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It is well established that there is a fine-tuned bidirectional communication between 
the immune and neuroendocrine tissues in maintaining homeostasis. Several types of 
immune cells, hormones, and neurotransmitters of different chemical nature are involved 
as communicators between organs. Apart of being key players of the adaptive arm of 
the immune system, it has been recently described that T lymphocytes are involved in 
the modulation of metabolism of several tissues in health and disease. Diabetes may 
result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and 
insulin resistance (type 2 diabetes), both influenced by genetic and environmental com-
ponents. Herein, we discuss accumulating data regarding the role of the adaptive arm 
of the immune system in the pathogenesis of diabetes; including the action of several 
hormones and neurotransmitters influencing on central and peripheral T  lymphocytes 
development and maturation, particularly under the metabolic burden triggered by dia-
betes. In addition, we comment on the role of T-effector lymphocytes in adipose and liver 
tissues during diabetes, which together enhances pancreatic β-cell stress aggravating 
the disease.
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iNTRODUCTiON

Pioneering work in the 1980s provided the first evidence of the cross-talk between the neuroendo-
crine and immune systems (1–4). It is now well established that there is a fine-tuned bidirectional 
communication between these tissues in maintaining homeostasis. Several types of immune cells, 
hormones, and neurotransmitters of different chemical nature are involved as communicators 
between organs influencing immune development and function (5, 6). Additionally, it has been 
described that T lymphocytes apart of being key players of the adaptive arm of the immune system, 
are involved in the modulation of metabolism in several tissues in health and disease (7–13).

Diabetes is a highly prevalent endocrine-metabolic disease with a constant growing rate, affecting 
nearly half a billion people worldwide (14). It is characterized by an imbalance in glucose homeo-
stasis, which result mainly from lack of insulin production in the pancreas [type 1 diabetes (T1D)] 
or insufficient insulin production and peripheral insulin resistance [type 2 diabetes (T2D)] both 
influenced by genetic and environmental components.

In this Review, we discuss existing data about the role of the adaptive arm of the immune system 
in the diabetes pathophysiology; including the action of several hormones and neurotransmitters 
influencing on central and peripheral T  lymphocytes development and maturation, particularly 
under the metabolic burden triggered by diabetes. In addition, we comment on the role of T-effector 
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lymphocytes in peripheral tissues during diabetes, which together 
enhance pancreatic β-cell stress aggravating the disease.

THe ROLe OF T CeLLS iN THe 
PATHOGeNeSiS OF T1D

Type 1 diabetes is a T  cell-mediated autoimmune disease that 
selectively destroys insulin-producing β-cells. The key roles for 
both CD4+ and CD8+ T cells in the immune response that drives 
T1D have been extensively described (15, 16). It is now widely 
accepted that endogenous and/or exogenous initiating factors, 
operating on a genetic susceptibility background and permissive 
environmental framework, are necessary for the development 
of autoreactive T  lymphocytes that infiltrate pancreatic islets 
(insulitis) (17).

While the association of class II HLA genes polymorphisms 
with T1D risk has been known for over 40  years (18), recent 
single-nucleotide polymorphisms (SNPs) genotyping technolo-
gies allow the description of many additional T1D susceptibility 
genes (19–21). Intriguingly, most of these genes are coding for 
cytokines, cytokine receptors, and factors that regulate T  cell 
differentiation, suggesting that control of T  cell identity may 
be an important element of the genetic contribution to disease 
susceptibility and onset.

The process of T  cell differentiation that takes place in the 
thymus is regulated by many molecules such as hormones, 
neuropeptides, and neurotransmitters involving both endocrine 
and paracrine signaling pathways (6). A variety of peptide and 
nonpeptide hormones modulate the proliferation, differentiation, 
migration, and apoptosis of developing thymocytes. The dysfunc-
tion in the hormonal control of T cell differentiation is associated 
with the development of diseases that are influenced by immune 
cells, including diabetes.

Currently, there is a wide consensus that T1D is a Th1-mediated 
pathology and INF-γ is implicated as the main driver cytokine 
of the process of autoimmune islet destruction; meanwhile, Th2 
cell-type would play a protective role (22–29). However, not all 
emerging data from mouse models and patients are consistent 
with the dominance of a Th1 response in T1D; multiple addi-
tional T cell differentiation phenotypes are now recognized with 
distinct functions (30, 31).

The role of Th17 lymphocytes in T1D is not fully under-
stood. Murine models and human studies suggest that IL-17 is 
upregulated in the early stages of diabetes development but it 
is still not clear if this cytokine, or indeed if the Th17 subset, is 
necessary for disease (32–38). It was shown that genetic IL-17 
silencing had no effect and did not protect NOD mice from 
spontaneous autoimmune diabetes (39). Some studies suggested 
that an increase of T cells co-expressing IFN-γ and IL-17 could 
be a feature of T1D development (36, 40–42). Several types of 
cells of the immune system, attracted by signals from the islets, 
contribute to the selective β-cell death through the release of cyto-
toxic inflammatory cytokines, such as IL-1β, IFN-γ, and TNF-α  
(43, 44). Recent studies performed in human β-cells suggested that 
pancreatic IL-17 contributes to the pathogenesis of T1D by two 
mechanisms, exacerbating β-cell apoptosis and increasing local 

production of chemokines by islets exposed to pro-inflammatory 
cytokines (e.g., IL-1β +  IFN-γ and TNF-α +  IFN-γ) (45). In a 
study of children in various phases of diabetes-associated autoim-
munity and clinical disease upregulation of IL-17 and Th1/Th17 
plasticity in peripheral blood were observed in stages of advanced 
β-cell autoimmunity and impaired glucose tolerance and clinical 
T1D (42). Activated Th17 immunity was not observed in patients 
with early β-cell autoimmunity, indicating that Th17 may be a 
marker of late preclinical autoimmune diabetes which correlates 
with impaired β-cell function. Analysis of pancreatic lymph 
nodes in T1D patients showed higher frequency of Th17 cells in 
comparison with non-diabetic controls (46). The consolidation of 
Th17 cells as part of T1D pathophysiology focused attention on 
additional cytokines, outside of those associated classically with 
the Th1/Th2 paradigm (IFN-γ and IL-4, respectively).

IL-21 is a pleiotropic cytokine produced mainly by T folli-
cular helper (Tfh) cells, Th17 cells, and natural killer (NK) cells. 
Although it has been demonstrated that IL-21 enhances Th17 
differentiation and it can be produced by Th17  cells to exert 
autocrine feedback (47, 48), existing data indicated that the 
role of IL-21 in the development of diabetes is more than just 
an effect on Th17 differentiation. Preclinical studies performed 
in the NOD mice demonstrate that the IL-21 pathway is criti-
cal for disease development (49–51). It acts in a paracrine and 
autocrine fashion affecting the differentiation and function of 
several immune cell types in the context of T1D, including CD4+ 
and CD8+ T cells, NK cells, B cells, macrophages, and dendritic 
cells (52, 53). Moreover, transgenic overexpression of IL-21 in 
the pancreatic islets results in autoreactive T cell infiltration and 
β-cell apoptosis in C57BL/6 mice, a strain free of any kind of 
autoimmunity signs (54).

As aforementioned, IL-21 is the signature cytokine for Tfh 
cells, the T  lymphocyte subset that is specialized in providing 
help for B cell antibody production (55). Islet autoantibodies are 
the best currently available biomarkers to detect ongoing autoim-
mune process and T1D development risk (56). The production 
of such antibodies by autoreactive B  cells is largely dependent 
on the function of Tfh cells. By means of an unbiased microar-
ray approach and flow cytometry assay, a recent study assessed 
T cell differentiation in a mouse model of spontaneous autoim-
mune diabetes revealing that islet-specific T  cells responding 
to pancreatic antigens show mainly the characteristic features 
of differentiated Tfh cells (57). Also, adoptive transfer of T cells 
with a Tfh phenotype from diabetic animals is highly efficient at 
inducing diabetes to murine recipients. Furthermore, peripheral 
memory CD4+ T cells from patients with T1D expressed elevated 
levels of Tfh cell markers (57). In accordance, an increase in 
peripheral blood Tfh cells has also been reported in three T1D 
patient independent cohorts, one of which comprised exclusively 
new-onset patients (58–60).

Interleukin-2 (IL-2) is critical for maintaining the function 
of the CD4+ regulatory T  cells (Tregs), which in turn regulate 
autoreactive CD4+ effector T cells (Teffs) to prevent autoimmune 
diseases, such as T1D (61, 62). The involvement of the IL-2 
pathway in the physiopathology of T1D first emerged from NOD 
mice; a reduced IL-2 production by the susceptibility allele (NOD 
disease-associated SNPs in IL-2 promoter) led to a consequent 
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reduction of Treg function (63, 64). In humans, certain SNPs of 
the IL-2 receptor gene, IL2RA, encoding the α subunit (CD25) 
as well as of other genes in the IL-2 pathway, were identified as 
susceptibility determinants for T1D (65–68). Accordingly, an 
attenuated IL-2/IL-2R signaling was observed in Treg and Teff 
cells of T1D patients (69). In a clinical study with recently diag-
nosed T1D subjects, treatment with low doses of recombinant 
human IL-2 successfully induced a 10–20% increase in circulat-
ing Tregs whereas reduced Teffs, NK cells, and eosinophils (70); 
these findings lay the groundwork for the potential therapeutic 
use of rhIL-2 for treating T1D.

At present, emerging evidence suggests that pancreatic-resident 
Treg subsets have unique effects on the suppression of immune 
responses in T1D (71). Those distinguishable Treg subpopulations 
that reside in tissues exhibit special phenotype and function in 
response to local signals, thereby promoting tissue homeostasis 
(72). Among those special Treg subsets found in pancreatic tissues 
and pancreatic lymph nodes involved in preventing inflammation 
during T1D are: IL-10 secreting ICOS+ Tregs (73, 74), CXCR3+ 
Tregs (75), and TGF-β-expressing Tregs (76).

In summary, several studies regarding T  cell differentiation 
in T1D clearly demonstrated not only the role of Th1 cells but 
also the possible involvement of other kind of T-effector cells co-
expressing IFN-γ and IL-17, IL-21 producing T cells such as Tfh 
cells as well as circulating and pancreatic-resident Tregs.

T CeLLS CONTRiBUTiON TO ADiPOSe 
TiSSUe iNFLAMMATiON AND OBeSiTY-
ASSOCiATeD DiABeTeS

Type 2 diabetes is a metabolic disease characterized by hyper-
glycemia resulting from either or both impaired β-cell insulin 
secretion and increased peripheral insulin resistance; particularly 
in muscle, liver, and fat (77). The pathogenesis of T2D is complex, 
it is a multifactorial disease that involves behavioral and environ-
mental factors modulating T2D risk alleles in multiple genes. The 
pancreatic islets respond to the decrease in insulin-stimulated 
glucose uptake by enhancing their β-cell mass and insulin secre-
tory activity. When β-cell function can no longer compensate for 
the prevailing insulin resistance, impaired glucose tolerance and 
T2D develop.

β-cell dysfunction precedes diabetes, and endoplasmic reticu-
lum (ER) stress contributes to insulin secretory failure. β-cells 
are particularly susceptible to ER stress due to the high rate of 
insulin demand in response to rapid changes in glycemia levels. 
Many environmental factors, including inflammatory cytokines 
(78), reactive oxygen species (ROS) (79), and viral infections 
(80), may induce ER stress in β-cells associated with T1D trig-
gering. Dysfunctional β-cells of NOD mice show feature ER stress 
before overt diabetes (81) and strategies directed to ameliorate 
ER stress may have therapeutic potential (82). Also, several lines 
of evidence link inflammation-associated obesity, ER stress, and 
T2D. The association of ER stress and T2D has been reviewed 
recently (83).

Inflammation was first linked to insulin resistance and T2D in 
the early 1990s; an induction of TNF-α expression was systemically 

and locally observed in adipose tissue from four different rodent 
models of obesity and diabetes (84). Since then, several studies 
have described elevated circulating levels of diverse inflammatory 
factors, such as acute-phase proteins, cytokines, and chemokines 
in patients with T2D (85–88). Currently, T2D is recognized as 
a chronic, low-grade inflammatory disease with involvement of 
pro-inflammatory cytokines and immune cells, including B and 
T cell subsets as pathogenic mediators (89, 90).

The inflammatory process observed in T2D is usually linked 
to obesity, a critical risk factor for the disease. Moreover, altered 
lipolysis in response to over nutrition and rapidly expanding 
adipose tissue results in elevation of pro-inflammatory saturated 
free fatty acids (FFAs). FFAs trigger metabolism-associated 
inflammation through toll-like receptors (TLRs), particularly 
TLR2 and TLR4, activating signaling pathways that lead to local 
adipose tissue infiltration by immune cells and systemic insulin 
resistance (91). The activation of TLR2/4 induces the produc-
tion of inflammatory cytokines by dendritic cells, macrophages, 
endothelial cells, and pancreatic islets, as well. During diabetes, 
high circulating levels of glucose, FFAs, and pro-inflammatory 
cytokines contribute to insulin resistance and alterations in the 
immune system (91). Of note, the TLR2/TLR4 expression levels 
are upregulated in obese individuals (92). Moreover, TLR2- and 
TLR4-deficient mice are protected from the metabolic undesir-
able effects of high-fat diet (93) and experiments administering 
TLR2 antisense-oligonucleotides to high-fat-fed mice recovered 
insulin sensitivity in adipose tissue (94). Furthermore, nutrient 
excess may also induce local inflammation in the pancreatic islets 
(12, 95–97). Tissue inflammation has been detected in pancreatic 
islets of T2D patients, along with increased levels of cytokines 
and chemokines. Moreover, all T2D animal models investigated 
to date display some degree of insulitis (98, 99). TLR2/4 ligands 
are central in macrophages activation and consequent reduction 
of insulin secretion from pancreatic β-cells mainly by action 
of IL-1β and IL-6 on decreased insulin gene expression (100). 
Also, downstream MyD88-dependent and independent signal-
ing pathways of FFAs-activated TLR2/4 induce differential gene 
expression and cellular responses leading to islet inflammation 
and β-cell dysfunction [reviewed in Ref. (101)].

Macrophages are the major immune cell type in adipose tissue, 
and its relative abundance increased from 5% in lean subjects to 
a level of up to 50% in obese patients. Moreover, the increase in 
number is accompanied by an evolution from the anti-inflamma-
tory M2- to the pro-inflammatory M1-phenotype (102); adipose 
tissue macrophages (ATMs) produce a significant proportion 
of the inflammatory factors that are upregulated during obesity  
(95, 96, 103). Therefore, first studies on inflammatory regulation 
of T2D have been focused on the innate arm of the immune 
system. However, more recent studies suggest that adaptive 
immune cells, especially T lymphocytes, generally accumulate in 
obese adipose tissue in parallel with macrophages and also play 
a pivotal role in the pathophysiology of T2D (104). Moreover, 
studies in a mice model of T2D suggest that the accumulation of 
T lymphocytes in the adipose tissue might occur even before the 
arrival of macrophages (105).

T cells play a key role during the sequence of events that lead 
macrophage adipose tissue infiltration. In particular, CD8+ T cells 

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


4

Andreone et al. T Lymphocytes in Diabetes

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 229

are activated in adipose tissue which in turn, primer the recruit-
ment and activation of macrophages within this tissue. In fact, 
infiltration of CD8+ effector (CD62L− CD44+) T lymphocytes are 
described as one of the earliest events during the development 
of adipose tissue inflammation in mice due to obesity caused 
by ad libitum access to a high-fat diet (106). CD8+ T infiltration 
takes place in obese individuals too, as the expression of CD8A in 
subcutaneous adipose tissue was found elevated in comparison 
with lean subjects. Interestingly, CD8+ T  lymphocytes not only 
precede adipose tissue infiltration by other immune cells, they 
are also required for the maintenance of inflammation in obese 
adipose tissue, since CD8+ T depletion attenuated adipose tissue 
inflammation and ATMs recruitment, and ameliorated insulin 
resistance and glucose intolerance in obese mice. CD8−null mice 
fed a high-fat diet show moderate imbalance of glucose homeo-
stasis. In this respect, gain of function experiments in where CD8+ 
T  cells were administered into obese CD8−null mice aggravate 
glucose intolerance and insulin resistance, reinforcing the notion 
that CD8+ T  cells are essential for M1 macrophage infiltration 
and subsequent inflammation in diet-induced obese mice (106).

Visceral adipose tissue (VAT) inflammation involves a complex 
communication network between different T cell subpopulations 
expanded by factors that drive differentiation into several kinds 
of pro-inflammatory effectors. Adipose tissue T cell populations 
changed with increasing obesity in mice, and an increase in the 
ratio of CD8+ to CD4+ was reported by various research groups 
(9, 10, 106, 107). Particular T cell subpopulations play key roles 
in glucose homeostasis in human and mice. Winer and colleagues 
reported the importance of VAT resident CD4+ T  lymphocytes 
as modulators of insulin sensitivity in mice under diet-induced 
obesity; glucose homeostasis was compromised when pathogenic 
IFN-γ-secreting Th1  cells accumulated in adipose tissue and 
overwhelmed the static numbers of Th2 and Treg cells. In fact, 
total absence of INF-γ improved insulin resistance in obese INF-γ 
KO mice in comparison with control animals having the same 
diet (108). It was reported that Rag1− mice, known to be deficient 
in lymphocytes, developed a T2D phenotype on a high-fat diet, 
and when adoptively transferred with CD4+ T cells but not CD8+ 
T cells, normalized glucose tolerance; in particular Th2 signals 
from the transferred CD4+ T  cells were crucial in the protec-
tive effect (10). Clinical studies have confirmed the abundant 
infiltrate of Th1, Th2, and Th17 CD4+ T cells, as well as IFN-γ+ 
CD8+ T cells in adipose tissue of healthy overweight and obese 
humans (109); pro-infammatory Th1, Th17, and IFN-γ+ CD8+  
T cells were markedly increased in VAT relative to subcutaneus 
adipose tissue. Also, McLaughlin and colleagues confirmed the 
positive correlation between the relative dominance of Th1 vs Th2 
responses in the adipose tissue and peripheral blood and insulin 
resistance.

A distinctive T  cell subpopulation which infiltrates VAT, in 
a B-lymphocyte dependent way, has been recently identified 
and resembles senescence-T  cells that show up in secondary 
lymphoid organs with age (110). Phenotypically they are dis-
tinguished by expression of CD44hiCD62LloCD153+PD-1+ on 
the surface of CD4+ T cells and their feature characteristic is the 
large production of pro-inflammatory osteopontin upon T cell 
receptor (TCR) stimulation in parallel with compromised IFN-γ 

and IL-2 secretion. Moreover, they expressed increase senescence 
associated markers, such as β-gal, γ-H2AX, and Cdkn1a/Cdkn2b. 
This osteopontin-expressing T cells linked visceral adiposity with 
immune aging (110).

Invariant natural killer T (iNKT) cells are innate T  cells 
involved in inflammatory responses. Adipose tissue-resident 
iNKT cells protect against obesity and metabolic disorder reduc-
ing inflammation in obese individuals (111); they are enriched 
in human adipose tissue and their number is reduced in obesity 
(112). iNKT cells express semi-invariant CD1d-restricted TCRs 
that recognize glycolipid antigens on major histocompatibility 
complex-like molecule CD1d (113, 114). Huh et  al. reported 
that the absence of CD1d in adipocytes aggravates inflammation 
in adipose tissue and insulin resistance in obesity suggesting 
that adipose CD1d is a central activator of adipose iNKT cells. 
Activated iNKT  cells would stimulate counter regulation of 
inflammation leading to reduced pro-inflammatory responses 
and insulin resistance in obesity (115).

The relationship between T2D and Th17 cells has also been 
studied (116). Obesity has been shown to promote expansion of 
peripheral or adipose tissue-resident IL-17-producing T cells, in 
human and mice models. In humans, peripheral Th17 cells are 
increase in T2D patients (117) and positively correlated with body 
mass index (BMI) but not in metabolically healthy obese subjects 
(118). Interestingly, T  cells from obese T2D donors produced 
more IL-17 than that from non-diabetic counterparts and this 
production correlates with T2D severity (118). In diet-induced 
obese mice an IL-6-dependent expansion of the Th17 T  cell 
pools was observed (119). Specific adipose tissue dendritic cells 
isolated from obese animals and humans were associated with 
the differentiation of Th17 cells in vitro (120). Studies performed 
by Zúñiga and colleagues showed an in vitro effect of IL-17 on 
differentiated adipocytes, impairing glucose uptake; in vivo, IL-17 
deficiency enhanced glucose tolerance and insulin sensitivity in 
young mice (121).

The role of Treg cells in the maintenance of self-tolerance and 
the suppression of potentially autoreactive T cells is well known. 
However, the importance of Treg cells in metabolism has been 
recognized when it was found that lean adipose tissue enriched 
in Treg cells (~50% of the CD4+ T cell compartment) controls 
metabolic status. Indeed, Treg cells in adipose tissue of lean mice 
provide anti-inflammatory signals to prevent tissue inflamma-
tion. Interestingly, Treg cell proportion in the abdominal fat 
decreases dramatically with obesity (9, 10, 122) resulting in fat 
tissue inflammation and insulin resistance. Moreover, Feuerer 
et  al. demonstrated that cytokines differentially synthesized by 
fat-resident Tregs directly affected the synthesis of inflammatory 
mediators and glucose uptake by cultured adipocytes. Winer 
et al. associated this Treg mediated protection to the production 
of IL-10 in ATMs and the restraint of pro-inflammatory mac-
rophage activity, which improves insulin sensitivity.

In accordance, studies in humans showed that the relative pro-
portion of Treg cells in visceral and subcutaneous fat decreased in 
patients with T2D and negatively correlated with BMI (9, 118) and 
that there is a decrease in Treg to Th17 and Th1 cell ratios (117). 
A recent study add complexity to the Treg role on the mecha-
nisms underlying insulin resistance, supporting the concept that 
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age-associated and obesity-associated IR are driven by distinct 
adipo-immune populations (123). Bapat and colleagues showed 
that a particular subset of fat-resident regulatory T  cells (fTreg 
cells) accumulate in VAT as a function of age but not obesity. 
Additionally, the authors suggest that fTreg cells are function-
ally distinct from splenic Tregs; while certain canonical genes 
are similarly expressed, they have discrete expression signatures 
(i.e., higher expression levels of PPARγ and IL-33 receptor, ST2). 
Taking advantage of the high expression of ST2 on the surface of 
fTreg cells, Bapat and co-workers deplete fTreg cells by means of 
anti-ST2 administration. Interestingly, selective depletion of fTreg 
cells increases adipose tissue insulin sensitivity implicating these 
cells as drivers of age-associated insulin resistance (123). Contrary, 
in vivo stimulation of fTreg cells expansion within adipose tissue 
by treatment with IL-33 decreases insulin sensitivity. All these data 
suggest that distinct pathophysiologies undergo obesity and age-
associated insulin resistance and support the notion that adipo-
resident immune cells play a central role in adipose tissue glucose 
regulation and consequently, whole-body glucose homeostasis  
in mice.

Interestingly, recent evidences in mice and human suggested 
that the adipose tissue inflammation associated with obesity, in 
particular the T cell imbalance, and the impairment in insulin 
sensitivity, persist even after weight reduction (124, 125). It 
remains to be elucidated the precise mechanistic pathways of 
glucose regulation by T cells in human beings.

In summary, the evidence involving the role of T  cells in 
adipose tissue inflammation and insulin resistance suggests that 
the interplay between T  cells, macrophages, and adipocytes is 
essential. These cells communicate each other in the local adipose 
tissue environment to activate a sequence of events leading to an 
inflammatory state. It has been described the role of CD8+ T cells, 
Th1 and Th17 cells contributing to the obesity-induced insulin 
resistance phenotype, whereas Th2 cells and Tregs would play a 
protective role. However, the identity of the trigger that initiates 
T  lymphocyte infiltration within adipose tissue in obesity still 
remains unknown.

LiveR AND GASTROiNTeSTiNAL 
ReSiDeNT T CeLLS iN MeTABOLiC 
DiSORDeRS

The liver participates in immunological responses and hepatocytes 
are also recognized as active immunological mediators among 
other well-known intrahepatic immune cells (126). There is a 
subset of innate-like T cells, named mucosal-associated invari-
ant T (MAIT) cells, that recognizes small molecules presented 
on the non-polymorphic MHC-related protein 1 (MR1) by 
antigen-presenting cells and express a semi-invariant TCR (127). 
Like iNKT cells, these non-conventional T cells exhibit restricted 
TCR diversity recognizing metabolites on MR1 and play a major 
role in host protection from intracellular pathogens. MAIT cells 
are scarce in lymphoid tissues, comprising a high proportion of 
the total intrahepatic and gastrointestinal tract T cells population 
in humans, having a relevant role as an innate immune barrier 
against microbial invasion. However, their role in diseases begins 

to be clarified recently. Interestingly, MAIT cells activate under 
changes in the composition of gut microbiota and home to 
inflamed tissues. Magalhaes et al. reported for the first time the 
existence of MAIT cells abnormalities in severe obese and T2D 
patients (128). Both, obese and T2D patients showed a decreased 
in the number of circulating blood MAIT cells as well as dramatic 
changes in their functionality, i.e., an activated phenotype asso-
ciated with high Th1- and Th17-type cytokines production. In 
obese individuals, an elevated number of MAIT cells in inflamed 
adipose tissue was found suggesting their recruitment from 
circulation.

Many studies have linked the microbiota, gut integrity, and 
metabolic disorders. MAIT  cells might play a role involving 
the immune system as a fundamental part of these complex 
interactions. Recently, Rouxel et al. described that MAIT cells, 
exhibiting high production of granzyme B and pro-inflamma-
tory cyokines, might directly kill β-cells in humans and NOD 
mice as well (129). As in the case for T2D patients, a reduced 
frequency of MAIT  cells in peripheral blood of children with 
recent diagnosis of T1D was described, but not in those who are 
suffering from the disease for a long period of time. All these 
evidences highlight the role of MAIT cells in the maintenance 
of homeostasis within the complex interplay between mucosal 
integrity and normal islet responses. It would be interesting to 
investigate the functionality of gastric-resident MAIT  cells in 
gastroparesis, a well-recognized complication of diabetes, since 
it has been demonstrated a connection between these cells with 
inflammatory bowel disease (130).

Although the mechanisms triggering and sustaining autoim-
munity are not fully understood, the interaction of the intestinal 
environment with microbiota and, its epithelial integrity play a 
role in the development of T1D, and the disease in NOD mice 
(131, 132). A recent paper highlights the relevance of intestinal 
IL-10-producing type 1 regulatory T (Tr1) cells in the control of 
Teffs and development of diabetes (133). Increased differentiation 
of Tr1 cells may account by IL-27 and TGF-β action on intestine. 
These Tr1 cells have the ability to migrate to islets where they can 
suppress diabetogenic T cells via IL-10 signaling. Moreover, gut 
microbial metabolites augment the number and function of Treg 
cells, limiting the frequency of autoreactive T cells and protecting 
against autoimmune diabetes in NOD mice (134).

SKeLeTAL MUSCLe ReSiDeNT T CeLLS 
AND GLUCOSe HOMeOSTASiS

Skeletal muscle is the predominant tissue of insulin-mediated 
glucose uptake in the postprandial state in humans (135); moreo-
ver, lipid accumulation in this tissue is associated with insulin 
resistance. Muscle insulin resistance is a major factor in the etiol-
ogy of the metabolic syndrome and T2D (136). The increase in 
macrophages number within skeletal muscle has been associated 
to metabolic risk markers and insulin resistance in humans and 
mice (137, 138). However, little is known about the contribution 
of T cells infiltration to skeletal muscle inflammation and insulin 
resistance. Skeletal muscle T cells infiltration occurs in high-fat 
diet-fed mice (139). T  cells localize within skeletal muscle in 
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intermuscular and perimuscular adipose tissue suggesting that 
they might play a role in obesity-induced skeletal muscle inflam-
mation and insulin resistance (13). Within skeletal muscle T cells 
polarized into pro-inflammatory INF-γ-secreting Th1-type 
inducing myocyte inflammation and insulin resistance through 
activation of JAK/STAT pathways, while Treg cells diminish 
in number. Interestingly, TCRb−/− (TCR beta chain null) diet-
induced obese mice show reduced skeletal muscle inflammation 
partially attributable to the lack of Th1 cells, confirming the role 
of T cells in skeletal muscle inflammation (139). Signals such as 
chemokines/cytokines/adhesion molecules that induce T  cells 
infiltration into skeletal muscle are not yet identified. However, 
CD11a−/− mice exhibited low inflammatory gene expression in 
VAT (140).

Administration of JAK1/JAK2 inhibitors in vivo reduces T cells 
infiltration within skeletal muscle and attenuates insulin resist-
ance (13). Although there is no information, to our knowledge, 
about the presence of T cells infiltration in skeletal muscle in T1D, 
it has been described that a particular subpopulation of CD4+ 
T cells is associated with cachexia in NOD mice (141). In T2D, 
the level of transcriptome and proteome expression of activated 
T cells and muscle differ relative to non-diabetic controls (142). 
T cells, in particular Treg subsets, have homeostatic functions in 
muscle tissue repair regulating both the inflammatory response, 
by promoting the switching from M1 to M2 macrophages, and 
the activation of myogenic stem cells (143). However, further 
investigation will be required to choose any T lymphocyte subsets 
as potential targets for improving cachexia in diabetes.

HORMONeS, NeUROPePTiDeS, AND 
NeUROTRANSMiTTeRS MODULATe  
T CeLL FUNCTiON iN DiABeTeS

T cell capacity to respond against foreign antigens while avoiding 
reactivity to self-peptides is mainly determined by cellular selec-
tion of developing T cells in the thymus (144). Positively selected 
cells migrate to the peripheral lymphoid organs and target tissues; 
however, extrathymic pathways of T cell differentiation have also 
been demonstrated to contributing to the generation of a wide 
functional spectrum of TCR repertoire.

Several hormones and neurotransmitters impact thymic 
microenvironment and peripheral tissues affecting T cell devel-
opment in health and disease (6). In particular, numerous studies 
performed in human and mice models analyzed the neuroendo-
crine-immune systems relationship under the metabolic burden 
of diabetes.

Growth Hormone (GH)—insulin-Like 
Growth Factor-1 (iGF-1)
Growth hormone exerts pleiotropic functions modulating 
from carbohydrate, protein, and fat metabolism to the immune 
response (145). It is secreted by the anterior pituitary and also 
produced by immune tissues thereby acting in an autocrine/
paracrine manner on immune cells (146).

It was reported that a single point mutation within the 
DNA binding domain of Stat5b, a central transcription factor 

downstream GH receptor, is a key molecular defect in NOD mice 
that limits Foxp3 expression in Treg cells (147, 148). Transgenic 
NOD mice overexpressing GH show normal glycemia through-
out their lives; histochemical analysis of the pancreas revealed 
the development of peri-insulitis, but showed little or no islet 
infiltration or β-cell destruction (149). The authors demonstrated 
that this protective outcome involves several GH-mediated 
mechanisms on T cells, altering cytokine environment against a 
Th1 response, maintaining the activity of Treg cell subsets, and 
affecting Th17/Th1 plasticity. Additionally, sustained GH expres-
sion positively influenced β-cell viability.

Conversely, human studies reported that the incidence of 
T1D during GH replacement therapy in GH-deficient children 
was comparable with that of the general population (150–152) 
and described an association of GH treatment with disturbances 
on carbohydrate metabolism. The hyperglycemic effect of GH 
has been well-described mainly due to their action on liver, 
muscle, and adipose tissue (153–155). It is known that many of 
the GH effects are mediated by the production of IGF-1; thy-
mocytes produce and release IGF-1 and also express its cognate 
receptor (156).

Several studies propose IGF-1 as a key factor able to induce 
protection from T1D. Human recombinant IGF-1 administration 
in NOD mice reduces the severity of insulitis and the incidence of 
autoimmune diabetes (157–159). The protective T cell-mediated 
effects of IGF-1 on T1D arose more recently. Anguela and col-
leagues showed that plasmid-delivered overexpression of IGF-1 
in the liver prevents the development of hyperglycemia in a 
mice model of T1D; decreasing pancreatic infiltration, reducing 
apoptosis, and increasing replication of β-cell. In this experi-
mental model, they observed an increase of intra-pancreatic 
Treg cell numbers and proposed an indirect effect mediated by 
IL-7-producing dendritic cells that improved Treg survival or 
by the conversion of conventional T cells into Tregs by TGF-β 
secreted from the liver (160). In a latter study, it was demonstrated 
that IGF-1 directly stimulates Treg cells proliferation in vitro in 
both mouse and human. Moreover, in vivo IGF-1 treatment via 
continuous delivery specifically stimulated proliferation of Treg 
but no other T cell subtypes and exerted protective action against 
autoimmune diabetes in two mice models [NOD and multiple 
low-dose streptozotocin (STZ) injections in C57BL/6J mice] 
(161). It is noteworthy that the protective effect of IGF-1 treat-
ment might be also exerted at the β-cell level (162–164).

Glucocorticoids (GCs)
Glucocorticoids are endogenous modulators of several bio-
logical processes including regulation of metabolism and stress 
response, and development of the immune system. In particular, 
GCs broadly affect T cell differentiation and function (165) with 
positive or negative effects depending on the dose at which they 
are exposed (166). Synthetic GCs are widely used for their immu-
nosuppressive and anti-inflammatory properties to treat several 
immune disorders and preventing transplant rejection (167). 
Brief dexamethasone treatment during acute infection prevents 
virus-induced autoimmune diabetes in a rat model by down-
modulating Th1 responses and restoring the balance between 
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CD8+ T and Treg cells (168). However, the well-described severe 
side metabolic effects, such as osteoporosis, hypertension, and 
insulin resistance, induced by the chronic administration of 
GCs limits its therapeutic use for autoimmune diabetes (169). 
It is widely recognized the inhibitory action of GCs, when 
pharmacologically administered in vivo, on the proliferation of 
several human subpopulation of Ag- and mitogen-stimulated 
T cells (170). Mechanistically, the underlying inhibitory effects 
have been attributed to the ability of GCs to restrain gene expres-
sion of cytokines. In this respect, IL-2 has been indicated as the 
principal growth factor for T  lymphocyte proliferation (171) 
However, under physiologic concentrations GCs show contrast-
ing effects promoting TCR-stimulated T cell proliferation (172). 
CD4 acts as an important coreceptor during Ag recognition by 
the TCR, contributes to the assembly of TCR-MHC-II complex 
and thus, increases the sensitivity of T cell to the Ag presented by 
MHC-II lowering the amount of Ag required to mount an effec-
tive immune response. Corticosterone accelerates the expression 
of CD4 on T  cell membrane (173). It has been reported that 
physiologic concentration of GCs regulates CD4 expression upon 
T  lymphocyte challenge by Concavalin A or TCR stimulation. 
Also, CD8 expression is induced by GCs on activated mature 
T cells (174). Therefore, TCR triggering induces the expression 
of CD4 and CD8 on T lymphocytes and physiologic levels of GCs 
increase this process enhancing T cell activation.

Glucocorticoids affect gene expression by two main GR- 
dependent and -independent intracellular mechanisms that exert 
several biological effects. These differential mechanisms have 
fueled the interest in the study and development of new GR-ligands 
with dissociative properties combining GCs’ anti-inflammatory 
properties with a reduced side effect profile (175, 176). These 
particular dissociated GR-ligands hold potential for their use in 
Th1-mediated immune disorders. CpdA is a dissociating com-
pound which does not stimulate GR response elements-driven 
gene expression (177). It has been reported that CpdA regulates 
T cells through inhibition of the master transcription factor T-bet 
and induction of GATA-3, thus inhibiting Th1 and favoring Th2 
response (178).

In pregnant women at risk of preterm delivery, GCs are 
routinely administered in order to improve fetal lung develop-
ment and newborn survival (179). The association of increased 
exposure to cortisol in  utero (due to stress, pharmacological 
treatment, or impaired function of 11β-HSD-2) with long-term 
effects on glucose-insulin homeostasis has been demonstrated 
in human and animal models (180–183). However, studies 
regarding the effects of prenatal GCs on the development of 
autoimmunity are limited. Recently, using a mice model, Tolosa 
and colleagues demonstrated that prenatal administration of 
betamethasone increases apoptosis of developing thymocytes and 
induces changes in the TCR repertoire decreasing the frequency 
of pathogenic T cells and protecting from T1D development in 
NOD mice (184, 185). Conversely, an epidemiological study in 
Danish cohorts indicated the existence of an increased risk for 
T1D and T2D in young children who received prenatal steroid 
treatment (186). Under this scenario, a role of prenatal GCs 
exposure on pancreas development and T cell effects cannot be 
ruled out (187).

Ghrelin and Leptin
Peptide hormones known to be involved in the control of eat-
ing behavior, glucose metabolism, and energy homeostasis, 
such as ghrelin and leptin, also exert regulatory effects on the 
immune system via their actions on several leukocytes, includ-
ing T  lymphocytes. Ghrelin and leptin are considered to play 
mutually antagonistic actions on food intake at the hypothalamic 
area (188, 189). The interplay between leptin and ghrelin at the 
level of immune cells was recently recognized. It seems likely 
in general terms that orexigenic peptides like ghrelin may play 
a role in promoting endogenous anti-inflammatory responses. 
On the other hand, anorexigenic agents like leptin might assist 
inflammation.

Ghrelin is mainly produced by endocrine-like cells in the 
stomach and released into peripheral blood. Also, the synthesis 
and secretion of ghrelin by T lymphocytes have been described 
(190). Human T  lymphocytes constitutively express low levels 
of ghrelin which significantly increase upon cellular activation 
by stimulated TCR. Moreover, ghrelin enhances proliferation of 
peripheral CD4+ T cells and thymic murine T cells upon activa-
tion with anti-CD3/-CD8 mAbs and during its administration 
in vivo, respectively (191).

It was shown that ghrelin attenuated age-associated and 
GC-mediated thymic atrophy, and stimulated thymocyte prolif-
eration in young and old mice in vivo through activation of its 
receptor GHS-R1a (191). Thymus involution with age correlates 
with lower expression levels of intrathymic ghrelin and its recep-
tor, and exogenous administration of ghrelin partially reversed 
thymus involution and, consequent improvement of thymic 
progenitors and mature T lymphocytes (192). In addition, ghrelin 
action on suppressing inflammation might be attributed to the 
observed inhibition of T derived pro-inflammatory cytokines 
expression and Th17 development (190, 193). The acylated form 
of ghrelin exerts potent inhibitory effects on the expression of 
pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, 
as well as adhesion molecules by TCR-stimulated T cells. It has 
been suggested that these inhibitory actions of acylated ghrelin 
are mediated by GHS-R1a via specific blocking of NF-κB and/or 
STAT3 signaling (190).

There is also evidence that ghrelin is synthesized by T cells 
and inhibition of its production by using siRNA resulted in 
stimulation of INF-γ, IL-17 and other chemokines upon TCR 
ligation indicating that ghrelin might also influence T cell micro-
environment regulating immune responses (193). Interestingly, 
ghrelin downregulates leptin-induced pro-inflammatory Th1 
responses (190), suggesting that apart from counteract each 
other’s function at the level of energy homeostasis their interplay 
might influence T cells function as well. Ghrelin administration 
delays the development of autoimmune diabetes by reducing 
islet infiltration in BioBreeding rats; unfortunately, there is 
absence of information whether this hormone has any effect 
on diabetogenic T lymphocytes in this setting (194). However, 
it might be possible the regulation of diabetogenic T  cell 
population through indirect mechanisms such as, an increase 
in the number or potency of Treg cells due to the reported 
modulatory effects of ghrelin on monocytes and dendritic  
cells (190, 195).
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Leptin is an adipokine mainly secreted by white adipose tissue, 
which belongs to the family of the long-chain helical cytokines 
(IL-2, IL-15, and IL-12) commonly associated with pleiotropic 
functions. Leptin regulates feeding behavior and metabolism 
(196), hematopoiesis (197), angiogenesis (198), and reproduction 
(199). Also, leptin exerts modulatory actions on the immune 
systems (200). It was shown that leptin induces proliferation 
and secretion of IL-2 by CD4+ T  lymphocytes in humans and 
mice (201). In addition, leptin assists Th1  cell-biased immune 
responses stimulating the secretion of INF-γ by T  cells (202). 
Therefore, leptin promotes pro-inflammatory immune responses 
like the antigen-specific Th1-type directed against β cells observed 
in T1D. In fact, it has been reported that administration of leptin 
during early life accelerates the development of autoimmune dia-
betes in the NOD mice (203). Interestingly, Materese et al. found 
that circulating leptin peaked soon before the onset of hypergly-
cemia and spontaneous diabetes in female prone NOD mice. The 
administration of leptin enhanced the production of IFN-γ by 
peripheral T lymphocytes. On the other hand, a mutated version 
of the leptin-receptor in NOD mice suppresses autoimmune 
diabetes progression (204). All these evidences point leptin with 
its permissive action on the development of polarized Th1-type 
autoimmunity against β cells.

insulin
Only sparse data are available regarding the role of insulin on 
T lymphocytes. It has been reported that insulin infusion resulted 
in reduction of NF-κB and ROS generation, and increase in IκB in 
mononuclear cells, all changes characteristic of an anti-inflamma-
tory effect at the molecular level (205). Unfortunately, this study 
did not address whether there is a similar response to insulin 
treatment in all mononuclear cells or there is a particular cellular 
type more sensible to insulin action. Later, it was elucidated that 
insulin drives T cell differentiation toward an anti-inflammatory 
Th2-phenotype by mechanisms that involve ERK activation (206). 
Nevertheless, other study found that in T cells isolated from obese 
subjects incubation with supra-physiological concentration of 
insulin did not alter the Th1/Th2 balance suggesting that insulin 
signaling in lymphocytes is strongly impaired in obesity, shift-
ing T-cell differentiation toward a pro-inflammatory phenotype 
(207). During diabetes there is a high occurrence of apoptosis in 
lymphocytes and insulin treatment reduces this effect, suggest-
ing that insulin may act as a pro-survival factor for lymphocytes 
(208). Moreover, there is evidence in favor of a role of insulin in 
promoting obesity-associated adipose tissue inflammation (209).

A recent theoretical study simulated how hyperinsulinemia 
might alter the dynamics of the CD4+ T regulatory network (210); 
the analysis showed how high insulin levels affect the differentia-
tion and plasticity of CD4+ T cells favoring stabilization of inflam-
matory Th1 and Th17 and reducing the stability of Treg types. 
In line with this in silico observations, it has been demonstrated 
in vitro that Tregs express the insulin-receptor and that high levels 
of insulin specifically inhibits IL-10 production via AKT/mTOR 
signaling and impairs the ability of Treg cells to suppress TNF-α 
production by macrophages (211). Moreover, the authors showed 
that Tregs from the VAT of hyperinsulinemic diet-induced obese 
mice exhibited a specific decrease in IL-10 production, as well as a 

parallel increase in IFN-γ production; suggesting that hyperinsu-
linemia may contribute to the development of obesity-associated 
inflammation via modulation of Treg function.

Resting T  lymphocytes do not express detectable levels of 
insulin-receptor; however, after activation its expression is sig-
nificantly increased (206, 212, 213). A more recent study suggests 
that upregulation of the insulin-receptor on activated T cells is 
critical for T cell function and efficient adaptive immune response 
(214). In conditions of impaired insulin-receptor expression, 
T-effector activities are diminished resulting in attenuated clinical 
symptoms in a T-cell-mediated multiple sclerosis model in vivo 
(214). Fischer et  al. showed that silencing the insulin-receptor 
on T  lymphocytes disrupts their function, such as reducing 
cytokine production, proliferation, and migration without 
affecting thymocytes development. Interestingly, the absence of 
insulin-receptor affected CD4+ and CD8+ T subsets whereas the 
frequency and potency of Treg cells were unaffected (214).

T  lymphocytes use aerobic glycolysis (Warburg effect) upon 
activation and their increase in glucose demand is facilitated by 
induction of the insulin-receptor along with GLUT1 (215). Given 
the critical dependence on glucose upon activation, glycemic 
status should be considered as a factor affecting T cell function. 
The diabetic state, where circulating glucose levels are elevated, 
provides an environment of oxidative stress and activation of 
the inflammatory pathways. Transgenic expression of Glut1 
augmented T cell activation and led to accumulation of readily 
activated memory-phenotype T cells with signs of autoimmunity 
in aged mice (216). Increased glucose uptake may lead to exces-
sive T cell activity and accumulation as a result of enhanced T cell 
activation and/or inhibition of T cell death following stimulation. 
Moreover, human CD4+ and CD8+ T cells differ in the relative use 
of the metabolic pathways contributing to functional responses. 
Thus, CD4+ T subset shows higher basal glycolysis mainly 
attributed to elevated expression of glycolytic enzymes and CD8+ 
T subpopulation showing a decrease in glycolysis upon activa-
tion and greater dependency on mitochondrial metabolism for 
cytokine production. Also, it was demonstrated that the binding 
affinity of specific antigens fine-tune T  cell metabolism (217). 
Therefore, T  lymphocyte insulin-receptor/GLUTs expression, 
insulin and glucose levels as well as, the affinity of antigens with 
cognate TCR of different T cell subsets all have implications to 
consider for therapeutic manipulation in the setting of hypergly-
cemia and hyperinsulinemia (T2D) and, during T-cell-mediated 
T1D featured by elevated glycemia and lack of insufficient insulin 
levels.

Prolactin (PRL)
Prolactin is a pituitary hormone not only essential for reproduc-
tion and lactation but also involved in immunological responses. 
PRL and its receptor are expressed by various extra-pituitary 
tissues, including lymphoid cells (218, 219). PRL has a stimula-
tory action on the immune system; it affects differentiation and 
maturation of both, B and T lymphocytes, stimulates lymphocyte 
proliferation and macrophage function, and enhances inflamma-
tory responses and production of immunoglobulins (220–222).

Increase serum PRL has been detected in autoimmune 
disorders including T1D and elevated prolactinemia was also 
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observed in T2D (223–225). The association between circulat-
ing PRL levels and glucose homeostasis has been controversial. 
Within the physiological range, higher serum PRL levels seem 
to be associated with insulin resistance in men (226) and with 
reduced glucose tolerance in the third trimester of pregnancy 
in women (227). Conversely, higher circulating PRL levels were 
associated with lower prevalence of diabetes and impaired glu-
cose regulation in a large cohort of middle-aged and elderly men 
and postmenopausal women (228).

Experimental studies suggested a protective role associated 
with PRL modulation of T cell development; PRL reduces insuli-
tis and protects against autoimmune diabetes in NOD mice (229) 
in the autoinmune diabetes model induced by low-dose STZ 
administration in C57BL/6 mice (230). Further studies in this 
latter experimental model showed that PRL treatment enhances 
a Th2 response by increasing the frequency of IL-10 positive sple-
nocytes and down-modulating the featured expression of the Th1 
cytokines IFN-γ and TNF-α in splenocytes (231). Furthermore, 
PRL-expanded Treg (CD4+ Foxp3+) population and improved 
the efficacy of short-term low-dose anti-CD3 treatment (which 
induce a transient CD4+ and CD8+ T cell depletion) at achieving 
diabetes remission in the NOD mice (232). Conversely, severe 
hyperprolactinemia induced by anterior pituitary ectopic trans-
plantation increases the incidence of diabetes in the NOD mice 
(233). A study analyzing the in vitro effect of PRL on CD4+ T cell 
suggested that the modulatory effect is dose dependent; low-dose 
PRL promotes Th1 response through increases in its Th1-driven 
transcription factor T-bet, whereas higher doses have suppres-
sive effects (234). Therefore, differences obtained in clinical and 
experimental studies might be explained on the basis of the PRL 
differential effect on T  cells, glucose metabolism, and insulin 
resistance depending of the hormone concentration impacting 
on target tissues.

Moreover, it was demonstrated that PRL stimulates insulin 
secretion and proliferation of β-cells in murine and human islets 
(235–237) and in particular during pregnancy (238). Thus, a 
further protective action of PRL exerted at β-cells level could not 
be ruled out in the experimental models studied.

Oxytocin (OXT)
Oxytocin is an essential neuropeptide involved in the regula-
tion of maternal behavior, lactation, and parturition (239). In 
the central nervous system OXT is expressed in subpopulations 
of hypothalamic neurons, stored in the neurohypophysis and 
released into circulation. Besides its central origin, OXT is 
produced and released in peripheral tissues acting in a paracrine 
and autocrine fashion via widely expressed OXT receptors (240). 
In addition to the abovementioned physiological functions in 
mammals, the modulatory effect of the OXT-secreting system 
on immune system activity and metabolic homeostasis has come 
to gain attention.

Oxytocin effects on immune functions include thymus physio-
logy, immunologic defense, homeostasis, and surveillance (241). 
However, scarce information exists regarding the interaction of 
OXT with T lymphocytes in diabetes. CD38, a membrane ADP-
ribosyl cyclase expressed in several cells such as lymphocytes and 
β-cells, is involved in OXT secretion (242); targeted disruption of 

CD38 accelerates autoimmune diabetes in NOD mice by enhanc-
ing autoimmunity (243). CD38-deficient mice presented a dis-
balance between T-effector and Treg cells and an age-dependent 
increase in a diabetogenic CD8 clonotype, along with impaired 
insulin secretion and an elevated plasma glucose level.

Recent studies have shown that the impairment of OXT sign-
aling is associated with disturbance of metabolic homeostasis, 
resulting in obesity and diabetes. In mice under a high-fat diet, 
there was a significant increase in both OXT and OXT receptor 
levels in the brain, as well as an increase in OXT receptor in the 
islets (244). OXT receptor-deficient mice exhibited increase β-cell 
death under metabolic stress conditions resulting in impaired 
insulin secretion and glucose intolerance under a high-fat diet 
(244). Both OXT- and OXT receptor-deficient mice developed 
late-onset obesity (245, 246).

On the other hand, peripheral OXT treatment improved 
glucose tolerance and reduced food intake and visceral fat mass 
in mice under diet-induced obesity (247, 248). Moreover, OXT 
treatment improved glucose homeostasis and induced tissue 
regenerative changes of pancreatic islets after STZ-induced dia-
betes in rats (249); similar results were obtained in mice (248). 
Conversely, worsening of basal glycemia and glucose tolerance 
were observed under OXT treatment in ob/ob animals (250) 
suggesting that OXT effects on glucose metabolism may depend 
on the interaction with leptin signaling.

A central action of OXT on glucose homeostasis was also 
observed. Intranasal OXT delivery enhanced glucose tolerance 
and β-cell response in healthy men challenged with an oral glucose 
tolerance test (251). Furthermore, OXT nasal spray treatment in 
obese patients effectively reversed obesity and related lipid disor-
ders and improved blood glucose and insulin postprandial levels 
(248). In addition, third-ventricle injections of OXT improved 
glucose intolerance and fasting blood insulin levels in mice under 
chronic high-fat diet feeding and led to significant improvements 
in glucose tolerance, β-cell insulin secretion, and blood insulin 
levels in the multiple low-doses administration of STZ-induced 
autoimmune diabetes in mice (248).

Sexual Steroids
For most of autoimmune diseases, females are generally more 
frequently affected than males. This is the case for systemic 
lupus erythematosus, rheumatoid arthritis, and multiple scle-
rosis. However, sexual dimorphism in autoimmune diabetes 
prevalence is observed in NOD mice but not in humans (252). 
One of the main factors contributing to gender differences in 
immune system is sex hormones. The effects exerted by female 
(estrogen, progesterone) and male (androgens) steroid hormones 
on T  lymphocytes might explain gender differences in specific 
autoimmune diseases (253).

Several studies indicate that testosterone has suppressive 
effects on T cells by inhibiting Th1 differentiation of naive CD4+ 
T cells and pro-inflammatory cytokine production and enhanc-
ing the expression of anti-inflammatory cytokines (254, 255).  
Ovarian hormones also modulate T  lymphocyte function.  
In vivo and in vitro evidence indicate that progesterone, which 
promotes maternal–fetal tolerance during pregnancy, favors the 
Th2, and suppresses Th1 and Th17 responses, and has a potent 
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Treg induction activity promoting the production of anti- 
inflammatory cytokines like TGF-β1 and IL-10 (256, 257). Nume-
rous evidences support estrogens influence on the development 
and maintenance of thymic and peripheral T cell function with 
dual effects depending on factors, such as steroid concentra-
tion, target cell, and timing (258). Estradiol at periovulatory 
to pregnancy levels stimulates IL-4 and IL-10 production and 
inhibits TNF-α from CD4+ T cells and increases Th2 and Treg 
phenotype, which might shift the immune response toward 
tolerance (258, 259). On the other hand, at lower concentrations, 
estradiol stimulates TNF-α, IFN-γ, and IL-1β production (258, 260). 
Scarce information is available regarding sexual steroids and 
T cell interaction under the burden of diabetes.

NOD mice spontaneously develop diabetes with a strong female 
prevalence; a more invasive and destructive insulitis, leading to 
an earlier onset and higher incidence is observed in females (261). 
Moreover, the incidence of diabetes was significantly decreased in 
female NOD mice, but increased in male, by castration at the time 
of weaning (262, 263). Furthermore, long-term administration of 
androgen or its derivatives to young female NOD mice resulted in 
a decrease in the percentage of CD4+ T cells in peripheral blood 
mononuclear cells and the incidence of diabetes (264, 265). Bao 
and colleagues demonstrated that sex hormones modulate the 
Th1/Th2 balance in the early stages of the T cell-mediated auto-
immune process in the NOD mice; IFN-γ expression was signifi-
cantly higher in pancreatic and lymph node-T cells from young 
females, whereas IL-4 expression was higher in male counterparts. 
This differential expression, enhancing Th1 immune response in 
female NOD mice, was found to be due to the upregulation of 
IL-12 induced IFN-γ production through activation of STAT4 by 
estrogen (266). Additionally, it was suggested that male-specific 
gut microbiome play a protective role in NOD mice that is medi-
ated, at least in part, via microbiota metabolism of sex hormones 
(267). Conversely, estradiol administration was found to restore 
immunomodulatory functions of iNKT cells and preserve female 
NOD mice from both spontaneous and cyclophosphamide-
induced diabetes (268).

A clear sexual dimorphism is observed related to glucose 
metabolism and obesity-associated T2D. The sex difference in 
the prevalence of diabetes was reversed during reproductive life, 
there are more men with T2D at middle age while there are more 
affected women after menopause (269), suggesting a protective 
role of estrogens. Consistent with this observation, continuous 
estradiol treatment (pregnancy levels) in males inhibited weight 
gain and the associated onset of hyperglycemia in an islet amyloid 
(huIAPP)-dependent murine model of diabetes; histological 
analysis of the pancreas revealed estradiol prevented deposition 
of islet amyloid and preserved islet mass and β-cells insulin 
content (270). Mice of both sexes develop a vulnerability to STZ-
induced insulin deficiency when estradiol production or signal-
ing is genetically suppressed (aromatase-deficient, ArKO−/− and 
ERα-deficient, ERKO−/− mice); in these mice, estradiol treatment 
prevents STZ-induced β-cell death and helps sustain insulin pro-
duction, and prevents diabetes (271). Estradiol protective effect 
on β-cells was also observed in isolated human pancreatic islets; 
estradiol treatment of cytokine-challenged islets increases islet 
viability by lowering NF-κB activity and caspase-9 activation and 

cytokine-induced cell death. Additionally, estradiol improved 
glucose-stimulated insulin response in vitro and in vivo function-
ality of treated human islets after transplantation in the portal 
vein of STZ-induced NODscid mice (272).

Estrogen protective action on glucose homeostasis is not only 
exerted in the pancreas; several studies indicated that estradiol 
enhances insulin sensitivity in peripheral tissues, improves 
body fat distribution, and reduces adipose tissue inflammation 
(273–275). Estrogen treatment prevented insulin insensitivity and 
reduced the expression of adipose tissue inflammation (Mcp-1 
and Cd68) induced by high-fat diet in ovariectomized mice (274).

Although its protective anti-inflammatory effect on immune 
cells, progesterone has been associated with the development of 
gestational diabetes. It was demonstrated that the hyperglycemic 
effect of gestational levels of progesterone is mostly due to the 
enhancement of insulin resistance (276), particularly by a reduc-
tion of glucose transporter 4 expression in skeletal muscle and 
adipose tissue (277) but also reducing insulin secretion by a non-
genomic mechanism (278). A recent study performed in RINm5F 
β-cell line and primary rat islets show that progesterone, particu-
larly at pharmacological concentrations used for preterm delivery 
prevention, induced apoptosis of pancreatic β-cells through an 
oxidative-stress-dependent mechanism (279), contributing to 
gestational diabetes pathogenesis.

It is well established the impact of testosterone deficiency 
on the development of visceral obesity and insulin resistance in 
men (280, 281). Consistently, androgen receptor-deficient mice 
exacerbates adiposity and insulin resistance induced by a high-
fat diet; elevated serum IL-1β levels and decreased pancreatic 
glucose-stimulated insulin secretion was also observed (282). A 
recent transcriptome analysis of islets from adult male mice lack-
ing androgen receptor selectively in β-cells revealed alterations in 
genes involved in inflammation and β-cell function (283).

Recently, Rubinow and colleagues analyzed lymphocyte 
subsets in subcutaneous adipose tissue biopsies after 4 weeks of 
pharmacological testosterone suppression with a GnRH receptor 
antagonist and controlled testosterone replacement in healthy 
male subjects. In this clinical study, change in serum total tes-
tosterone levels correlated inversely with CD3+, CD4+, and CD8+ 
T cells and ATMs within adipose tissue (275).

At the pancreas level, it was observed a sex specific protective 
action of testosterone on STZ-induced apoptosis in β-cells; the 
cytoprotective effect was seen in gonadectomized male but not 
in female rats (284, 285). Moreover, chronic hyperandrogenism 
induced β-cell dysfunction and failure to compensate high-fat 
diet induce insulin resistance in female mice (286). The sexual 
dimorphism in the modulation of glucose and energy homeo-
stasis by testosterone is evidenced in the clinic, androgen excess 
predisposes to insulin resistance, β-cell dysfunction, and T2D in 
women (281). Nonetheless, further research is needed to reveal 
the mechanisms underlying the sex differences in the metabolic 
effect of testosterone.

Neurotransmitters
Originally, the notion that neurotransmitters act as immu-
nomodulators emerged with the discovery that their release from 
the nervous system could lead to signaling through lymphocyte 
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cell-surface receptors modulating immune response. It is now 
known that neurotransmitters can also be released from immune 
cells and act as autocrine or paracrine modulators.

It has been demonstrated that administration of gamma-
aminobutyric acid (GABA), a major CNS neurotransmitter syn-
thesized from glutamate by glutamic acid decarboxylase (GAD), 
exerts antidiabetic effects by acting on both islet β-cells and the 
immune system in both T1D and T2D models. GABA acts as 
an autocrine excitatory neurotransmitter in human pancreatic 
β-cells through GABA receptors (287, 288).

Gamma-aminobutyric acid promotes proliferation, protects 
β-cells from STZ- and cytokine-induced apoptosis (288), and 
inhibits human β-cell apoptosis following islet transplanta-
tion into NODscid mice (289). This protective effect is also 
observed in  vivo, e.g., GABA treatment prevents insulitis and 
diabetes onset and preserves insulin expression in NOD mice 
and in multiple low-dose STZ-induced diabetes in C57BL/6 mice  

(288, 290, 291) and delays hyperglycemia in the adoptive transfer 
of disease in NODscid mice (292). Moreover, overtly diabetic 
NOD mice treated with GABA improved fasting glycemia, insu-
lin and C-peptide levels and glucose tolerance (291).

Also, GABA receptors are expressed in various immune 
cells, including T cells (292, 293). Low doses of GABA inhibited 
activated T cell responses against islet autoantigens when assayed 
ex vivo (292), suggesting that GABA downregulates diabetogenic 
Teff function in vivo. Later studies showed an anti-inflammatory 
effect of GABA treatment, increasing the frequency and suppres-
sive activity of splenic CD4+Foxp3+ Tregs in pancreatic lymph 
nodes in NOD mice with no changes in GAD-reactive CD4+ 
T cells and decreased circulating inflammatory cytokines in the 
multiple low-dose STZ-induced diabetes model (288, 291).

A beneficial effect of GABA was observed also in T2D experi-
mental models. Oral GABA administration inhibited obesity, 
reduced fasting blood glucose, and improved glucose tolerance and 
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insulin sensitivity in high-fat diet-fed C57BL/6 mice. Moreover, 
even after the onset of obesity and hyperglycemia, GABA treat-
ment improved glucose homeostasis (294). Furthermore, GABA 
treatment inhibited obesity-related inflammation, reducing the 
frequency of VAT macrophage infiltrates and increasing the 
frequency of splenic CD4+Foxp3+ Tregs in high-fat diet-fed  
mice (294).

In accordance with the antidiabetic effect in preclinical models, 
GABA and GABA analogs were also shown to exert insulinotropic 
effects in humans (295, 296).

Interestingly, consistent with the high levels of GAD found 
in the islets of Langerhans, GAD65 is one of the major target 
autoantigens recognized by self-reactive T cells in T1D. Complete 
suppression of β-cell GAD expression in NOD mice blocked 
the generation of diabetogenic T  cells, protected islet grafts 
from autoimmune injury and consequently, the development of 
autoimmune diabetes (297). In fact, potential immunomodula-
tion with GAD therapy has been extensively investigated for the 
prevention or treatment of T1D in humans (298).

Histamine is an inflammatory mediator classically involved in 
allergic reactions but also in the modulation of innate immunity 
and autoimmune reactions. Its diverse effects are mediated by the 
differential expression and regulation of four known histamine 
receptors (termed H1R-H4R) and their distinct intracellular sig-
nals (299). Th1 and Treg cells express relatively high levels of H1R, 
whereas H2R is preferentially expressed by Th2 cells. Histamine 
modulates T lymphocytes by enhancing Th1 responses through 
H1R and downregulates both the 1- and 2-type responses through 
H2R (300); activation of H1R by histamine decreases Treg cell 
suppressive functions.

The association of autoimmune diseases, such as multiple scle-
rosis, rheumatoid arthritis, and diabetes, and elevated serum and 
tissue histamine levels was described many years ago (301–303). 
However, research searching for the possible role of histamine 
signaling on diabetes emerged recently.

In histidine decarboxylase (HDC) deficient NOD mice, the 
lack of endogenous histamine reduces IL-12 and IFN-𝛾 levels and 
delays the onset of autoimmune diabetes (304); the proportion 
CD4+CD25+Foxp3+ Treg cells in spleen and pancreatic lymph 
node remained unchanged. Surprisingly, exogenous histamine 
administration not only failed to increase the incidence of T1D 
but also delayed the onset of disease in both wild-type and 
HDC−/− mice (304).

Central histamine signaling is involved in the control of feeding 
behavior and energy homeostasis. H3R is principally expressed 
in histamine neurons and negatively regulates the synthesis and 
release of histamine. Treatment with a H3R agonist decreases 
appetite, body weight, and insulin resistance in diet-induced 
obese mice (305). On the other hand, targeted disruption of H3Rs 
leads to an obese phenotype (306). Moreover, mice deficient in 
histamine H1R or HDC showed a dysregulation in the leptin 
signaling, impaired glucose tolerance, and are prone to become 
obese on a high-fat diet or at advanced age (307–309).

It was recently reported that the H1R antagonist cetirizine 
partially counteracts cytokine- and oxidative stress-induced 
β-cell death (310). In vivo, H1R antagonist ameliorates high-fat 
diet-induced glucose intolerance in male C57BL/6 mice, but no 
effect was observed on diabetes outcome in female NOD mice, 
suggesting a protective effect of cetirizine against high-fat diet-
induced β-cell dysfunction, but not against autoimmune β-cell 
destruction (311).

CONCLUSiON

T  lymphocytes, as important components of the adaptive arm 
of the immune system, are key players in the modulation of 
metabolism in several tissues in health and disease (see Figure 1). 
The neuroendocrine system plays an essential role controlling the 
number and activity of different T cell subpopulations. Herein, 
we collected data that warrant further investigation on T  lym-
phocytes biology hoping that it would lay the groundwork for 
future translational research that aims to restore homeostasis in 
metabolic disorders and treat diabetes in its multiple forms.
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