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Fibroblast growth factor-23 (FGF23) is a bone-derived hormone suppressing phosphate 
reabsorption and vitamin D hormone synthesis in the kidney. At physiological concen-
trations of the hormone, the endocrine actions of FGF23 in the kidney are αKlotho- 
dependent, because high-affinity binding of FGF23 to FGF receptors requires the  
presence of the co-receptor αKlotho on target cells. It is well established that excessive 
concentrations of intact FGF23 in the blood lead to phosphate wasting in patients with 
normal kidney function. Based on the importance of diseases associated with gain of 
FGF23 function such as phosphate-wasting diseases and chronic kidney disease, a large 
body of literature has focused on the pathophysiological consequences of FGF23 excess. 
Less emphasis has been put on the role of FGF23 in normal physiology. Nevertheless, 
during recent years, lessons we have learned from loss-of-function models have shown 
that besides the paramount physiological roles of FGF23 in the control of 1α-hydroxylase 
expression and of apical membrane expression of sodium-phosphate co-transporters 
in proximal renal tubules, FGF23 also is an important stimulator of calcium and sodium 
reabsorption in distal renal tubules. In addition, there is an emerging role of FGF23 as an 
auto-/paracrine regulator of alkaline phosphatase expression and mineralization in bone. 
In contrast to the renal actions of FGF23, the FGF23-mediated suppression of alkaline 
phosphatase in bone is αKlotho-independent. Moreover, FGF23 may be a physiological 
suppressor of differentiation of hematopoietic stem cells into the erythroid lineage in 
the bone microenvironment. At present, there is little evidence for a physiological role 
of FGF23 in organs other than kidney and bone. The purpose of this mini-review is to 
highlight the current knowledge about the complex physiological functions of FGF23.

Keywords: fibroblast growth factor-23, Klotho, vitamin D, 1α-hydroxylase, bone mineralization, phosphate 
metabolism, alkaline phosphatase

inTRODUCTiOn

In the year 2000, gain-of-function mutations in fibroblast growth factor-23 (FGF23) were identi-
fied as the genetic cause of autosomal dominant hypophosphatemic rickets (ADHR), an inherited 
renal phosphate-wasting disease (1). In the following years, FGF23 turned out to be the long-sought 
“phosphatonin” that had already been postulated in the 1980s, when parabiosis experiments in 
hypophosphatemic Hyp mice had shown that the renal phosphate wasting and the hypophosphatemia 
in these mice were caused by a factor circulating in the blood (2).

Fibroblast growth factor-23 is a 32 kDa glycoprotein mainly produced in bone by osteoblasts and 
osteocytes under physiological circumstances. FGF23 is inactivated by cleavage at the 176RXXR179 
site, a site that is mutated in ADHR patients. Together with FGF19 and FGF21, FGF23 belongs to 
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the group of endocrine FGFs (3). All endocrine FGFs require 
the co-receptors α- and β-Klotho for high-affinity binding to 
the ubiquitously expressed FGF receptors (FGFR1-4) in target 
cells (4–7). The co-receptor needed for binding of FGF23 to FGF 
receptors is transmembrane or soluble αKlotho (4, 8). Among 
the four different FGFRs, FGF receptor-1c (FGFR1c) is probably 
the most important FGFR for FGF23 signaling, at least under 
physiological conditions (4, 9). αKlotho enhances the binding 
affinity of FGFR1c to FGF23 by a factor of approximately 20 (6). 
The “c” in FGFR1 stands for a splice variant which occurs in 
FGFR1, 2, and 3.

The principal action of FGF23 on mineral metabolism that 
led to its discovery as a hormone is the suppressive effect on 
phosphate reabsorption from the urine (10, 11). In addition, 
FGF23 suppresses the synthesis of the vitamin D hormone, 1α, 
25-dihydroxyvitamin D3 [1,25(OH)2D3], in the kidney (10, 11). It 
is now well known that diseases characterized by excessive blood 
concentrations of intact FGF23 lead to renal phosphate wast-
ing and inappropriately low-circulating 1,25(OH)2D3 levels in 
patients with a normal kidney function (12). Examples of human 
disorders associated with elevated intact FGF23 are ADHR with 
a defective cleavage site of FGF23, X-linked hypophosphatemic 
rickets (XLH), and autosomal recessive hypophosphatemic 
rickets 1 (ARHR1) caused by overproduction of FGF23 in bone, 
and tumor-induced osteomalacia caused by FGF23-producing 
tumors (12). The molecular mechanism underlying the increased 
bony FGF23 secretion in XLH and ARHR1 patients is still unclear. 
In terms of factors that may drive FGF23 secretion, the common 
denominator in both diseases is impaired bone mineralization. 
XLH is caused by loss-of-function mutations in PHEX (13). It has 
been shown in Hyp mice, the murine model of XLH, that lack of 
the endopeptidase PHEX leads to accumulation of osteopontin 
and ASARM (acidic serine- and aspartate-rich MEPE-associated 
motif) peptides in the matrix, which both inhibit mineralization 
(14–17). ARHR1 is caused by loss-of-function mutations in 
dentin matrix protein-1, which is required for normal minera-
lization of bone (18). It is currently believed that the excessive 
osteocytic and osteoblastic FGF23 secretion in both diseases 
is either driven by the impaired mineralization of the extracel-
lular matrix, which may be detected by matrix-embedded bone 
cells through a putative sensing mechanism that may involve 
FGF receptors (19, 20), or by an altered set point for phosphate 
sensing in bone cells (21, 22). Circulating intact FGF23 is also 
elevated in patients with chronic kidney disease (CKD), and can 
reach blood levels as high as 1,000-fold above the normal range 
(23, 24). Although elevated intact FGF23 may help to maintain 
normophosphatemia in early stages of CKD, serum phosphate 
levels typically increase at later stages of the disease despite very 
high-serum intact FGF23. Therefore, in the setting of impaired 
kidney function, the phosphaturic action of FGF23 is not able to 
correct the hyperphosphatemia in more advanced CKD.

Collectively, there is very good evidence that gain of FGF23 
function results in renal phosphate wasting in patients with 
normal kidney function. However, what is the role of FGF23 in 
normal physiology? The purpose of this mini-review is to answer 
this question, and to highlight the current knowledge about the 
complex physiological functions of FGF23 in mice and men.

PHYSiOLOGiCAL FUnCTiOnS OF FGF23 
in THe KiDneY

Knockout experiments in mice have revealed that the paramount 
physiological function of FGF23 is not its phosphaturic function, 
but its suppressive role in the control of renal 1α-hydroxylase 
(CYP27B1) transcription, the key enzyme for 1,25(OH)2D3 synthe-
sis. Notably, in the absence of the ligand FGF23 or of its co-receptor 
αKlotho, the stringent endocrine control of 1α-hydroxylase tran-
scription fails, leading to inappropriately high expression and activ-
ity of this enzyme. The sequel of 1α-hydroxylase overexpression are 
elevated 1,25(OH)2D3 levels, causing hypercalcemia, hyperphos-
phatemia, ectopic calcifications, impaired bone mineralization, 
and early lethality in αKlotho and Fgf23 deficient mice (25–27). 
The major function of 1,25(OH)2D3 in mineral metabolism is the 
stimulation of intestinal calcium and phosphorus absorption. The 
crucial role of 1,25(OH)2D3 overproduction in mediating the phe-
notype of αKlotho−/− and Fgf23−/− mice is underscored by the well 
documented finding that ablation of vitamin D signaling almost 
completely rescues the phenotype of Fgf23−/− and αKlotho−/− mice 
(28–30). In analogy to the phenotype of αKlotho and Fgf23 defi-
cient mice, humans with loss-of-function mutations in FGF23 or 
αKlotho are characterized by elevated circulating vitamin D hor-
mone levels and soft tissue calcifications (31–34), corroborating  
the mouse data.

Despite the pivotal physiological importance of the FGF23-
mediated suppression of 1α-hydroxylase transcription, the 
knowledge of the intracellular signaling pathway involved in this 
regulation is still fragmentary. Expression of 1α-hydroxylase is 
mainly localized in proximal renal tubules. Proximal and distal 
renal tubules express the co-receptor αKlotho as well as FGFR1, 
3, and 4, but only little FGFR2 (35, 36). All FGFRs are receptor 
tyrosine kinases, initiating intracellular phosphorylation cas-
cades after ligand-induced dimerization (37). Mice with a specific 
deletion of Fgfr1 in proximal renal tubules are resistant to the  
FGF23-induced suppression of 1,25(OH)2D3 production (9). 
Therefore, FGFR1c is probably the predominant FGFR mediating 
the suppressive effects of FGF23 on renal tubular 1,25(OH)2D3 
synthesis (Figure 1). However, to a lesser extent, FGFR3 and 4 
may also be involved, because genetic ablation of Fgfr3 and Fgfr4 
increases renal 1α-hydroxylase expression in Hyp mice, which 
are characterized by increased endogenous FGF23 production 
(38). There is good evidence that the FGF23-mediated sup-
pression of 1α-hydroxylase transcription involves extracellular 
signal-regulated kinase-1 and -2 (ERK1/2) activation (39, 40),  
but the exact signaling pathway downstream of ERK1/2 is 
unknown (Figure 1). Interestingly, the FGF23-mediated control 
of the transcriptional activity of the 1α-hydroxylase gene occurs 
through regulatory elements located in introns of the neighboring 
Mettl21b gene (41). However, the transcription factor(s) involved 
in this regulation are currently unknown. It is only clear in this 
context that FGF23 regulates 1α-hydroxylase in a 1,25(OH)2D3 
and vitamin D receptor (VDR) independent manner (42).

It is well established that parathyroid hormone (PTH) and 
FGF23 regulate 1α- and 24-hydroxylase (CYP24A1) expression 
reciprocally. FGF23 suppresses 1α-hydroxylase, but induces 
24-hydroxylase expression. PTH has the opposite effects. 
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FiGURe 1 | Physiological functions of fibroblast growth factor-23 (FGF23). FGF23 is mainly produced in bone cells, osteoblasts, and osteocytes. One of the main 
target organs of the hormone FGF23 is the kidney. In the kidney, FGF23 acts on proximal and distal convoluted renal tubules. Binding of blood-borne FGF23 to FGF 
receptor-1c (FGFR1c) requires the presence of the co-receptor αKlotho. In renal proximal tubules (PT), FGF23 inhibits phosphate (Pi) re-uptake and expression of 
1α-hydroxylase (CYP27B1), the rate-limiting enzyme for vitamin D hormone (1α,25(OH)2D3) production. The FGF23-mediated suppression of 1α-hydroxylase 
transcription involves extracellular signal-regulated kinase-1 and 2 (ERK1/2) activation. However, the exact signaling pathway downstream of ERK1/2 is unknown. 
The inhibition of phosphate reabsorption in proximal renal tubules by FGF23 is mediated through activation of ERK1/2 and serum/glucocorticoid-regulated kinase-1 
(SGK1), leading to phosphorylation of the scaffolding protein Na+/H+ exchange regulatory cofactor (NHERF)-1. NHERF-1 phosphorylation triggers internalization and 
degradation of the sodium-phosphate cotransporter NaPi-2a, so that less NaPi-2a is available in the apical membrane for phosphate uptake from urine. In distal 
convoluted tubules (DCT), FGF23 increases reabsorption of calcium and sodium by increasing the apical membrane abundance of the epithelial calcium channel 
transient receptor potential vanilloid-5 and of the sodium-chloride cotransporter NCC through a signaling cascade involving ERK1/2, SGK1, and with-no-lysine 
kinase-4 (WNK4). FGF23 locally produced by osteocytes is an auto-/paracrine inhibitor of bone mineralization by down-regulating tissue non-specific alkaline 
phosphatase (TNAP) transcription in a αKlotho-independent fashion via FGFR1- or FGFR3-mediated activation of ERK1/2. The signaling pathway downstream of 
ERK1/2, leading to suppression of TNAP transcription, is not known. TNAP is essential for normal mineralization of bone by cleaving the mineralization inhibitor 
pyrophosphate (PPi).
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1α-hydroxylation represents metabolic conversion of the 
precursor 25-hydroxyvitamin D into the biologically active 
hormone, whereas 24-hydroxylation is an inactivation pathway 
(43). 1,25(OH)2D is known to be a strong inducer of 24-hydrox-
ylase (43), stimulating its own degradation. Whether FGF23 is 
a direct regulator of 24-hydroxylase transcription has been a 
controversial issue for many years. Some reports in Fgf23−/− 
mice (26) as well as in wild-type mice treated with recombinant 
FGF23 (11) suggested that FGF23 signaling may directly induce 
24-hydroxylase, whereas experiments in VDR knockout mice 
suggested that the FGF23-mediated regulation of 24-hydroxy-
lase is not direct, but depends on the VDR (42, 44). The latter 
notion has been confirmed by recent evidence showing that, 
in contrast to the 1,25(OH)2D3-mediated induction, both the 
FGF23-mediated induction and the PTH-mediated suppression 
of 24-hydroxylase are completely lost in 1α-hydroxylase knock-
out mice (41). This finding strongly suggests that the FGF23 
and PTH-mediated regulation of 24-hydroxylase expression 
are entirely indirect through altered 1,25(OH)2D3 synthesis 
and subsequent changes in VDR-regulated promoter activity of 
24-hydroxylase.

As mentioned above, FGF23 promotes renal phosphate excre-
tion by inhibiting cellular phosphate re-uptake from the urine in 
proximal renal tubules (Figure 1). Through a signaling cascade 
involving the αKlotho/FGFR1c receptor complex, ERK1/2, and 
serum/glucocorticoid-regulated kinase-1 (SGK1), FGF23 signal-
ing induces the phosphorylation of the scaffolding protein Na+/
H+ exchange regulatory cofactor (NHERF)-1 which in turn leads 
to internalization and degradation of the sodium-phosphate 
cotransporters NaPi-2a and NaPi-2c (36, 45, 46). Notably, 4-week-
old Fgf23−/−/VDRΔ/Δ (Fgf23/VDR) and αKlotho−/−/VDRΔ/Δ 
(Klotho/VDR) compound mutant mice lacking Fgf23 or Klotho 
and a functioning VDR are not hyperphosphatemic (28, 29, 47). 
Hyperphosphatemia is only seen in older, more slowly or non-
growing Fgf23/VDR compound mutant mice beyond 3 months 
of age (30, 47), suggesting that the phosphaturic effect of FGF23 is 
physiologically less essential compared with the 1α-hydroxylase-
suppressing effect, at least in mice. Both the phosphaturic and 
the 1,25(OH)2D3-lowering effect of FGF23 protect against 
hyperphosphatemia: the first effect directly through increased 
elimination of phosphate, and the second effect indirectly through 
reduced intestinal phosphate absorption. In addition, because 
1,25(OH)2D3 and phosphate stimulate FGF23 secretion in bone 
(12), the phosphaturic and 1,25(OH)2D3-lowering effects of 
FGF23 form a negative feedback loop between bone and kidney.

In recent years, it has become clear that FGF23 is not only 
a regulator of vitamin D and phosphate metabolism, but also 
directly influences calcium and sodium handling in the distal 
nephron in the kidney (Figure 1). Skeletally mature Fgf23/VDR 
and Klotho/VDR compound mutant mice are characterized by 
renal calcium wasting (48), as well as by renal sodium wasting 
and subsequent hyponatremia, hypovolemia, and hypotension 
(49). Similar to proximal renal tubules, the FGFR1c/Klotho 
complex appears to be the most important receptor complex in 
the distal nephron, because distal tubular-specific deletion of 
Fgfr1 recapitulates the renal calcium wasting seen in Fgf23/VDR 
compound mutant mice (9). In distal tubular epithelium, FGF23 

regulates the apical membrane abundance of the epithelial calcium 
channel transient receptor potential vanilloid-5 (TRPV5) and 
of the sodium-chloride cotransporter NCC through a signaling 
cascade involving ERK1/2, SGK1, and with-no-lysine kinase-4 
(48, 49). Fgf23 and Klotho deficient mice are characterized by a 
downregulation of distal tubular TRPV5 and NCC membrane 
expression, leading to renal calcium and sodium wasting, despite 
counter-regulatory increases in circulating PTH and aldosterone 
(48–50). These findings indicate that the calcium- and sodium-
conserving functions of FGF23 in distal renal tubules are of 
physiological relevance. Indeed, the increased renal conservation 
of calcium may help to maintain blood calcium levels despite the 
suppression of 1,25(OH)2D3 synthesis induced by upregulated 
FGF23 secretion. In single Fgf23 and Klotho knockout mice, the 
calcium-conserving function of FGF23 is masked by the pro-
found upregulation of 1,25(OH)2D3 production and subsequent 
hypercalcemia.

Parathyroid hormone and FGF23 have partially overlapping 
functions in proximal and distal renal tubules. Both hormones 
inhibit phosphate reabsorption in proximal renal tubules by 
targeting NHERF-1 phosphorylation (36, 45, 46), and increase 
calcium reabsorption in distal renal tubules by targeting expres-
sion and/or open probability of TRPV5 (48, 51). Albeit the signal-
ing mechanisms are different, the proximal and distal renal target 
molecules of PTH and FGF23 are the same. An interesting finding 
in this context is that absence of FGF23 signaling in Fgf23 defi-
cient mice causes partial renal resistance to the phosphaturic and 
calcium-conserving actions of PTH (50). Vice versa, a reduction 
in PTH signaling in human patients with hypoparathyroidism 
has been shown to induce partial resistance to the phosphaturic 
actions of FGF23 (52, 53). Therefore, both hormones interact, and 
an important physiological function of FGF23 may be to enable 
normal responsiveness to PTH signaling in the kidney and also 
in bone (50).

Taken together, lessons learned from knockout mouse mod-
els have revealed that the most important physiological function 
of FGF23 is not its phosphaturic effect but the downregulation 
of vitamin D hormone production. It is likely that the exquisite 
sensitivity of the homeostatic system regulating 1α-hydroxylase 
transcription to lack of FGF23 signaling is caused by the absence 
of other suppressive hormones which might be able to effec-
tively counter-balance FGF23 deficiency. In Fgf23 and Klotho 
deficient mice, the suppression of PTH secretion observed 
in these mice is insufficient to control transcription of renal 
1α-hydroxylase. In contrast, lack of the phosphaturic, as well as 
of the calcium- and sodium-conserving functions of FGF23 can 
at least partially be compensated by the phosphaturic and cal-
cium-conserving hormone PTH, and by the sodium-conserving 
hormone aldosterone. Therefore, the pivotal importance of 
FGF23 signaling for the control of 1α-hydroxylase transcription 
might be considered as a systems biology problem. This prob-
lem may also have implications for the treatment of patients 
with antibodies against FGF23 or with small molecules blocking 
the FGF23 signaling pathway. The therapeutic window for these 
treatments is relatively narrow, and requires close monitoring 
of calcium and phosphorus metabolism to avoid toxic side  
effects (54, 55).
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PHYSiOLOGiCAL FUnCTiOnS OF FGF23 
in BOne

Fibroblast growth factor-23 may also have physiologically relevant 
functions in bone on bone mineralization and on hematopoiesis.  
We recently reported that FGF23 is a powerful suppressor of 
transcription of tissue non-specific alkaline phosphatase (TNAP) 
mRNA in bone cells in a Klotho-independent manner (56) 
(Figure 1). TNAP is essential for the regulation of bone miner-
alization by cleaving the mineralization inhibitor pyrophosphate 
which is secreted by osteoblasts to prevent premature mineraliza-
tion of osteoid (57). Based on experiments with pharmacological 
FGFR inhibitors, we concluded that the FGF23-induced, Klotho-
independent suppression of TNAP mRNA abundance in primary 
murine osteoblasts is mainly mediated through FGFR3 (56). In 
contrast, Shalhoub et al. (58) reported that FGF23 suppresses TNAP 
expression in mouse osteoblast-like cells in an FGFR1-dependent 
manner, and that this effect could be enhanced by soluble Klotho. 
Thus, it awaits further clarification whether the FGF23-mediated 
suppression of TNAP in bone cells is mainly mediated through 
FGFR1, FGFR3, or both. Klotho expression in bone is very low  
(33, 59). Therefore, it is unlikely that Klotho expression in bone 
cells is sufficient to enhance FGF23 binding to FGFRs in osteoblasts 
and osteocytes. However, it can be assumed that due to the local 
production of FGF23 in osteocytes, the concentration of FGF23 
within the canalicular system is high enough for auto-/paracrine, 
Klotho-independent signaling through FGFRs in bone. Hence, 
locally produced FGF23 may not only contribute to impaired 
mineralization under the conditions of excessive bony FGF23 
secretion such as in Hyp mice (60), but may also serve as a physi-
ological inhibitor of bone mineralization by downregulating TNAP 
expression. In line with this notion, we found an upregulation of 
Tnap mRNA abundance in Fgf23 deficient Fgf23/VDR compound 
mutant mice compared with wild-type and VDR control mice (56). 
However, the relevance of this mechanism in the context of physi-
ological ranges of FGF23 secretion remains to be shown.

Fgf23 deficient mice are characterized by increased erythro-
poiesis (61). Conversely, injection of recombinant FGF23 into 
normal mice suppresses erythropoiesis (61), and inhibition of 
FGF23 signaling alleviates the suppression of erythropoiesis in 
mice with excessive FGF23 blood levels due to renal failure (62). 
Therefore, FGF23 may be a physiological regulator of erythroid 
lineage commitment in the bone microenvironment. However, 
the signaling mechanisms underlying this effect are currently 
not known, and further studies are needed to demonstrate the 
relevance of this effect in relation to the physiological regulation 
of erythropoiesis by the renal hormone erythropoietin.

PHYSiOLOGiCAL FUnCTiOnS OF FGF23 
in OTHeR ORGAnS?

It is interesting to note that the first description of FGF23 was  
actually in thalamic nuclei in the murine brain (63). However, data 
about possible functions of FGF23 in the brain are still scarce. It 
was reported that high concentrations of FGF23 may interfere with 
neuronal ramification and may increase synaptic density in cul-
tures of hippocampal neurons (64), but very little is known about 

potential physiological functions. Fgf23/VDR compound mutant 
mice do not have an overt CNS phenotype until older ages (30), but 
more elaborate behavioral or cognitive tests have never been done.

The parathyroid gland is one of the organs abundantly express-
ing αKlotho (33, 65), making it a potential target tissue for FGF23. 
However, conditional knockout mice with a parathyroid-specific 
deletion of αKlotho show normal circulating intact PTH levels (65). 
In addition, global Fgf23/VDR and αKlotho/VDR mutant mice at 
young ages do not show differences in PTH blood concentrations 
compared with VDR mutant mice (28, 29). Only at older ages, 
PTH secretion is upregulated in Fgf23/VDR and αKlotho/VDR 
mutant mice, relative to VDR controls, in response to chronic renal 
calcium wasting and partial PTH resistance (50). Hence, although 
high-FGF23 blood concentrations may suppress PTH secretion in 
a Klotho-independent fashion in rodents (65, 66), it is unlikely 
that FGF23 signaling has an important role in the physiological 
regulation of PTH secretion.

Although the heart may be an important target tissue at supra-
physiological FGF23 concentrations, promoting cardiomyocyte 
hypertrophy in CKD patients by a Klotho-independent signaling 
pathway (67, 68), FGF23 is not expressed in the normal heart, and 
heart function is normal in Fgf23/VDR mutant mice (69). These 
findings suggest that FGF23 does not have a functional role in  
the heart under physiological circumstances.

Taken together, there is only little evidence that FGF23 has a 
role in normal physiology in organs other than kidney and bone.

COnCLUSiOn

The purpose of this mini-review is to highlight the current knowl-
edge about the physiological functions of the bone-derived hor-
mone FGF23. Excessive circulating intact FGF23 levels result in 
renal phosphate wasting under the conditions of a normal kidney 
function. However, knockout mouse models have shown that the 
most important physiological function of FGF23 is not the phos-
phaturic effect, but the suppressive effect on renal 1α-hydroxylase 
expression. The absence of FGF23 or of its co-receptor αKlotho 
results in deregulated renal 1α-hydroxylase expression and 
vitamin D hormone production, which cannot be compensated 
by other endocrine systems. Moreover, FGF23 has several addi-
tional physiological functions, which include inhibition of renal 
phosphate reabsorption, increased conservation of calcium and 
sodium in the kidney, support of a normal responsiveness of the 
kidney to PTH, and regulation of bone mineralization. Although 
excessive FGF23 may target many non-canonical tissues, there is 
currently little evidence for a role of FGF23 in the normal physio-
logy of organs other than kidney and bone.
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