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The recruitment of brite (or beige) adipocytes has been advocated as a means to combat 
obesity, due to their ability to phenotypically resemble brown adipocytes (BA). Lineage 
studies indicate that brite adipocytes are formed by differentiation of precursor cells or by 
direct conversion of existing white adipocytes, depending on the adipose depot exam-
ined. We have systematically compared the gene expression profile and a functional 
output (oxygen consumption) in mouse adipocytes cultured from two contrasting depots, 
namely interscapular brown adipose tissue, and inguinal white adipose tissue (iWAT), 
following treatment with a known browning agent, the peroxisome proliferator-activated 
receptor (PPARγ) activator rosiglitazone. Prototypical BA readily express uncoupling 
protein (UCP)1, and upstream regulators including the β3-adrenoceptor and transcription 
factors involved in energy homeostasis. Adipocytes from inguinal WAT display maximal 
UCP1 expression and mitochondrial uncoupling only when treated with a combination of 
the PPARγ activator rosiglitazone and a β3-adrenoceptor agonist. In conclusion, brite adi-
pocytes are fully activated only when a browning agent (rosiglitazone) and a thermogenic 
agent (β3-adrenoceptor agonist) are added in combination. The presence of rosiglitazone 
throughout the 7-day culture period partially masks the effects of β3-adrenoceptor signal-
ing in inguinal white adipocyte cultures, whereas including rosiglitazone only for the first 
3 days promotes robust β3-adrenoceptor expression and provides an improved window 
for detection of β3-adrenoceptor responses.

Keywords: adipocyte, beta adrenergic receptors, uncoupling protein 1, adrenoceptor, seahorse xf96 analysis, 
rosiglitazone, cl316243

inTrODUcTiOn

The remarkable prevalence of obesity worldwide has sparked considerable interest in therapeutic 
strategies that are effective and safe in promoting weight loss. In conjunction with lifestyle modi-
fication, such strategies range from surgical intervention to reduce stomach capacity, through to 
pharmaceutical interventions aimed primarily at modulating neural pathways that affect food/
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caloric intake. There are no pharmacological interventions 
that primarily act on adipose tissue, despite its obvious role 
in obesity. There are two types of adipose tissue with distinct 
functions: white adipose tissue (WAT) that stores chemical 
energy in the form of triacylglycerol, and brown adipose tis-
sue (BAT) that releases chemical energy in the form of heat 
(thermogenesis).

Classical BAT depots have been studied extensively in adult 
rodents. They are highly innervated and are activated by centers 
in the brain responsive to cold exposure, leading to the release 
of norepinephrine (NE) from sympathetic nerves. Upon bind-
ing of NE to BAT β3-adrenoceptors (β3-ARs), increased levels 
of intracellular cyclic AMP (cAMP) promote lipolysis, and this 
breakdown of triglycerides leads to release of free fatty acids that 
upregulate and activate uncoupling protein 1 (UCP1). Activated 
UCP1 uncouples mitochondrial respiration leading to heat 
generation, thus β3-AR signaling increases respiration and non-
shivering thermogenesis, with prototypical BAT adipocytes being 
remarkably rich in mitochondria (1).

β3-AR signaling in response to NE or synthetic receptor ago-
nists occurs almost exclusively in peripheral tissues, including 
adipose tissue/adipocytes, bladder, and gastrointestinal tract. 
While there is detectable expression in the rodent brain (2), 
and central administration of β3-AR agonists directly into 
hypothalamic/third ventricle regions can reduce food intake 
and weight (3, 4) and increase c-fos immunoreactivity (5), it is 
unlikely that peripheral administration of β3-AR agonists such 
as CL316243 and mirabegron would have direct central effects, 
since they do not readily cross the blood–brain barrier (6, 7). 
Any effects that peripheral administration of β3-AR agonists 
has centrally are thought to occur indirectly through fatty acids 
liberated from lipolysis in peripheral adipose tissues.

In addition to prototypical white or brown adipocytes (BA), 
beige or brite adipocytes have been described (8, 9). These cells 
reside in WAT depots but can be “browned” by various stimuli, 
most notably cold exposure or activation of β-AR signaling, 
and by the peroxisome proliferator-activated receptor (PPARγ) 
agonist rosiglitazone. Activation of brite/beige adipocytes leads 
to an increase in mitochondrial uncoupling similar to that occur-
ring in BAT. Two studies indicate that brite or beige adipocytes 
contribute significantly to whole body energy expenditure: 
mouse models that have increased beige/brite adipocytes in WAT 
are protected from diet-induced obesity (10), and browning of 
WAT contributes to non-shivering adaptive thermogenesis in the 
absence of classical BA (11). Adult humans possess both brown 
and beige/brite adipose tissue. Humans were thought to lose BAT 
after infancy, but phenotypically beige/brite adipocytes have been 
isolated from human supraclavicular fat depots and neck biopsies 
(9, 12, 13).

There is considerable interest in identifying additional agents 
that promote browning of adipose tissue, as increased expendi-
ture of energy as heat would be of therapeutic utility in obesity 
and type 2 diabetes. To date, agents and processes with browning 
potential fall into a number of classes, namely (i) cold exposure, 
activation of the sympathetic nervous system (SNS), and β3-AR 
agonists; (ii) G protein-coupled receptor (GPCR), ion channel, 
and signaling pathway modulators; (iii) exercise and associated 

factors; (iv) growth factors and cytokines; (v) nutritional and 
dietary factors; and (vi) PPAR agonists. The evidence for these as 
browning agents has been reviewed elsewhere (14).

Many studies of browning agents have employed a combination 
of cultured adipocytes and whole animal experiments. Clearly 
in vivo experiments have the advantage that test compounds are 
acting on cell populations as they exist in whole animals, thereby 
providing valid information on predicted clinical efficacy. It is 
important to understand the mechanism of action, however, 
particularly in relation to the precise cells targeted by browning 
agents. In the whole animal, such agents could be acting directly 
on adipocytes, but it is equally possible that they are targeting 
the central nervous system (15), or indirectly the sympathetic 
nervous system (16).

Cultured adipocytes thus offer a system for characterizing 
the direct effect of browning agents, and also have advantages 
in facilitating high-throughput screening of compounds. The 
ideal model system would be cultured human adipocytes with 
the potential to undergo browning, however, there have been 
difficulties in using human cultures or cell lines—(i) even in 
human subjects with highly inducible BAT (17), beige/brite 
adipocytes are localized to the neck and supraclavicular regions, 
and presumably arise from specialized cells within these adipose 
depots, and (ii) human primary cultures or immortalized lines 
such as SGBS cells require strongly adipogenic media in order 
to differentiate, including, for example, rosiglitazone, dexametha-
sone, 3-isobutyl-1-methylxanthine (IBMX), cortisol, transferrin, 
triiodothyronine, and insulin (9, 18). In particular, the inclusion 
of rosiglitazone and IBMX (to increase cAMP), is highly likely to 
promote browning in conjunction with differentiation.

The primary cultured adipocytes most often utilized to 
study browning are differentiated from the stromal vascular 
fraction (SVF) of mouse inguinal WAT (iWAT) depots. Again 
these cultures generally include rosiglitazone at least for the 
first 2–4 days of culture (19–23), thus the mature adipocytes 
are likely to have undergone browning as well as differentiation. 
The aim of our study was to systematically clarify the effect 
of rosiglitazone on cultured adipocytes in the presence or 
absence of recognized browning agents targeting the β3-AR. 
We have examined adipocytes isolated from FVB/N mouse 
interscapular brown and inguinal white depots and cultured in 
a minimal medium consisting of DMEM supplemented with 
10% newborn calf serum, 4.5 g/l glucose, and 2.4 nM insulin 
(8). We tested the effect of 1  µM rosiglitazone added to the 
culture medium for the entire 7 days or for the first 3 days only. 
The adipocyte cultures were treated for a further 24  h with 
CL316243 (in the absence of rosiglitazone), as a recognized 
browning agent. We find that BA cultures differentiate well 
even in the absence of rosiglitazone, whereas inguinal white 
adipocytes (iWA) require rosiglitazone for at least the first 
3 days of culture. Substantial browning occurs only after 7-day 
rosiglitazone treatment in iWA, though induction of UCP1 
and the thermogenic gene Cpt1b can be induced by CL316243 
after 3 days of rosiglitazone. The highest levels of UCP1 mRNA 
occur following 7-day rosiglitazone combined with CL316243 
treatment, and the vast majority of BA and iWA cells become 
positive for UCP1 immunostaining under these conditions.
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MaTerials anD MeThODs

ethical statement
All experiments were conducted with ethical permission from the 
Monash University Animal Ethics Committee, ethics approval 
numbers MIPS.2015.14 and VCP.2009.22, which complied with 
the National Health and Medical Research Council of Australia 
(NHMRC) guidelines for use of animals in scientific research.

adipocyte culture
Adipocyte isolation and culturing was performed as described 
previously (24). Inbred FVB/N mice (3–4 weeks of age, either sex) 
were bred at the Monash University Parkville animal facility. Mice 
were killed by CO2 inhalation and BAT isolated from the inter-
scapular, cervical, and axillary depots, while WAT was isolated 
from the subcutaneous depots. Pooled tissue pieces were finely 
minced in DMEM and transferred to a digestion solution [0.2% 
(wt/vol) collagenase type II, 0.1  M HEPES (pH 7.4), 123  mM 
NaCl, 5 mM KCl, 1 mM CaCl2, 4.5 mM glucose, 1.5% (wt/vol) 
BSA]. Tissues were digested for 30 min at 37°C with continuous 
mixing. Cells were filtered through a 250 µm nylon mesh filter 
into sterile tubes and kept on ice for 15  min whereupon the 
mature adipocytes float to the top. The top layer of the suspension 
was removed and the remaining cell suspension filtered through 
a 25-µm nylon mesh filter and centrifuged (700 × g, 10 min). The 
pellet containing preadipocytes was resuspended in DMEM and 
centrifuged (700 × g, 10 min). The pellet was suspended in culture 
medium (6  ml/animal for WAT, 4.8  ml/animal for BAT) and 
plated in either Seahorse cell culture plates (100 µl/well), 8-well 
chamber slides (200 µl/well), or 6-well plates (2 ml/well). The cul-
ture medium consisted of DMEM containing 4.5 g/l glucose, 10% 
(vol/vol) newborn calf serum, 2.4 nM insulin, 25 µg/ml sodium 
ascorbate, 10 mM HEPES, 4 mM l-glutamine, 50 U/ml penicillin, 
and 50 µg/ml streptomycin, and supplemented where indicated 
with 1 µM rosiglitazone. Adipocytes were grown at 37°C in 8% 
CO2. Cells were washed in pre-warmed DMEM and medium 
renewed on day 1, then every second day. All experiments were 
conducted on day 7. For experiments treated for 7 days with 1 µM 
rosiglitazone (7-day Rosi), rosiglitazone was included in control 
media from day 1 to 7 (the day of experiment). In some experi-
ments as indicated, 1 µM rosiglitazone was only included in the 
culture media from day 1 to 3, whereupon the cells were cultured 
in the absence of rosiglitazone until use on day 7.

reverse Transcription-qPcr
Cells were serum starved on day 6 in DMEM/Nutrient Mix F-12 
(1:1) with 4 mM l-glutamine, 0.5% BSA, 2.4 nM insulin, 10 mM 
Hepes, 50 IU/ml penicillin, 50 µg/ml streptomycin, and 50 µg/ml 
sodium ascorbate, with rosiglitazone (1 µM) as indicated. Media 
was replaced with DMEM containing 4.5 g/l glucose, 0.5% BSA, 
25 µg/ml sodium ascorbate, 10 mM HEPES, 4 mM l-glutamine, 
50 U/ml penicillin, and 50 µg/ml streptomycin, and supplemented 
with norepinephrine (1  µM), or CL316243 (1  µM) as indicated. 
Media was aspirated, the cells washed in warmed PBS, and plates 
rapidly frozen at −80°C until use. Total RNA was extracted using 
RNeasy Plus Mini Kits (QIAGEN), as per the manufacturer’s 

instructions (samples in Figure 5 were extracted using TriReagent 
(Sigma-Aldrich), according to the manufacturer’s instructions). 
RNA samples were DNAse treated using DNA-free DNA Removal 
Kit (Invitrogen), according to manufacturer’s instructions. Where 
tissues were used, interscapular BAT or inguinal WAT were excised 
from similarly aged (3- to 4-week-old FVB/N mice of either sex) 
and housed mice (room temperature 22°C), and tissues rapidly 
frozen (−80°C). RNA from tissues was extracted using TriReagent 
according to manufacturer’s instructions (Sigma-Aldrich).

For preparation of cDNA, 0.5  µg of RNA was reverse-
transcribed using iScript Reverse Transcription Supermix for 
RT-qPCR (Bio-Rad), in a total volume of 10 µl. For each inde-
pendent sample, qPCR was performed in duplicate using TaqMan 
Gene Expression assays (Life Technologies) for Prdm16, Hoxc9, 
Ppara, Ppargc1a, Pparg, Ppargc1b, Fabp4, Adipoq, Slc27a1, Fasn, 
Pck1, Acaca, Fabp3, Acox1, Sirt3, Cpt1b, Cox4i1, Prdx3 Acadl, 
Vdac1, Pdk4, Slc2a1, Slc2a4, Hk2, Pfkm, Gapdh, Pgk1, Ucp1, 
Adrb3, and the reference gene Actb. The cDNA was diluted 
to the equivalent of 2.5 ng/µl of starting RNA and 4 µl added 
to 6  µl reaction mix comprising 1× TaqMan Gene Expression 
Assay and 1× TaqMan Fast Advanced Master Mix dispensed in 
96-well plate, as per manufacturer’s instructions. After initial 
denaturation at 95°C for 30 s, fluorescence was detected over 40 
cycles (95°C for 5 s, 60°C for 30 s). Cq values were automatically 
calculated by the Realplex analysis module. qPCR presented in 
Figure  5 was performed on a CFX Connect™ real-time PCR 
detection system (BioRad) and samples were initially denatured 
at 50°C for 2 min, 95°C for 10 min, and fluorescence detected  
over 40 cycles (95°C for 15  s, 60°C for 1  min), and Cq values 
automatically calculated by the BioRad analysis module. All data 
are expressed as expression of the gene of interest relative to Actb, 
calculated as ( ) * ,2 1 000−∆Cq . Multiplication of all values by 1,000 
does not change the relative expression levels and was done for 
two reasons; (i) it facilitates viewing of the data because even 
values for poorly expressed genes are greater than 1.0, and (ii) it 
positions expression values in the same range as RPKM or FPKM 
values obtained in RNA-Seq studies, as the average value for Actb 
in numerous cell and tissue types is 1,000. All statistics for gene 
expression were performed on ΔCq values, as these data are nor-
mally distributed. For the purpose of statistics, where genes were 
not detected within 40 cycles (and were, therefore, not detectably 
expressed), an over-assumption Cq value of 40 was used.

custom Pcr array
We designed a custom mouse qPCR array in 384-well plates 
that comprised 2 sets of 192 genes, including Actb as a reference 
gene, a genomic DNA control (Lonza) and 190 genes represent-
ing a broad cross-section of targets downstream of 25 different 
transcription factors (Table  1). Each array plate was used to 
analyze expression in a control and rosiglitazone-treated adipo-
cyte culture from BA or iWA. cDNA was prepared as described 
above, then 4 µl equivalent to 10 ng of starting RNA was added to 
each well containing 1× SYBR Green PCR Master Mix (Applied 
Biosystems) and Lonza-dispensed primer sets in a total volume of 
10 µl. qPCR reactions were carried out at the Australian Genome 
Research Facility (Parkville, VIC, USA) on a 7900HT Real-Time 
PCR System (Applied Biosystems).
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TaBle 1 | Categorization of genes assessed by the StellARray custom array system.

gene-associated category genes

Signaling
Kinases Akt1, Camkk1, Map2k2, Map3k7, Pak2, Pyk2, Trib3
Phosphatases Dusp1, Dusp9, Ppm1d, Ppp1r15a, Ppp3ca, Pten
G Protein-related Arhgef2, Rgs2
Regulatory binding proteins Pmepa1, Rcan1

Apoptosis, stress response Bax, Bbc3, Bcl10, Bcl2, Bcl2l1, Bcl2l11, Birc3, Birc5, Bnip3, Bnip3l, Casp1, Casp3, Casp9, Cflar, Fas, Gadd45a, 
Gadd45b, Hspa1a, Hspa1b, Hspa5, Hspb1, Hspb2, Prdx3, Sp1, Xiap

Cell cycle regulation Ccna2, Ccnd1, Ccnd2, Ccnd3, Ccne1, Ccne2, Cdk2, Cdk4, Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2a, Cdkn2b, Lats2, 
Rb1, Sik1, Trp53

Cytoskeletal constituents and reorganization Acta1, Acta2, Actb, Cap1, Grasp, Hsp90b1, Rac1, Vcl
Proteolysis, ubiquitination Fbxo32, Mdm2, Socs1, Socs3
Transcription factors, transcriptional regulators Atf3, Bcl6, Calr, Cebpb, Ddit3, Ddit4, Egr1, Esrra, Fos, Hdac1, Hdac9, Hes1, Jun, Junb, Klf10, Mef2a, Mef2c, 

Myc, Nfkb1, Nfkbia, Notch1, Nr4a3, Per2, Pparg, Ppargc1a, Ppargc1b, Srebf1, Srf, Stat1, Stat3, Stat6
Enzymes Acaca, Acadl, Acox1, Cox4i1, Cpt1a, Cpt1b, Gamt, Gapdh, Gck, Gls2, Gsk3b, Hk2, Hmox1, Ldha, Lpl, Mest, 

Nos2, Pck2, Pcx, Pfkm, Ptgs2, Sod1, Sod2, Sod3
Hormones, growth factors, cytokines Adipoq, Angpt1, Angpt2, Angptl4, Bmp4, Ccl2, Ctgf, Igf2, Il6, Inhba, Nppb, Ptn, Rspo1, Smad7, Spp1, Tgfb1, 

Tnf, Vegfa
Mitochondrial function Fasn, Lonp1, Sirt3, Tfam, Tomm20, Ucp2, Ucp3, Vdac1
Ion channels, transmembrane transporters Fabp3, Slc2a1, Slc2a4
Extracellular matrix, cell adhesion Col1a1, Icam1, Mmp9, Mmp13, Serpine1, Vcam1
Additional genes in array with negligible adipocyte 
expression

Alox5, Bmp2, Cap2, Ccl26, Ccna1, Ccnb1, Cdk1, Dapk2, Foxa2, Gata4, Hey2, Ins1, Ins2, Isl1, Kcnj11, Mafa, 
Mmp7, Mstn, Myocd, Myog, Neurod1, Nkx2-2, Nkx2-5, Nkx6-1, Nr4a1, Nr4a2, Pdx1, Ppp1r3a, Slc2a2, Xirp2
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ingenuity Pathway analysis (iPa)
Patterns of gene expression were examined using IPA software. 
For each of the adipocyte datasets, we uploaded fold-change 
between rosiglitazone treated and control cultures, along with 
the final expression value in rosiglitazone-treated cultures and 
P values for significant differential expression. The datasets 
were filtered for fold-changes of at least 2 in either direction, 
expression values normalized to Actb (as described above) of 
at least 1.0 in at least one culture condition, and P-values <0.05 
(Student’s t-test), leaving 171 genes. IPA core analysis was used 
to determine enrichment of molecular and cellular functions or 
upstream regulators predicted from observed patterns of up or 
down-regulation among the expressed genes. IPA uses Fisher’s 
Exact Test to test the hypothesis that patterns of gene expression 
related to functions or to upstream regulators are not due to 
chance. This analysis provides P values that signify the degree 
of enrichment of differentially expressed genes, and activation 
z-scores that take into account the direction of change compared 
to effects predicted from the IPA knowledge base (25). A z-score 
of at least 2.0 is considered significant.

external Data
We reanalyzed publically available RNA sequencing data obtained 
from Hao et  al. (26) (upstream analysis shown in Figure  6). 
In this published study 8-week-old male C57BL/6J mice were 
housed at thermoneutrality (28–30°C) on a 12:12  h light–dark 
cycle and fed standard chow diet ad libitum. After 8 days, mice 
were either retained at thermoneutrality or transferred to 4°C for 
2 or 4 days. Mice were killed by cervical dislocation for isolation 
of total RNA from interscapular BAT and inguinal WAT. Data 
consisting of tag counts per million were generated by digital 
gene expression profiling, mapped to NCBI RefSeq mRNAs, 
and deposited in Gene Expression Omnibus (accession number 

GSE63031). We uploaded the 0- and 2-day cold exposure datasets 
to IPA to compare upstream regulators between BAT and iWAT, 
as described in the legend to Figure 6. The mouse experiments 
described by Hao et al. (26) were approved by the Norwegian or 
Danish Animal Research Authority.

immunocytochemistry for Detection of 
UcP-1
Cells were seeded in 8-well culture chamber slides (BD Biosciences, 
Franklin Lakes, BJ). On day 7, cells were fixed with 4% formalde-
hyde in PBS for 15 min, and quenched with 150 mM Tris pH 8.0 
for 10 min. Cells were permeablized with 0.1% Triton X-100 for 
10 min, blocked for 1 h at room temperature (5% BSA in PBS), 
and incubated with UCP1 (Abcam) primary antibody solution 
(diluted 1:1,000 in 1% BSA in PBS) overnight at 4°C. Alexa Fluor 
488-conjugated goat anti-rabbit IgG (1:1,000 dilution in 1% BSA 
in PBS) was added and incubated at room temperature for 2 h. 
Images were observed on a Leica DMLB epifluorescence micro-
scope. Images were acquired using a DC350F camera with IM500 
software (Leica Microsystems AB; Kista, Sweden). Quantification 
was performed using Fiji (ImageJ version 1.50 g) (27), using a 
script developed by C.J. Nowell. Cells identified by DAPI staining 
in images were judged to be negative/positive for the protein of 
interest (UCP-1) in a blinded manner and counted using ImageJ 
software, performed by J. Merlin. No distinction was made in the 
relative intensities of staining within images.

Measurement of Oxygen consumption 
rates
Oxygen consumption rates (OCR) were measured using the 
Seahorse xF96 (Seahorse Bioscience). On day 7, adipocytes 
were washed twice in XF assay media (Seahorse Bioscience) 
supplemented with 25  mM glucose, 0.5  mM sodium pyruvate, 
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2  mM l-glutamine and 1% fatty free BSA, and 160  µl added/
well. OCR was measured as described in detail (28) with some 
modifications. 6 baseline rate measurements were made using a 
2  min mix, 5  min measure cycle. After 6 basal measurements, 
oligomycin A (5 µM) was added for 6 measurements, followed by 
a combination of antimycin A (1 µM) and rotenone (0.1 µM) for 
6 measurements. OCR rates immediately prior to oligomycin A 
injection at measurement number 6 were used as the basal rates 
and defined as 100%.

statistical analysis
All data are expressed as mean  ±  SEM of n. Statistical signifi-
cance was determined by Student’s t-test, multiple comparisons 
one-way ANOVA with Tukey’s test, or multiple comparisons 
Kruskal–Wallis test (for non-parametric analyses), as indicated 
in Figure legends. P < 0.05 was considered significant.

resUlTs

rosiglitazone Treatment of cultures From 
inguinal WaT increases Differentiation and 
the expression of genes related to 
Thermogenesis
7-day rosiglitazone treatment (1  µM) promoted expression of 
genes associated with both maturation of white adipocytes, and 
thermogenic re-programming (Figure  1; Table  2). While BA 
cultures differentiate in the absence of rosiglitazone, display-
ing robust expression of the mature adipocyte marker Fabp4 
(Figure  1B), iWA cultures express lower levels of Fabp4 (36% 
relative to BA), indicating that a much lower proportion of cells 
undergo differentiation under control conditions (in DMEM 
containing 4.5  g/l glucose, 10% (vol/vol) newborn calf serum, 
and 2.4 nM insulin). However, following 7d of rosiglitazone treat-
ment, Fabp4 mRNA levels are similar to that in iWAT tissues, and 
also to BA tissue and cultures (Figure 1; Table 2). Likewise, the 
genes Acaca (acetyl CoA carboxylase), Fasn (fatty acid synthase), 
Slc27a1 (FATP1), Pck1 (phosphoenolpyruvate carboxykinase), 
and Adipoq (adiponectin), all characteristic of mature adipo-
cytes, are expressed in control and treated BAs, whereas all of 
these genes are low in control iWA, and significantly increased 
by rosiglitazone (Figure  1B). Conversely, the white adipocyte 
marker Hoxc9 is expressed to some extent in both control and 
rosiglitazone-treated iWA cultures but is negligible in BA under 
any conditions (Figure 1).

The BA transcriptional regulator Prdm16 is expressed in both 
control and rosiglitazone-treated BA cultures, and is substantially 
increased in iWA cultures treated with rosiglitazone (Figure 1A), 
suggesting browning of iWA under 7-day rosiglitazone treat-
ment as we have shown previously (29). Pparg, encoding the 
rosiglitazone-targeted nuclear receptor PPARγ, a major regulator 
of adipocyte differentiation, is expressed in control white adipo-
cyte cultures but also significantly increased by rosiglitazone in 
treated iWA. These findings indicate that control iWA cultures 
contain few fully differentiated adipocytes, but a significant 
population of Hoxc9-positive preadipocytes (Figure 1A). Upon 
rosiglitazone treatment, levels of Fabp4, Adipoq, Fasn, Slc27a1, 

and Acaca expression in iWA equal or exceed those found in 
treated BA cultures, indicating a high degree of differentiation.

Figure  1D shows genes involved in fatty acid metabolism 
and mitochondrial function. In particular, Cpt1b (carnitine 
palmitoyltransferase 1B) is the rate-limiting step for fatty acid 
oxidation and consequent stimulation of mitochondrial respira-
tion, while Fabp3 is also required for efficient fatty acid oxidation 
(30). Cpt1b mRNA is 65 times higher in control BA than in iWA 
cultures, and in BA, undergoes 6.4-fold induction in the pres-
ence of rosiglitazone. iWA display a striking 455-fold induction, 
reaching levels similar to those in BA. Similarly, Fabp3 is induced 
by 630-fold in iWA cultures following rosiglitazone treatment. 
Additional genes related to thermogenesis (Acadl, Vdac1, Acox1, 
Sirt3, Pdk4, Prdx3, Cox4i1) display significantly higher expres-
sion in rosiglitazone-treated iWA than in control cultures. Ppara 
(PPARα), which promotes expression of genes essential for many 
aspects of fatty acid metabolism, and Ppargc1a (PGC-1α), a master 
regulator of adipocyte browning and mitochondrial biogenesis, 
are induced by 77- and 83-fold, respectively, in adipocytes from 
iWAT following rosiglitazone treatment (Figure 1A).

Analysis of genes related to glucose handling (Figure  1C) 
showed significant increases in the insulin responsive GLUT 
transporter Slc2a4 (GLUT4), and glucose metabolism enzymes 
Hk2, Pfkm, and Gapdh, in iWA cultures treated with rosigli-
tazone, further indicating the differentiation of iWA cultures 
toward an insulin-sensitive mature adipocyte population. 
Rosiglitazone treatment also increased the expression of Slc2a4, 
Gapdh, and Pgk1 in BAs, likewise suggesting changes in insulin-
mediated glucose handling, but also a significant increase in 
Slc2a1 (GLUT1), which has been shown to be the major GLUT 
involved in β3-AR-mediated glucose uptake in BA (31).

In parallel with individual qPCR assays, we obtained a compre-
hensive view of rosiglitazone-induced changes in cultured mouse 
adipocytes by analyzing mRNA levels of 160 expressed genes quan-
tified using a custom qPCR array (categorized in Table 1). Products 
of these genes participate in a broad cross-section of molecular and 
cellular functions, and represent targets of diverse upstream tran-
scriptional regulators. We assessed the expression of 4 genes from 
both the qPCR array and TaqMan assays (Cpt1b, Fabp3, Ppargc1a, 
and Sirt3). Because expression is normalized to the reference gene 
Actb, the two methods give closely corresponding values for a given 
sample, showing less inter-assay variation than the inter-sample dif-
ferences seen using either method. Genes displaying greater than 
twofold change of expression in either direction (P < 0.05) were 
subject to enrichment analysis using IPA software (Qiagen). The 
significantly enriched molecular and cellular functions are similar 
between BA and iWA (Figure 2A). The top score is for molecular 
transport (which encompasses a wide array of cellular processes), 
but the remaining significant functions are related largely to energy 
homeostasis, fatty acid metabolism, and ATP generation. Figure 2B 
shows the upregulated genes expected to contribute to these func-
tions in rosiglitazone-treated iWAs.

As shown in Figure 2A, there are four functions that show an 
apparent difference between BA and iWA. Increases in the “transport 
of lipid,” “metabolism of nucleic acid component,” and “transport of 
carbohydrate” functions are significant in only one of iWA or BA, but 
in each of these three cases the number of genes showing a direction 
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FigUre 1 | Rosiglitazone treatment increases expression of genes associated with thermogenesis in white adipocyte cultures. 7-day 1 µM rosiglitazone treatment 
(7-day Rosi) of brown (BA), or inguinal white adipocyte (iWA) cultures derived from the stromal vascular fraction, increased the expression of a range of 
transcriptional regulators (a), adipocyte function genes (B), genes involved in the uptake and handling of glucose (c), and genes involved in adipocyte energy 
production (D). Data represent mean ± SEM of three independent experiments, performed in duplicate, relative to β-actin expression. *P < 0.05, **P < 0.01, 
***P < 0.001 indicate statistical significance (unpaired Student’s t-test) between rosiglitazone-treated and control cultures.
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of expression change consistent with increased function is small. For 
example, significantly increased transport of carbohydrate is predicted 
in BA, based on enhanced expression of 10 genes positively linked to 
this function (Hk2, Ppargc1a, Ppargc1b, Ptgs2, Slc2a1, Slc2a4, Sod1, 

Tnf, Trib3, and UCP1). In iWA, only seven of these genes display 
increased expression, so in these cells transport of carbohydrate is no 
longer predicted to be significantly affected. This finding is not borne 
out by the functional phenotype of iWA, as rosiglitazone treatment 
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TaBle 2 | Comparison of gene expression in interscapular brown (BA) and 
inguinal white adipocytes (iWA) cultured for 7 days in the presence or absence 
of rosiglitazone (Rosi, 1 µM, 7 days), and in freshly isolated brown adipose tissue 
(BAT) and iWAT from mice housed at 22°C.

gene cultured Ba 
(control)

cultured Ba 
(+rosiglitazone)

interscapular 
BaT

Acot11 1.58 ± 0.34 2.58 ± 1.24 396 ± 65.6
Cpt1b 49.7 ± 39.9 317 ± 64.5 607 ± 97.3
Fabp3 6.94 ± 6.12 527 ± 272 123 ± 32.7
Fabp4 11,223 ± 4,563 36,435 ± 10,226 10,179 ± 2,555
Sirt3 17.1 ± 9.85 59.1 ± 13.4 79.3 ± 17.2
Ucp1a 2.62 ± 0.57 982 ± 375 10,344 ± 3,271
Prdm16 2.34 ± 1.35 2.17 ± 0.66 11.3 ± 1.49
Ppargc1a 6.87 ± 4.09 33.6 ± 10.6 22.3 ± 1.25
Pck1 26.2 ± 22.3 63.1 ± 34.8 1,115 ± 168
Pdk4 96.3 ± 84.9 521 ± 284 819 ± 157
Sirt1 8.42 ± 3.83 8.29 ± 1.15 9.06 ± 1.02
Adrb3a 3.38 ± 1.49 4.23 ± 0.99 4.19 ± 1.24

gene cultured iWa 
(control)

cultured iWa 
(+rosiglitazone)

inguinal WaT

Acot11 0.21 ± 0.06 0.91 ± 0.08 12.8 ± 0.78
Cpt1b 0.76 ± 0.21 346 ± 80.9 104 ± 13.9
Fabp3 0.19 ± 0.03 169 ± 79.7 63 ± 14
Fabp4 4070 ± 1211 34890 ± 3021 12,144 ± 2,412
Sirt3 2.99 ± 0.71 47.3 ± 12 18.1 ± 2.36
Ucp1a 0.04 ± 0.03 45.9 ± 13.4 1,775 ± 361
Prdm16 0.33 ± 0.04 1.35 ± 0.24 2.63 ± 0.41
Ppargc1a 0.47 ± 0.06 39.2 ± 12.8 7.74 ± 2.3
Pck1 0.26 ± 0.12 17.3 ± 2.71 419 ± 43.2
Pdk4 5.52 ± 0.59 326 ± 88 139 ± 23.8
Sirt1 4.69 ± 0.15 8.04 ± 1.16 4.65 ± 0.59
Adrb3a 0.49 ± 0.26 3.32 ± 1.01 3.04 ± 0.17

aData for Ucp1 and Adrb3 expression in control and rosiglitazone-treated 
adipocytes obtained from Merlin et al. (29). All data are expressed relative to Actb 
expression*1,000 ± SEM of three independent experiments (as per Figure 1).
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significantly increases glucose uptake in response to norepinephrine 
and CL316243 (29). This reflects our observation that the limiting 
step in agonist-stimulated glucose uptake is the abundance of the 
β3-AR, which is markedly enhanced when iWAs are cultured in the 
presence of rosiglitazone [Table 2; (29)]. Interestingly, the function 
“synthesis of reactive oxygen species” is predicted to be decreased in 
iWA (z-score of −2.2, based on 23 differentially expressed genes), 
while this function is not significantly affected by rosiglitazone treat-
ment in BA (z-score of +0.27, 16 genes). Genes displaying changes 
in expression expected to enhance or inhibit synthesis of reactive 
oxygen species (ROS) are shown in Figure 2C (iWA) and Figure 2D 
(BA). The overlapping genes all display the same direction of change 
in expression in iWA and BA, but in iWA cultures there are 15 
genes for which up- or down-regulation is expected to reduce ROS. 
The induction of genes encoding anti-oxidant enzymes, including 
superoxide dismutase SOD1 and SOD2 in iWAT also occurs in vivo 
following rosiglitazone treatment (32).

Brite adipocytes Display increased UcP1 
Protein and Uncoupling capacity in 
response to 24 h Treatment With the 
β3-ar agonist cl316243
As chronic β-AR treatment of BA upregulates UCP-1 mRNA and 
protein levels (1), we treated BA and iWA cultures in the presence/

absence of 7-d rosiglitazone (1 µM) with norepinephrine (1 µM, 
24 h) or CL316243 (1 µM, 24 h). Norepinephrine and CL316243 
caused a small increase in UCP1 mRNA expression (Figure 3B) 
and immunoreactivity (Figures  3A,C) in control BA, but this 
response was significantly amplified in rosiglitazone-treated BA 
cultures. The effect of combined rosiglitazone and β-AR agonist 
treatment was even more evident in iWA cultures. These data 
are consistent with the presence or absence of β3-ARs in these 
cultures (29). There were significant changes in the proportion 
of UCP1-positive cells between all control cultures and those 
treated with rosiglitazone alone (Figures  3A,C). Following an 
additional 24  h in the presence of CL316243, there were also 
significant differences in UCP1-positive cells between control 
and rosiglitazone-treated iWA cultures (Figure 3C).

In order to investigate whether the increase in UCP1 mRNA/
protein levels following rosiglitazone, norepinephrine, or CL316243 
treatment affected mitochondrial uncoupling in white adipocytes, 
we measured OCR in the presence of the ATP synthase inhibitor 
oligomycin (5 µM), and in the presence of rotenone (0.1 µM) and 
antimycin A (1  µM), that define non-mitochondrial sources of 
OCR. In control iWA cells, oligomycin inhibited OCR by ~50% 
(Figure 4). In iWA cells treated 7-day with rosiglitazone (1 µM), 
oligomycin inhibited OCR by only 34%. The insensitivity to oli-
gomycin was enhanced when rosiglitazone treated cells were also 
treated with either NE (1 µM, 2 and 24 h) or CL316243 (1 µM, 2 and 
24 h). This suggests an increase in uncoupled respiration. This was 
further assessed by treating the cells with a combination of rotenone 
(0.1 µM) and antimycin A (1 µM), that define non-mitochondrial 
sources of OCR (~36% of OCR was due to non-mitochondrial 
sources; Figure 4). After correction for non-mitochondrial OCR 
(indicated in dotted arrows in Figures 4C,D, and illustrated as % 
OCR due to proton leak in Figures 4E,F), we can see that mitochon-
drial uncoupling (proton leak) accounts for 14% of OCR in control 
iWA cells, 27% in rosiglitazone-treated cells, and this level rises to 
40–50% in rosiglitazone-treated iWA cells further treated with NE 
or CL316243. These results suggest that rosiglitazone-induced brite 
adipocytes possess a greater mitochondrial uncoupling capacity, 
and that β3-AR treatment of brite adipocytes significantly increases 
this capacity.

The effects of rosiglitazone on adipocyte 
Differentiation, and the Thermogenic 
Potential of iWa, are separable Following 
3-Day Treatment
Our studies indicate that 7-d rosiglitazone treatment promotes 
both differentiation and browning of iWA cultures. It is common 
practice to induce adipocyte differentiation using an adipogenic 
cocktail, generally containing IBMX, dexamethasone, insulin, 
high glucose, and often 1 µM rosiglitazone, particularly in studies 
involving human adipocytes. However, the presence of rosiglita-
zone, and perhaps IBMX that increases cellular cAMP and thus 
mimics the effect of β-AR agonists, are confounding factors in any 
attempt to attribute browning capacity to agents being tested using 
cultures derived from the stromal vascular fraction (14). Several 
published studies have included rosiglitazone in mouse adipocyte 
cultures only for the first 2–4 days before removing rosiglitazone 
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FigUre 2 | Molecular and cellular functions of genes differentially expressed in control or rosiglitazone-treated adipocytes. Ingenuity Pathway Analysis (IPA) software 
was used to compare downstream functions consistent with observed patterns of target gene up- or down-regulation in adipocyte cultures treated with rosiglitazone 
relative to vehicle (a). Functions are ranked according to the sum of activation z-scores across brown adipocyte (BA) and inguinal white adipocytes (iWA) cultures, 
irrespective of positive or negative direction. Z-scores ≥|2| describe statistically significant matches between known functions and observed patterns of gene 
regulation, and also whether functions are predicted to be up- or down-regulated downstream of the observed changes (activated shown in orange, inhibited shown 
in blue) (25). Network of genes upregulated in iWAT that contribute to key non-redundant cellular functions (oxidation of fatty acid, concentration of ATP and energy 
homeostasis) (B). Differentially expressed genes identified by IPA that contribute to synthesis of reactive oxygen species (ROS) in iWA (c) and BA (D). In both 
panels, coloring of genes red or pink denotes upregulation and green denotes downregulation. In panel (c), blue lines signify genes showing a change in expression 
consistent with reduced ROS synthesis, while yellow lines signify genes that are not consistent with this function. The z-score for iWA is −2.2, below the significance 
threshold of |2|, whereas that for BA is +0.27 and not significant. iWA cultures treated with rosiglitazone display fourfold increases in expression of the key 
anti-oxidant genes Sod1 and Sod2 relative to control cultures.
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FigUre 3 | Effect of combined rosiglitazone and β-adrenoceptor agonist treatment on uncoupling protein 1 (UCP1) mRNA and protein content. (a) Representative 
images obtained using a UCP-1 antibody (green) in brown (BA) and inguinal white adipocytes (iWA) following rosiglitazone (1 µM, 7 days) treatment in the presence/
absence of norepinephrine (NE, 1 µM, 24 h) or CL316243 (CL, 1 µM, 24 h). Nuclei are stained blue by DAPI staining. (B) Expression of UCP1 mRNA in BA and iWA 
following rosiglitazone (1 µM, 7 days) treatment in the presence/absence of norepinephrine (NE, 1 µM, 24 h) or CL316243 (CL, 1 µM, 24 h). Values from each 
rosiglitazone-treated BA experiment were expressed relative to their normalized value, and levels in all other cells/treatments expressed relative to this value, 
expressed as mean ± SEM from 3 to 5 independent experiments performed in duplicate. *P < 0.05, **P < 0.01, ***P < 0.001 indicate statistical significance from 
control (unpaired one-way ANOVA, Tukey’s multiple comparisons post-test). (c) Quantification of proportion of UCP-1-positive cells in (a). Data represent 
mean ± SEM of 5–6 independent experiments. Data are confined between 0 and 100% and are, therefore, non-parametrically distributed. *P < 0.05, **P < 0.01, 
***P < 0.001 indicate statistical significance from control cells, #P < 0.05, ##P < 0.01 indicate statistical significance from respective adrenergic control (multiple 
comparisons Kruskal–Wallis test, one-way ANOVA).
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from the media for the remainder of the differentiation protocol, 
instead of including rosiglitazone for the entire differentiation 
period [e.g., Ref. (19, 21–23, 33)]. We therefore examined changes 
in gene expression in both BA and iWA cultures treated with 
rosiglitazone for the entire 7  days compared to the first 3  days 
only (Figure  5). In iWA cultures, 3-d rosiglitazone promoted 
increases in Adrb3 mRNA that were 50% of those seen after the 
full 7-d treatment. 1–3 day rosiglitazone did not significantly alter 
expression of UCP1, Fabp3, Fabp4, or Cpt1b, in contrast to the 
substantial increases seen in 7d-treated cultures. We also tested 
the effect of CL316243 (1 µM, 24 h) on cultures differentiated with 
rosiglitazone for 3 or 7 days. CL316243 increased the expression 
of Ucp1 in 1–3 day cultures, whereas it had no effect on control 
cultures, indicating that 3 days does provide a suitable window to 
test for browning capacity. After 7 days in the presence of rosigli-
tazone, CL316243 treatment for 24 h did increase UCP1 mRNA 
further (although not significant in this cohort of adipocytes due 
to high variation observed), and also seen in Figure 3, however, 
there was no increase in Fabp3 or Cpt1b expression associated 
with 24 h CL316243. Thus longer exposure to rosiglitazone essen-
tially masks some of the effects of CL316243.

Modulation of gene expression in Ba and 
iWa cultured From the sVF compared to 
In Vivo adipose Depots
Our gene expression data and previous functional studies (29) 
indicate that although BA and iWA cultures are derived from 
adipocyte precursors in the SVF, the mature adipocytes retain 
distinct properties according to their site of origin. It has been 
shown recently that in vivo treatment of mice with rosiglitazone 
induces a population of mature UCP1-positive inguinal adipo-
cytes that have a distinct profile compared to populations induced 
by in vivo treatment with CL316243 (34). This differs from our 
findings based on adipocytes derived from the SVF, as in our 
cultures prior differentiation with rosiglitazone was required in 
order for cells to induce expression of the β3-AR and thereby 
become responsive to CL316243. This suggests that the mature 
adipocytes residing in iWAT depots differ from those derived 
from differentiation of the SVF. We compared the regulation of 
gene expression by rosiglitazone in our cultures with that dem-
onstrated by transcriptome sequencing of RNA from BAT and 
iWAT subjected to sympathetic stimulation due to cold exposure 
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FigUre 4 | Effect of combined rosiglitazone and β-adrenoceptor agonist treatment on oligomycin-insensitive oxygen consumption in inguinal white adipocytes 
(iWA). Control or rosiglitazone (1 µM, 7 days) treated iWA were treated with (a,c) 1 µM norepinephrine (NE; 2 or 24 h) or (B,D) 1 µM CL316243 (CL; 2 or 24 h) prior 
to measurement of oxygen consumption rates (OCR). Cells were treated in the Seahorse XF96 with the ATP-synthase inhibitor oligomycin (5 µM) or a combination of 
the mitochondrial inhibitors 0.1 µM rotenone (Rote) and 1 µM antimycin A (Anti A). Data are mean ± SEM of 12–38 independent experiments performed in duplicate. 
Data in (a,B) are representative traces of two experiments performed in duplicate. Arrows indicate the addition of oligomycin (5 µM) or the combination of rotenone 
(0.1 µM) and antimycin A (1 µM), with basal OCR set to 100% before the addition of oligomycin at rate 6 to account for variations in the raw data between adipocyte 
cultures made on different days. (e,F) The relative changes in OCR between oligomycin (defining OCR due to ATP synthase) and rotenone/antimycin A (defining 
OCR due to non-mitochondrial sources) are expressed as % OCR due to proton leak [calculated from the results presented in (c,D) indicated with the dotted 
arrows]. Data are non-parametrically distributed and, therefore, statistically analyzed by non-parametrically analysis. *P < 0.05, **P < 0.01, ***P < 0.001 indicate 
statistical significance from control cells, #P < 0.05 indicates statistical significance from rosiglitazone-treated cells, αP < 0.05 indicates statistical significance from 
adrenergic treatment alone (multiple comparisons Kruskal–Wallis test, one-way ANOVA).
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of mice for 2  days (26). We also compared the expression of 
key adipocyte and thermogenic genes in our cultures with that 
in freshly isolated BAT and iWAT (Table 2). These tissues were 
isolated from mice subject to mild thermal stress by housing at 
22°C, rather than at thermoneutrality (35, 36).

We used IPA to compare upstream regulators associated with 
all BA and iWA genes differentially expressed in the presence 

of rosiglitazone (twofold change in either direction, P <  0.05). 
As would be expected for cells treated with rosiglitazone, 
high-scoring upstream regulators across all cultures were 
closely associated with the PPARγ/PGC-1α network previously 
implicated in activating thermogenesis (Figure  6A). We also 
performed IPA upstream regulator analysis on the data from 
RNA sequencing of adipose depots from cold-exposed mice 
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FigUre 5 | Continued
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[(26), Figure 6B]. In BAT and iWAT, seven of the highest scor-
ing upstream regulators from the in vivo study corresponded to 
those seen in our rosiglitazone-treated cultures. This highlights 
the previously characterized thermogenic pathway involving 
activation of PPARγ by endogenous fatty acids released due to 
sympathetic stimulation of lipolysis (37). When we compared 
expression of key adipocyte and thermogenic genes in control 
and rosiglitazone-treated cultures with that in native AT depots, 
many showed similar levels in rosiglitazone-treated cultures and 
in BAT or iWAT. There are, however, striking differences in levels 

of UCP1, Acot11, and Pck1 mRNA, which each display over 
10-fold higher expression in native BAT and iWAT than in the 
corresponding rosiglitazone-treated cultures (Table 2; Figure 6).

DiscUssiOn

The presence of active BAT in humans (38–41) has reignited 
research into ways to promote increased thermogenesis in 
humans as a strategy to combat obesity and its related disorders 
such as type 2 diabetes. This is in part due to the overwhelming 
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FigUre 5 | Effect of different lengths of time of rosiglitazone on gene expression in white and brown adipocytes (BA). Control or rosiglitazone [1 µM, 3 days (3d),  
or 7 days (7d)] treated brown or inguinal white adipocytes (iWA) were treated with 1 µM CL316243 (24 h) prior to measurement of several genes, including Ucp1  
(a,B), Fabp4 (c,D), Adrb3 (e,F), Fabp3 (g,h), or Cpt1b (i,J). Data represent mean ± SEM of 6 (BA) or 7–8 (iWA) independent experiments, performed in duplicate, 
relative to β-actin (Actb) expression. *P < 0.05, **P < 0.01, ***P < 0.001 indicate statistical significance between all treatments and the control cultures. #P < 0.05, 
##P < 0.01, ###P < 0.001 indicate statistical significance between all treatments and the Rosi (3d) treated cultures. ∞P < 0.05, ∞∞P < 0.01, ∞∞∞P < 0.001 between all 
treatments and the Rosi (7 days) treated cultures. Data analyzed by Tukey’s multiple comparisons of one-way ANOVA performed on the ΔCt values, which are 
normally distributed. One sample (iWA treated with rosiglitazone for 3 days) was excluded from all analysis due to poor integrity of its RNA. A single measurement of 
Adrb3 for iWA treated with CL316243, and of Fabp4 for BA treated with Rosi 7 days, was excluded from the analysis due to failure of the qPCR reaction.
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evidence that activation of β3-ARs leading to increased UCP1 
expression and function in BAT can reverse obesity, and prevent 
the development of insulin resistance and diabetes in rodents 
(42–45). However, translation of these responses observed in 
rodents has not led to effective treatments in humans (46, 47). 
This may in part be due to human tissue comprising adipocytes 
that are more akin to mouse beige or brite adipocytes rather than 
classical BAs, based on gene expression profiling (9, 48). Thus 
research into beige/brite adipocytes, and how they can be induced 
by different stimuli [reviewed in Ref. (14)] may offer greater 
therapeutic potential. It is critical to this research that model 
systems comprising cultured adipocytes respond in the same way 
to browning agents as endogenous cells in vivo.

We have characterized FVB/N mouse adipocytes induced by 
rosiglitazone in culture, utilizing a method for in vitro differen-
tiation (8) that in control cultures lacks potential brite-inducing 
agents commonly used in adipocyte differentiation cocktails (such 
as triiodothyronine, IBMX, and rosiglitazone itself). We show that 
BA undergo differentiation in control cultures, but still display 

increased expression of UCP1 mRNA and protein in the presence 
of rosiglitazone. iWA cultures undergo both differentiation and 
browning due to inclusion of rosiglitazone. In BA cultures treated 
with rosiglitazone, 80% of cells become UCP1-positive, while 
this figure is 45% in iWA cultures (Figure  3B). These findings 
align with our observation that the key transcriptional regulators 
Prdm16 and PPARα are expressed at somewhat lower levels in 
iWA. Importantly, PPARγ and PGC-1α show comparable robust 
expression in rosiglitazone-treated BA and iWA (Figure 1).

cultured adipocytes From iWaT Depots 
require Priming by rosiglitazone for 
induction of UcP1 and Thermogenic 
genes by the β3-ar agonist cl316243
We showed previously that the majority of BA cells express β3-AR 
protein in control and rosiglitazone-treated cultures, whereas 
in iWA cultures the proportion of β3-AR-positive cells increase 
markedly in the presence of rosiglitazone (29), concomitant with 
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FigUre 6 | Comparison analysis [ingenuity pathway analysis (IPA)] of transcriptional regulators governing gene expression in rosiglitazone-treated adipocytes and 
2-day cold-exposed mice. IPA software was used to determine upstream regulators consistent with observed patterns of target gene up- or down-regulation in 
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increased levels of β3-AR mRNA (Figure 5). This in turn facilitates 
the response to β3-AR agonists (29). This may represent a special 
case, however, it is equally likely that receptors targeted by other 
agents are similarly induced during adipocyte differentiation and/
or browning. In mice, the β3-AR is expressed in native BAT and 
iWAT at levels similar to those in rosiglitazone-treated cultures 
(Table 2), consistent with widespread findings that in vivo treat-
ment with CL316243 can induce browning in iWAT depots (9, 35, 
49). The utility of cultured adipocytes as a screening platform is 
clearly dependent on the presence of the target receptors.

Wu et  al. (9) suggested that the inherent capacity for brite 
adipogenesis in  vivo is independent of external factors, such as 
innervation, blood flow, oxygen supply, and nutrients. While dif-
ferentiation of cultured adipocytes from the SVF does occur in a 
cell-autonomous manner, properties of the precursor cells appear 
to be specified by the environment from which they were derived, 
with a significant contribution from SNS innervation. In vivo, BAs 
possess a well-established ability to adapt to chronic β-AR activa-
tion; prolonged exposure to cold increases UCP1 expression in 
BAT (50, 51), which is inhibited by sympathetic denervation of BAT 
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(37, 52). This upregulation in UCP1 occurs via β3-ARs and can be 
inhibited by β3-AR selective antagonists (53, 54). The requirement 
for intact sympathetic innervation has also been demonstrated in 
iWAT. For example, 3-week-old mice have high levels of UCP1 
expression in iWAT, but this is markedly reduced by 8 weeks of age 
(35). At 8 weeks, mature adipocytes within iWAT re-express UCP1 
in response to CL316243 stimulation, but this effect is abolished 
in mice undergoing prior surgical denervation of iWAT depots at 
3 weeks. Thus sympathetic tone due to the mild cold-stress associ-
ated with housing mice at room temperature (55) maintains brown-
ing capacity in iWAT. We observed high UCP1 expression in native 
iWAT from animals housed at 22°C, reflecting this thermal stress 
(Table 2). Conversely, UCP1 mRNA is undetectable in the iWAT of 
mice housed at thermoneutrality [28–30°C (56)].

Importantly, reports of CL316243-induced browning have used 
mice housed at room temperature rather than at thermoneutrality 
(9, 35, 49). Previous studies have demonstrated an in vitro effect of 
CL316243 on UCP1 expression and function only in white adipo-
cytes cultured in the presence of rosiglitazone or adipogenic cocktails 
(9, 49). Likewise, we found that while 24 h β3-AR stimulation (NE 
or CL316243) increased the proportion of UCP1-expressing cells in 
both control and treated BA cultures, neither agent alone induced 
significant browning of iWA cultures (Figure 3). These findings may 
recapitulate the requirement for intact SNS innervation of WAT 
seen in vivo, as sympathetic tone and consequent β-AR activation 
would be expected to drive lipolysis and subsequent activation of 
PPARγ by endogenous fatty acids. From our overall profiling of gene 
expression using the custom qPCR array, we examined predicted 
upstream regulators (IPA) based on genes differentially expressed 
following 7d rosiglitazone in cultured adipocytes, and these regula-
tors were compared to those predicted in BAT and iWAT of mice 
subject to cold exposure for 2  days (26). In both cases, the top 
upstream regulators included PGC-1α, PPARγ, PPARα, PPARδ, 
CEBPα, ERRα (estrogen-related receptor α), and KLF15 (Figure 6), 
consistent with a common mechanism of induction that is depend-
ent on PPARγ.

Functional Demonstration of iWa 
Browning
The therapeutic potential of adipocyte browning is contingent 
upon the dissipation of energy through mitochondrial uncou-
pling becoming dominant over energy storage as triglycerides. 
We previously have shown that increased UCP1 function in brite 
adipocytes (defined as the percentage of OCR due to proton leak) 
is increased in brite adipocytes as compared to white adipocytes 
(29), which correlates with an increase in the expression of sev-
eral genes involved in energy production (Figure 1). To assess 
whether combined treatment of iWA cells with rosiglitazone and 
a β-AR agonist (2 or 24 h treatment with either NE or CL316243) 
could further increase UCP1 function, we analyzed our OCR 
data, as described by Collins and colleagues (57), by defining 
the mitochondrial capacity that is not coupled to ATP synthesis. 
Rosiglitazone treatment of iWA induces a significant increase 
in this non-coupled spare capacity at the level of mitochondria, 
which is further increased in iWA also treated with either NE or 
CL316243 (Figure 4). These results indicate that the combination 
of both a browning agent (rosiglitazone) and a β3-AR agonist are 

required for maximal effects on mitochondrial function in brite 
adipocytes. This demonstrates that inguinal-derived brite adipo-
cytes are geared toward mitochondrial uncoupling (and energy 
expenditure), consistent with a previous report that brite adipo-
cytes are thermogenically competent, in that their mitochondria 
are functional and able to uncouple via UCP1 (58).

UCP1 is activated upon release of fatty acids generated following 
adrenergic stimulation of lipolysis, however, a recent study has also 
demonstrated that UCP1 activity is sensitized in the presence of 
ROS due to sulfenylation at Cys253 (59). In vivo, increased ROS due 
to deletion of Sod2 (encoding Mn-superoxide dismutase) leads to 
enhanced expression of key fatty acid oxidation genes in iWAT, and 
elevated mitochondrial oxygen consumption (60). Furthermore, 
UCP1 plays a central role in protecting adipocytes from mitochon-
drial dysfunction in the presence of high ROS and calcium overload 
(61). Thus, UCP1 is both activated by and protects against the effects 
of increased mitochondrial ROS. Our gene expression profiling and 
IPA indicates that rosiglitazone treatment may have dual protective 
actions in iWA, by increasing expression of UCP1 and at the same 
time inducing Sod1, Sod2, and other genes implicated in reduced 
ROS synthesis (Figure 2C).

culture conditions That Promote 
adipogenesis but not Browning
Another issue raised by our study is whether it is possible to separate 
the effects of rosiglitazone on adipocyte differentiation from those 
on thermogenic programming in iWA. Certainly 7d rosiglitazone 
treatment promotes induction of UCP1, with further substantial 
increases following an additional 24 h in the presence of CL316243 
(Figures 3 and 5). In contrast, Fabp3 and Cpt1b are increased by 7d 
rosiglitazone but there is no potentiation of expression by CL316243, 
indicating that responses to the β3-AR agonist are in part masked 
by prolonged rosiglitazone treatment. The magnitude of responses 
was smaller when rosiglitazone was included in the cultures only for 
the first 3 days of the 7-day culture period, however, this protocol 
did provide an improved window for observing the browning 
effect of 24 h CL316243 over and above rosiglitazone alone, with 
significant increases in expression of UCP1 (96-fold). The capacity 
to respond to CL316243 in these 3d cultures may be dictated solely 
by rosiglitazone-induced expression of the β3-AR, or it may reflect 
other aspects of the differentiation process. We cannot say at this 
time whether the 3d iWA most closely resemble the brite adipocytes 
seen in vivo (34), though profiling both 3d and 7d cultures would 
be worthwhile as it would facilitate a better understanding of the 
relationship between these adipocytes and those induced by PPARγ 
activation in mice.

cOnclUsiOn

While there is a wealth of data on the gene expression of brite 
adipocytes (8, 9, 56, 62–66), these studies have generally aimed 
to identify differential genetic markers between brown, white, 
and brite adipocytes. We have instead sought to determine the 
similarities of brite adipocytes to conventional BAs in metabolic 
responses and profiles of thermogenic gene expression. We have 
demonstrated that the induction of brite adipocytes involves the 
upregulation of metabolic genes associated with thermogenesis, 
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