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Protease-activated receptor-2 (PAR2) is one member of a small family of transmem-
brane, G-protein-coupled receptors. These receptors are activated via cleavage of 
their N terminus by serine proteases (e.g., tryptase), unveiling an N terminus tethered 
ligand which binds to the second extracellular loop of the receptor. Increasing evidence 
has emerged identifying key pathophysiological roles for PAR2 in both rheumatoid 
arthritis (RA) and osteoarthritis (OA). Importantly, this includes both pro-inflammatory 
and destructive roles. For example, in murine models of RA, the associated synovitis, 
cartilage degradation, and subsequent bone erosion are all significantly reduced in the 
absence of PAR2. Similarly, in experimental models of OA, PAR2 disruption confers pro-
tection against cartilage degradation, subchondral bone osteosclerosis, and osteophyte 
formation. This review focuses on the role of PAR2 in rheumatic disease and its potential 
as an important therapeutic target for treating pain and joint degradation.
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PROTeASe-ACTivATeD ReCePTOR-2 (PAR2)

Protease-activated receptors (PARs) 1–4 are a family of transmembrane, G-protein-coupled 
receptors. These receptors lack a conventional soluble ligand. Instead they are activated by serine 
protease-mediated cleavage of their N terminus, unveiling a “tethered ligand” which can then bind 
the second extracellular loop. Once activated, the continued interaction between the receptor and 
its tethered ligand means it cannot be subsequently reactivated. Instead, PARs are internalized and 
degraded post-activation. PARs 1, 3, and 4 are primarily cleaved by thrombin (1) and play important 
roles in vascular physiology, the coagulation pathway and the immune system. PAR2, in contrast, 
is activated by a number of serine proteases such as trypsin (2), mast cell tryptase (3), neutrophil 
proteinase 3 (4), and matriptase (5), many of which are generated and released during tissue injury 
and/or inflammation. In the last decade a strong link has emerged between PAR2 and the innate 
and adaptive immune responses (6), and the stromal compartment. Furthermore, given the previ-
ously established role for PAR2 in nociception (7), there is now substantial evidence to support the 
therapeutic targeting of this receptor to combat pain as well as inflammation and joint destruction 
and in the rheumatic diseases. Notably, while there are no specific and potent PAR2 antagonists in 
clinical trials, a recent publication of the crystal structure of PAR2 (8) will accelerate design and 
availability of such compounds for future trials in various diseases.
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RHeUMATOiD ARTHRiTiS (RA)

The arthritides are a heterogeneous group of joint diseases with 
the common endpoint of structural joint degradation; the most 
overtly inflammatory of these is RA. This chronic, autoimmune 
disorder affects an estimated 1% of the world population (9). 
It is characterized by swelling, pain, and loss of mobility, and 
manifests as a result of a break in immune tolerance toward 
antigens associated with articular joints in genetically susceptible 
individuals. This leads to an adaptive driven immune response to 
self-antigens, such as IgG (rheumatoid factor) or posttranslation-
ally modified proteins (citrullinated protein). The RA inflamma-
tory synovial infiltrate consists of auto-reactive B and T  cells, 
inflammatory monocytes, and mast cells, which together pro-
duce a network of pro-inflammatory cytokines (e.g., TNF-α and 
IL-6) (10), chemokines (e.g., CCL2 and CXCL8), and proteases, 
contributing to a hypoxic and inflammatory environment. The 
synovial membrane expands due to reduced apoptosis, increased 
inflammatory mediators (e.g., IL-6), and catabolic protease 
production by fibroblast-like synoviocytes (FLS). This aggressive 
phenotype is maintained (11) through epigenetic imprinting, 
creating an almost “transformed” synovial membrane (12). FLS 
hyperplasia creates structural damage due to thickening of the 
synovial membrane, creating an invasive pannus that can erode 
neighboring tissue. Structural damage is also caused by the 
immune cell infiltrates invading the juxta-articular bone and cal-
cified cartilage, led by excessive osteoclast activity (derived from 
infiltrating myeloid cells, e.g., monocytes) and TNF-α-driven 
mechanisms (13). Pathogenic mechanisms driving structural 
joint changes in RA are summarized in Figure 1.

Synovium
The first “proof of concept” that PAR2 has a direct role in chronic 
inflammatory arthritis was demonstrated by Ferrell et al. using an 
adjuvant-induced monoarthritis model in wild-type (WT), PAR2 
deficient homozygote (Par2−/−) and PAR2 heterozygote (Par2+/−) 
mice. This innate immune-mediated arthritis model revealed 
almost complete ablation of synovitis in Par2−/− compared with 
WT mice, with heterozygotes demonstrating an intermediate 
phenotype (14). The immunological role of PAR2 in murine RA 
models was further investigated in vivo using the gold standard 
model of inflammatory RA, collagen-induced arthritis (CIA) 
in both DBA/1 and C57Bl/6J mice. Arthritis was significantly 
reduced following therapeutic treatment with PAR2 inhibitors 
(both small-molecule antagonist ENMD-1068 and SAM-11 
monoclonal antibody) (15). This was associated with an altered 
immune response in secondary lymphoid tissue, whereby PAR2 
inhibition significantly reduced IL-17 and IFN-γ levels and had a 
minor impact on TNF-α, IL-1β, IL-6, IL-12, CCL3, and GM-CSF 
expression (15). Furthermore, anti-type II collagen antibod-
ies were also significantly reduced after PAR2 inhibition. This 
compelling evidence supports the immunological role of PAR2 
in inflammatory joint disease, pinpointing reductions in key 
synovitis-associated cytokines, and links PAR2 to the induction 
of adaptive antibody responses. The upstream ability of PAR2 to 
modulate multiple cytokine pathways potentially represents an 
over-arching approach to target multiple immunopathological 

pathways. It is therefore interesting to speculate that PAR2-
mediating therapeutic strategies could provide an alternative to 
those currently focused on targeting these pathways (i.e., JAK 
inhibitors).

Subsequent translational studies implicated a pathogenic 
role for PAR2 in the context of human RA. Notably, the level 
of PAR2 transcript and protein was significantly increased 
in both synovial tissue biopsies and isolated FLS from RA 
synovium when compared with osteoarthritis (OA) patients 
(16). An inflammatory role for PAR2 in the synovia was further 
implicated by the correlation of PAR2 expression in RA patients 
with the extent of synovial pathology (16). To understand the 
underlying mechanism, studies have been conducted to dissect 
the pathways influenced by PAR2 activation in cells associated 
with RA synovial infiltrates. Crilly and colleagues investigated the 
cell surface expression of PAR2 on CD14+ circulating monocytes 
(which likely migrate into the inflamed joint and differentiate to 
macrophages or osteoclasts) during both RA remission and flare 
(17). These studies demonstrated that the expression of PAR2 on 
patient monocytes correlated with classic biomarkers of disease 
flare such as erythrocyte sedimentation rate and C reactive 
protein levels. Importantly, the elevated levels of PAR2 surface 
expression in CD14+ monocytes was significantly reduced in 
patients receiving conventional DMARDs (17, 18). This direct 
correlation between receptor expression and disease activity sup-
ports a role for PAR2 in driving inflammatory disease. Moreover, 
at a functional level, the activation of PAR2 on human monocyte 
in vitro derived macrophages, via the agonist peptide SLIGKV, 
fundamentally altered the cellular cytoskeleton (elongated 
spindle-like appearance) and enhanced TNF-α production, both 
in the presence or absence of LPS stimulation (19). This confirms 
that enhanced PAR2 expression on monocytes (17) translates to 
a pro-inflammatory phenotype. However, the potential differ-
ential expression of PAR2 or the functional role of the receptor 
in different monocyte subpopulations remains to be elucidated. 
Thus far the PAR2 expression on RA monocyte subsets has been 
limited to analysis of CD14+ monocytes. Interrogation of PAR2 
expression in the full monocyte compartment in RA, including 
classical monocytes (CD14++CD16−, responsible for higher 
cytokine production and inflammation), intermediate monocytes 
(CD14++CD16+) and non-classical monocytes (CD14+CD16++, 
patrolling) may provide further insights into the inflammatory 
role of this receptor (20).

In summation, overall increased PAR2 expression is seen 
across multiple cell types of the RA synovium. Assessment of 
PAR2 activity both in vivo and in vitro indicates that this pathway 
may at least in part be responsible for the disease associated 
activity of these cell types. Therefore, PAR2 may be dysregulated 
in cells of the innate immune system and stromal FLS and thus 
represent a therapeutically tractable pathway in RA.

Cartilage
The main contributor to cartilage degradation in RA is a hyper-
plastic synovium (21). The protein-binding properties of cartilage 
becomes altered due to decreased lubricin expression and loss 
of other protective mechanisms within the synovium (22). This 
leads to FLS adhesion and invasion of the bone and cartilage, 
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FigURe 1 | Arthritic joint changes and the pathogenic role of protease-activated receptor-2 (PAR2). (A) Schematic representation of a normal healthy joint, 
highlighting the various joint tissues, cell types residing within, and the expression of PAR2 in the healthy joint. (B) A schematic representation of a rheumatoid 
arthritis-affected joint, highlighting characteristic changes including: synovitis, degradation of the articular cartilage; bone erosion and increased inflammatory factors. 
PAR2 expression is also highlighted in pathogenic areas known to be influenced by PAR2 from animal studies or in vitro cell work. Including, increase in PAR2 
expression in monocytes, macrophages, and fibroblast-like synoviocytes, and contributing to monocyte IL-6 production, macrophage cytokine production, 
autoantibody production, bone erosion, and cartilage destruction. (C) Schematic representation of an osteoarthritis (OA)-affected joint, highlighting characteristic 
changes including: synovitis; degradation of the articular cartilage; osteophyte formation; subchondral bone sclerosis and pannus formation. PAR2 expression is also 
highlighted in cells/tissues and pathogenic outcomes known to be influenced by PAR2 from animal studies or in vitro cell work. Increased levels of PAR2 have been 
found in OA chondrocytes, fibroblasts, and macrophages, with PAR2 known to play a role in osteophyte formation, cartilage degradation (through catabolic protease 
production), and inflammation.
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resulting in the formation of pannus. Metalloproteinases (MMPs) 
are released from the chondrocytes and synovium, contributing 
to subsequent cartilage degradation. FLS predominantly release 
MMP-14 that also degrades the cartilage matrix (23). Chondrocytes 
also express a disintegrin and MMP with thrombospondin  
motifs 5 (ADAMTS 5), which has the ability to degrade aggrecan 
(ECM component) (24), as well as MMP-1; the major collagenase 
associated with RA (25). Moreover, the secretion of IL-1β within 
the synovial environment, which drives catabolic activity within 
chondrocytes, also upregulates PAR2 on chondrocytes and can in 
turn be regulated by PAR2 activation (16).

Using the adjuvant-induced arthritis model to mimic chronic 
inflammatory arthritis in mice, the absence of PAR2 conferred 
protection against cartilage damage. By comparison, cartilage 
was entirely replaced by pannus in WT mice, with associated 
erosion of the cortical bone, while Par2+/− mice exhibited an 
intermediate level of protection against cartilage damage (14). 
The ability of PAR2 to regulate adaptive immune pathways 
potentially responsible for driving cartilage damage in RA was 
explored in the CIA model. Histological analysis of the paws 
revealed that Par2−/− mice had significantly lower cartilage 
damage than WT controls (15), suggesting that this protection 
observed in Par2−/− mice was related to the capacity of PAR2 to 
drive the release of cytokines, including IL-1β, known to induce 
degradation of cartilage and ECM components in this inflam-
matory arthritis model. While PAR2 drives cartilage damage 
in inflammatory arthritis, the pathogenic mechanism is poorly 
understood. Unanswered questions include whether PAR2 can 
modulate the erosive environment leading to cartilage damage,  
or whether its activation undermines chondrocyte biology/viabil-
ity. Moreover, translational studies are required to determine if 
this pathogenic role is relevant in human RA.

Bone
Dysregulation of the homeostatic bone remodeling process is 
recognized to be a key feature of RA. This is associated with 
localized bone erosion at the site of inflammation, and systemic 
bone loss, that can contribute to an increased risk of fracture 
(26, 27). The high prevalence of synovial pro-inflammatory fac-
tors promotes osteoclastogenic activity resulting in focal bone 
erosions, especially at the interface of bone and pannus (28). In 
addition, the balance of bone formation and resorption is further 
perturbed in these patients because the inflammatory environ-
ment, including IL-1β and IL-6 inhibit the migration and activity 
of the bone forming osteoblasts (29, 30). The role of PAR2 in 
bone erosion in inflammatory disease remains unclear, and 

current literature regarding PAR2 in osteoclasts is conflicting. 
Studies have shown PAR2 is expressed in osteoblasts (31) and 
CD14+ monocytes (17), the latter being osteoclast precursors. 
Another study explored PAR2-mediated bone functions, in a 
bone marrow-derived coculture system; addition of soluble 
factors resulted in osteoblast differentiation, subsequently pro-
moting osteoclastogenesis. When PAR2 activating peptides were 
included in this system, the number of tartrate-resistant acid 
phosphatase (TRAP) positive osteoclasts decreased. However, 
when osteoclasts were cultured alone (without osteoblasts), 
PAR2 activation had no effect. This suggests PAR2 activation 
inhibited osteoclastogenesis in vitro via an osteoblast-mediated 
mechanism, and it was proposed that this mechanism may pro-
tect bone from uncontrolled resorption (32). In contrast, a study 
of skeletal development in Par2−/− mice revealed an increase in 
total bone volume and a deficit in the area of bone associated 
with osteoclasts. Moreover, in  vitro osteoclastogenesis assays 
demonstrated that osteoclasts derived from precursors lacking 
PAR2 had reduced levels of TRAP (33). While conflicting, these 
studies do indicate that PAR2 could play a fundamental role 
in the differentiation of bone precursor cells into their mature 
forms, and therefore bone remodeling in RA may be influenced 
via PAR2 modulation.

OSTeOARTHRiTiS

As the most prevalent musculoskeletal disease globally (34), OA 
is a chronic debilitating condition affecting an estimated 100 mil-
lion Europeans. It has a dramatic impact on quality of life (35), 
through associated pain, swelling of the joint and lack of mobility/
loss of normal joint function. In the absence of effective disease 
modifying therapies, analgesia, and ultimately arthroplasty 
remain the only real options for most patients. In the UK, between 
2007 and 2008 over 140,000 primary hip and knee replacements 
were performed, with an addition of more than 10,000 revision 
arthroplasties. This represents an NHS cost burden in excess 
of £1 billion per year (36). Risk factors linked to OA include 
gender, obesity, genetic factors, joint injury and advancing age, 
with approximately 80% of the population >65 years old show-
ing radiological evidence of OA (37). Depending on the stage of 
disease, an OA joint can exhibit various characteristics such as 
degradation of the articular cartilage, osteophyte formation (bony 
outgrowths), subchondral bone sclerosis, pannus formation, and 
inflammation of the synovial membrane (synovitis) (Figure 1C). 
OA is inherently heterogeneous: there is substantial inter-patient 
variability in clinical features, biochemical characteristics and 
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treatment responses. This, together with the subtle onset of OA 
and lack of definitive biomarkers, makes early diagnosis extremely 
challenging. What was once considered a degenerative “wear and 
tear” disease is now recognized as a complex disorder involving 
various molecular pathways and inflammatory mediators (38). 
The pathogenic mechanisms of this complex disease are still not 
fully understood, and accordingly this unmet clinical need is a 
major focus of research.

Synovium
Unlike RA, there are no systemic signs of inflammation or evi-
dence of neutrophils within OA synovial fluid. There is, however, 
evidence of inflammatory (B and T cell) infiltrate into the syn-
ovium (39), together with increased levels of pro-inflammatory 
cytokines (IL-1β and TNF-α) and catabolic proteases (e.g., MMPs).  
These are thought to be instrumental in chondrocyte mediated 
cartilage destruction.

Scoring of synovial thickness and monocyte infiltrates in OA 
demonstrated that OA synovitis correlates with levels of PAR2 
expression in synovial tissue (40). While synovitis scores were 
reduced in OA compared with RA, increased PAR2 levels were 
directly associated with inflammatory conditions across all 
patient groups. These studies also demonstrated that a PAR2 
antagonist, ENMD-1068, dose-dependently inhibited TNF-α 
production from OA synovial explant cultures. Increased PAR2 
expression in OA synovia would therefore appear to be not merely 
a passive marker of inflammation, but an active contributor to 
pro-inflammatory cytokine production.

Cartilage
Chondrocytes are the primary source of enzymes such as MMPs 
responsible for the metabolism of the cartilage matrix in OA (41). 
Pro-inflammatory cytokines synthesized and released by both 
chondrocytes and the synovial membrane are important in the 
development and progression of OA as they play a central role 
in inducing cartilage catabolic processes (42). MMPs are consid-
ered crucial in cartilage catabolism, as they collectively have the  
ability to degrade all components of the ECM (43).

Protease-activated receptor-2 transcript is sevenfold higher in 
chondrocytes isolated from the cartilage of OA patients compared 
with control femoral fracture patients who have no evidence 
of arthropathy (44). Moreover, in  vitro culture and subsequent 
passage of chondrocytes demonstrated that only in OA-derived 
samples is there maintenance of PAR2 protein. This indicates 
potential epigenetic alterations in these cells enabling them to 
retain PAR2 expression (44).

Selective activation of PAR2 in chondrocytes mediates a 
stress-activated protein kinases (SAPK)/p38 and extracellular 
signal-regulated kinase 1/2 signaling cascade, which results in 
the generation of MMP-1, MMP-13 and cyclooxygenase 2 (45). 
In OA and RA, MMP-1 and -13 and ADAMTS aggrecanases 
are strongly associated with the degradation of collagen and 
aggrecan (46), the main components of the ECM. Moreover, pro- 
inflammatory cytokines such as IL-1β and TNFα have been shown 
to upregulate PAR2 expression in OA chondrocytes (44), and 
PAR2 appears to regulate the synovial release of IL-1β, a chon-
drocyte catabolin (16, 47). These findings collectively implicate 

a potential auto-feedback loop between PAR2, inflammation and 
cartilage destruction.

In the murine destabilization of the medial meniscus (DMM) 
model, PAR2 has been identified as a critical checkpoint in the 
pathogenesis of experimental OA (48). Par2−/− mice exhibit 
substantially less cartilage damage at 4 weeks’ post DMM than 
WT littermates (48), a key finding confirmed in a later study (49), 
and across several groups (50, 51). Notably, 8 weeks’ post DMM, 
Par2−/− mice retain cartilage integrity while WT mice have more 
pronounced joint destruction (48). Using either a PAR2 agonist 
or monoclonal antibody specifically targeting the PAR2 protease 
cleavage site, inhibition of PAR2 in WT mice was observed to be 
as equally effective as gene deletion in curtailing OA progression 
in vivo (48), but only in early (1 week) stages of disease.

To further test the hypothesis that PAR2 drives cartilage 
damage in the DMM model (48, 50, 51), additional experiments 
using a viral vector containing human PAR2 (hPar2) showed 
that intraarticular injection of hPar2 in Par2−/− mice restored the 
pathogenic phenotype (49). While Jackson et al. demonstrated a 
significant correlation between cartilage damage and subchondral 
bone sclerosis (51), Huesa et al. demonstrated cartilage damage 
but no significant difference in subchondral bone sclerosis in the 
hPAR2-transfected Par2−/− mice compared with vector controls 
(49). The authors concluded that, in the DMM model, even in 
the absence of subchondral bone sclerosis, cartilage damage is 
mediated via PAR2. However, it should be appreciated that subtle 
differences in PAR2-dependent pathological features in these 
studies may reflect divergence of methodologies or temporal 
analyses employed by these groups. In summation, PAR2 activity, 
through the stimulation of MMPs and various other proteases 
appears to promote cartilage degradation. PAR2 deficiency may 
confer protection against cartilage erosion via inhibition of MMP 
production and/or alteration of chondrocyte phenotype. Many 
questions remain with regard to the role of PAR2 in chondrocyte 
biology and how it affects OA etiology. Thus future studies should 
consider using cartilage-specific Par2−/− animals.

Bone
Bone pathology in OA differs from RA. In addition to bone loss in 
the metaphysis, OA is characterized by osteosclerosis (hardening 
and increased density of subchondral bone) (52) and formation 
of osteophytes along the joint margins (53).

Protease-activated receptor-2 has recently been reported 
to play an essential role in osteophyte formation during DMM 
progression: although osteophytes are detectable in both WT and 
Par2−/− mice, the quantity, size, and growth of osteophytes over 
time is significantly reduced in Par2−/− animals. The OA pheno-
type was subsequently “rescued” via intraarticular Par2 adenovi-
rus transfection (49), which restored the pathogenic phenotype 
observed in WT animals. This appears to contradict a previous 
study which found no significant gross difference in osteophyte 
formation between WT and Par2−/− (51). However, the difference 
in techniques adopted in these studies (microcomputed tomog-
raphy versus histology, respectively) may explain the conflicting 
results as the former technique offers far more quantitative 
measurement of osteophyte changes such as volume, density, and 
arboreal structure. While these studies provide important “proof 
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of concept” that PAR2 modulates the pathogenic bone pheno-
type found in murine OA models, in  vitro studies on human 
osteoclasts and stroma are still needed to dissect the mechanisms 
involved, as well as translating these findings to human OA. This 
is an important future direction, since PAR2 inhibition may offer 
protection against osteophytogenesis in OA patients.

CONCLUSiON

Arthritis studies have identified the cell types expressing PAR2, 
shown the receptor is up regulated and provided proof of concept 
that PAR2 inhibition offers therapeutic protection. PAR2 may 
therefore present a complete novel target that merits research 
focus since there remains an urgent need for targeted disease 
modifying agents in both RA and OA. Recent advances in RA 
biological treatments against specific cytokines and immune cells 
have not fulfilled their early promise, are expensive, and require 
an injection-based delivery system. In OA, disease modifying 
agents are virtually non-existent and current treatment options 
are severely limited.

Continuing research is required to achieve the ultimate 
therapeutic ambition of identifying new targets with high disease 

specificity and good accessibility by manageable drug delivery. 
While PAR2 has been recognized as a potential target with sig-
nificant therapeutic value, advance in this area has been severely 
limited by the current lack of effective small-molecule PAR2 
antagonists. Given the burgeoning problem of arthritis with an 
ever aging population, the recent and timely publication of the 
crystal structure of PAR2 (8) presents a landmark step in pro-
gressing pharmaceutical research by accelerating development of 
such agents for future clinical studies.
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