oreochromis niloticus) Kiss2 − KissR2 ND (34)

Astatotilapia burtoni Kiss2 ND KissR2 + (49)

Red seabream (Pagrus major) Kiss2 − NA ND (35)

Grass puffer (Takifugu niphobles) Kiss2 − KissR2 ND (101)

+, confirmed expression of kisspeptin and KissR types in the habenula; −, confirmed lack of expression of kisspeptin and KissR types in the habenula; ND, expression of kisspeptin 
and KissR types in the habenula has not been determined.
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BiOLOGiCAL SiGniFiCAnCe OF 
HABenULAR KiSSPePTin

In a series of our studies, we have provided some evidences for 
the involvement of kisspeptin–KissR signaling in the zebrafish 
vertebrate habenula (45, 60, 63, 77). However, the presence of 
Kiss1 in the fish habenula nuclei has been shown in a limited 
number of fish species. Some fish species possess only one type 
of kisspeptin gene (Kiss2), which is expressed in the hypotha-
lamic area (10). Some fish species that possess two kisspeptin 
types such as the chum mackerel show no expression of Kiss1 
in the habenula (59). On the other hand, expression of KissR in 
the habenula has been identified in several fish species and also 
in mammals (11, 87) (Table  1) and kisspeptin neurons in the 
anteroventral periventricular nucleus have been shown to inner-
vate the habenula (88), suggesting that the action of kisspeptin– 
KissR signaling and its role within the habenula might be 
evolutionarily conserved regardless of the source of kisspeptin. 
Interestingly, in the fetal mouse brain, Kiss1R containing cells are 
seen in a highly restricted population of cells in the habenula as 
early as embryonic day 17 (89), which is a period when the for-
mation of habenula-IPN pathway is completing (90). Similarly, 
in embryonic zebrafish, Kiss1-positive cells are first appearing 

in the ventral habenula by 5-days post fertilization, when the 
innervation of the ventral habenula axon has reached their target, 
the medial raphe (91). Furthermore, in a mutant fish that lacks 
functional Tcf7l2, a downstream modulator of the Wnt signal-
ing cascade, Kiss1 gene expression is lost and the median raphe 
are not innervated by ventral habenula axons (91). Therefore, 
the habenular Kiss1–KissR1 signaling may play a role in the 
habenula axonal formation during brain development. Previous 
studies have demonstrated the role of the lateral habenula in the 
hormonal onset of maternal behavior in female rats (92, 93). In 
both rodent and fish, the habenula is known to be sensitive to 
steroid hormones and express estrogen receptors (94, 95). In 
addition, the habenula in the zebrafish produces neurosteroids 
locally (96, 97). Furthermore, goldfish Kiss1 gene promoter 
contains putative binding sites for estrogen receptors (55), and in 
orange-spotted grouper, Kiss1 neurons express estrogen recep-
tors in the habenula (57). Estrogen has effect on mood, mental 
state, and memory, which are closely related to serotonergic 
functions (98). Interestingly, in larval zebrafish, treatment with 
an estrogen receptor β agonist increased c-fos expression in the 
habenula with anxiolytic effect (increase in exploration behavior) 
(95). Therefore, kisspeptin–KissR signaling pathway within the 
habenula could be involved in the neuromodulatory processes 
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of emotional and goal-directed behaviors, which could also be 
influenced by reproductive conditions.
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