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Co-encapsulation of pancreatic islets with mesenchymal stem cells in a three-dimensional  
biomaterial’s structure is a promising technique to improve transplantation efficacy and 
to decrease immunosuppressant therapy. Currently, evaluation of graft quality after 
co-encapsulation is only based on insulin secretion. Viability measurement in a 3D 
conformation structure involving two different cell types is complex, mainly performed 
manually, highly time consuming and examiner dependent. Standardization of encap-
sulated graft viability analysis before transplantation is a key point for the translation of 
the method from the bench side to clinical practice. In this study, we developed an auto-
mated analysis of islet viability based on confocal pictures processing of cells stained 
with three probes (Hoechst, propidium iodide, and PKH67). When compared with 
results obtained manually by different examiners, viability results show a high degree of 
similarity (under 3% of difference) and a tight correlation (r = 0.894; p < 0.001) between 
these two techniques. The automated technique offers the advantage of reducing the 
analysis time by 6 and avoids the examiner’s dependent variability factor. Thus, we 
developed a new efficient tool to standardize the analysis of islet viability in 3D structure 
involving several cell types, which is a key element for encapsulated graft analysis in 
clinical practice.

Keywords: pancreatic islets, transplantation, co-encapsulation, mesenchymal stem cells, automatization, viability 
analysis

INtRodUCtIoN

Islet transplantation is a promising therapy for millions of patients with type 1 diabetes as it offers 
a perspective of an efficient metabolic control with a prevention of severe hypoglycemia without 
insulin injections (1–3). However, islets graft success may be compromised by grafted islets exposi-
tion to an acute stress due to ischemia reperfusion injuries associated with an instant blood-mediated 
inflammatory reaction and to chronic rejection (4–9). Moreover, to prevent graft rejection, an 
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immunosuppressive therapy is required, which can lead to severe 
adverse events such as infection or neoplasic disease.

To avoid immunosuppressant therapy and to maintain graft 
viability and functionality over time, several approaches are cur-
rently studied. Among them, islet encapsulation in a permeable 
three-dimensional structure seems highly promising (10). The 
capsule allows the diffusion of insulin, oxygen, and nutriments 
while protecting islets from the immune system (11). This tech-
nique has already shown interesting results in different species 
(12–14) and paves the way for free-immunosuppressive islets 
transplant therapy (15). To increase the efficacy of encapsula-
tion, Veriter et al. have shown the benefits of co-encapsulating 
islets with mesenchymal stem cells (MSCs) (16). Indeed, MSCs 
are well known for their in vitro and in vivo protective effects 
on islets viability (17) and functionality (18) as well as their pro 
angiogenic effect (19) under different stress conditions (20). 
Thus, co-encapsulation of islets with MSCs appears to be a 
promising approach to improve treatment strategies for diabetic 
patients (21).

However, the translation from the bench side to patients is 
facing various obstacles (22). The validation of these complex 
capsules containing two different cell types requires an accurate 
analysis of the viability and functionality of the co-encapsulated 
cells. The reference method to evaluate islets viability is the 
fluorescein diacetate (FDA) and propidium iodide (PI) or 
ethidium bromide (EB) co-staining (23, 24). This method, 
usually performed by islet isolation centers to characterize and 
validate islet preparation before transplantation, can be limited 
in a complex multiple cell type culture system. Indeed, this 
double staining does not allow to discriminate the viability of 
the two different cells types. The other probes used to replace 
FDA as Calcium AM, SYTO®13, SYTO®24, and SYBR®14 are 
also limited to a monoculture system when coupled to IP/EB 
(25–27). These probes can be used for flow cytometry viability 
analysis, but the dissociation of the capsule is compulsory as 
well as the dissociation of islets before acquisition. This dis-
sociation enables a precise analysis but could induce a cellular 
stress which could lead to altered viability analysis. Thus, the 
current manual counting under microscope of the stained cells 
is the only tool available to determine the viability of islets 
included in an unmodified 3D structure such as a capsule. This 
technique is operator dependant and highly time consuming 
(28) which is poorly adapted in the emergency context imposed 
by transplantation.

Due to these limitations, most of the current studies on 
islets co-encapsulation are mainly based on an evaluation of the 
insulin secretion functionality (26, 29) restricting analysis of the 
capsules to functionality analysis and neglecting cells viability 
analysis. Thus, the development of a new standardized tool to 
characterize the viability of each cell type in the capsule content 
is highly suitable and constitutes a key point to further develop 
this treatment strategy.

The aim of this study was to develop and validate a standard-
ized method to substitute the current manual viability analysis of 
islets co-encapsulated with MSCs, in agreement with the clinical 
constraints. For that purpose, we propose an automated picture 
analysis of stained cells obtained by confocal microscopy.

MAteRIALs ANd Methods

Animals
Two adult Wistar male rats (350  g) were used in this study. 
Procedures were carried out in accordance with European 
Directives 86/609/EEC, 2010/63/UE well-being and treatment 
of animals. All the procedures were approved by the ethics 
committee affiliated to the animal facility of the university 
(D3842110001) and agreed by the French Ministry of Research 
(9998_LBFA-U1055).

Islets Isolation Procedure and Islets 
Culture
A cannula is inserted in the rat’s Wirsung duct to permit the 
pancreas perfusion with collagenase type IX, 1 mg/ml (Sigma). 
Perfused pancreas was removed and digested in warm bath at 
37°C for 11  min as previously described (30). Islets were then 
purified by Histopaque (Sigma-Aldrich, St. Louis, MO, USA) den-
sity gradient centrifugation. Islets are seeded in RPMI 1640 sup-
plemented by 10% fetal bovine serum (Sigma-Aldrich, St. Louis, 
MO, USA), 2 mM l-glutamine, 100 U/ml penicillin, 100 µg/ml  
streptomycin, and 1  mM sodium pyruvate (Pan Biotech, 
Aidenbach, Germany). Islets were incubated at 37°C in a humidi-
fied atmosphere (95% air–5% CO2) and cultured for 12–24 h before  
encapsulation.

MsC Culture
Mesenchymal stem cells were isolated from bone marrow aspi-
rate from four healthy donors who gave their written informed 
consent. All procedures were in compliance with the French 
public health code (Article L1241-1) and were performed by 
the Cell Therapy and Engineering Unit of EFS Auvergne Rhone 
Alpes. After thawing, MSCs are seeded at 3,500 cells/cm2. Cells 
are maintained in culture at 37°C and 5% CO2 in MEM alpha 
media (Sigma-Aldrich, St. Louis, MO, USA) supplemented by 
10% fetal bovine serum (Sigma-Aldrich, St. Louis, MO, USA), 
2 mM glutamax, 100 U/ml penicillin, and 100 µg/ml streptomy-
cin (Thermo Fisher Scientific, Waltham, MA, USA). Media are 
changed every 3–4 days. When the cell density reached 80–90%, 
cells were split with Trypsin–EDTA (0.25%), phenol red (Thermo 
Fisher Scientific, Waltham, MA, USA).

encapsulation
All islets and MSCs are encapsulated in one session at the 
Laboratoire d’électronique des technologies de l’information of 
the Commissariat à l’Energie Atomique et aux énergies alterna-
tives (CEA-LETI, Grenoble, France) according to a microfluidic 
method. The pancreatic islets are washed in a buffer combining 
150 mM NaCl, 20 mM HEPES, and 1 µg glucose. The islets are 
included in a solution of 2.5% alginate, 150 mM NaCl, 20 mM 
HEPES, 1  g/l glucose, and encapsulated in the microfluidic 
encapsulation system. All the steps are integrated in a single-use 
cartridge allowing oil phase capsule formation, gelation of the 
capsules in a calcium bath, and harvesting in the buffer. The 
encapsulated islets are returned to culture in complete RPMI 
1640 medium.
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Cells staining
To differentiate the two cell types included in the capsule, MSCs 
were stained by PKH67 (Sigma-Aldrich, St. Louis, MO, USA) that 
labeled lipid membrane structure (λexc\λem = 490/504 nm) before 
encapsulation. Briefly, as previously described (31) MSCs were 
dissociated with trypsin 1× and wash with Dulbecco’s phosphate-
buffered serum (PAA Laboratories, Velizy Villacoublay, France). 
Then cells were suspended in diluent C with 2  µM of PKH67 
during 5 min. The staining reaction was stopped by adding fetal 
bovine serum. MSCs were then washed three times with complete 
media before encapsulation.

Before image acquisition, capsules containing cells were stained 
with 2.21 × 10−10 mol/ml Hoechst 33342 (λex/λem = 361/497 nm) 
during 15 min. Just before pictures’ acquisition, 1.50 × 10−10 mol/
ml of PI (λex/λem = 545/630 nm) (Interchim, Montluçon, France) 
was added to the medium containing capsules. Hoechst stains 
nuclei of living cells in blue while PI stains nuclei of necrotic cells 
in red. MSCs previously stained by PKH67 are labeled in green 
(32). Thus, co-localization of PI or Hoechst stain along with the 
PKH67 signal permits to analyze MSCs’ viability whereas nuclei 
out of the green signal provides data regarding islets cells viability.

Pictures Acquisition
Images were collected with an LSM710 AxioObserver Airyscan 
inverted laser scanning confocal microscope (Carl Zeiss 
Enterprise, Oberkochen, Germany) equipped with a 20× oil 
dry objective (Plan apochromat 20×/0.8). Laser excitation was 
405  nm for Hoechst, 488  nm for PKH67, and 561  nm for PI. 
Fluorescence emission detected by GaAsP detectors was 410–
485 nm for Hoechst, 493–551 nm for PKH67, and 571–640 nm 
for PI. Confocal pinhole (Airy units) was 1 for all channels. 
Five z-stacks of 13–22 pictures (total = 77 pictures) with 10 µm 
z-step of optical sections were acquired and saved in TIFF format 
(1,024 × 1,024 pixels).

Manual Viability Analysis
To avoid bias, manual analysis were blinded and performed by 
four different examiners which did not know the results obtained 
with the automatized method. Each experimenter merged the 
green channel (corresponding to the MSC cytosols) with the 
blue or red channel. Then, selection of nuclei present in or out 
the green signal was visually performed on each picture of the 
stacks using the “Multi-point” tool of ImageJ 1.51. ImageJ is an 
open source software especially developed for picture analysis 
and widely used in the world (33). The viabilities presented in 
this article are calculated by dividing the number of nuclei stained 
with Hoechst by the total number of nuclei (number of nuclei 
stained with PI + Hoechst).

Automated Viability Analysis
Regarding our automated method developed, previously acquired 
pictures were analyzed by a code elaborated with the ImageJ 
interface. The description of the code can be separated into four 
main steps as presented in Figure 1.

Once the software is started, a window is displayed to set up 
several variables. First, fields to fill in allow to entry the folder’s 

pathway containing the picture files, name, and numeration. 
This window also permits the configuration of the channel 
appellation and different filters concerning the minimal and 
maximal thresholds accepted during the binary transformation, 
the factor of regions of interest (ROIs) dilatation containing 
the detected MSCs, and a filter to suppress signal under the 
determined surface. Two check boxes allow to enhance the blue 
channel contrast if the signal is too low and to choose or not to 
analyze the viability of MSCs.

Then, the code loads the green channel, corresponding to 
the MSCs cytosol staining. The picture is transformed into a 
binary signal; the detection of the green areas is performed and 
saved as ROI. All ROIs detected are saved in the folder named  
“…/Analyse/ROI_Save.” Then, blue channel, corresponding 
to the living nuclei is loaded and transformed into a binary 
picture. In each ROI previously saved, the x, y coordinates of 
MSCs’ nuclei are detected and saved in a matrix. The same 
analysis is performed with the red channel. The next step 
corresponds to the suppression of the MSCs’ nuclei in blue 
and the red channel. For that step, we used the “MagicWand” 
function allowing a selection of all the black dots around the 
different x, y coordinates and replacing them by white dots. 
To avoid artifacts due to the analysis of the same nucleus on 
several slides, the code is able to detect if nuclei are present on 
the next slide at the exact location of those previously detected 
and if so, to delete the signal. Then, each picture of blue chan-
nel is saved in “…/Analyse/Islets_Nucleus” and red channel in  
“…/Analyse/Necrotic_Islets_Nucleus.” If the option “Analyse 
MSCs parameters:” is checked at the beginning of the program, 
the nuclei present in ROIs are analyzed and save in the folder 
“…/Analyse/MSC_Nucleus” for blue channel, and “…/Analyse/
Necrotic_Islets_Nucleus” for the red channel. Finally, the 
number and area of the islets and MSCs’ nuclei detected in each 
picture are saved in the folder “…/Analyse.” An algorithmic 
representation of the software main steps and the entire code 
are available in open source, downloadable in Supplementary 
Material.

statistical Analysis
All data are presented in Figure  3A as mean  ±  SD and were 
analyzed using a one-way ANOVA as they were normally dis-
tributed. The correlation coefficient represented in Figure 3B was 
calculated as a Pearson product moment.

ResULts

Figure 1 represents intermediate steps used by the software to 
analyze the different cell type’s viability. The Figure 1① shows the 
transformation of the initial green channel picture to a binary 
signal to allow the detection of the green areas. The last picture 
of Figure 1① shows the ROIs that are automatically saved by the 
software during analysis. In Figure  1②, the three mains steps 
of the blue channel analysis are as follows: the binary conver-
sion, the selection of islets or MSCs’ nuclei, and the analysis 
are displayed. Once the blue channel is transformed in a binary 
signal, the picture is merged with the ROIs previously detected. 
Nuclei of MSCs or islets are automatically selected as black dots 
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and black dots are segmented to precisely count the number of 
nuclei. Modified pictures used for analysis are those saved by 
the software.

Figure  2 corresponds to the three channels merged in an 
initial picture (Figure 2A) and the identification of each nucleus 
by the software (Figure 2B). Nuclei considered by the software 
as living islets appear in blue whereas MSCs appear in purple. 
Islets nuclei detected as necrotic appear in red whereas MSCs 
are drawn in orange. This figure allows to visually confirm the 
automated identification performed by the software.

In Figure 3A, the mean viability of islets and MSCs detected 
manually is compared with the automated software approach 
using five stacks of pictures containing between 14 and 22 
optical sections. This figure shows no difference between the 
viability of the islets detected manually or detected by the 
software (76.02  ±  6.3 vs. 77.07  ±  10.6%, respectively, ns). No 
differences were observed when comparing MSCs’ viability 
analyzed with the two techniques (manually: 83.20 ± 6.5% vs. 
software: 80.74  ±  8.8%, ns). The visual resemblance between 
these two techniques, showed in Figures 2 and 3A, is confirmed 
by the tight correlation presented in Figure  3B. Indeed, the 
correlation of the viability manually evaluated with the viability 

automatically determined by the software for MSCs and islets 
shows a coefficient of correlation over 0.89 and a p-value lower 
than 0.001.

dIsCUssIoN

This study provides evidence of the efficacy and reliability 
of the automatized techniques we have developed using the 
ImageJ interface to analysis cells viability in a 3D structure. 
The high similarity of viability measured by two different 
methods (less than 3% of variation) and the tight correla-
tion between them (r = 0.894; p < 0.001) validate the results 
obtained with our technique. Moreover, the automated analy-
sis tool suppresses the variability of the viability measured by 
different examiners (more than 5% in this study, see SD in 
Figure 3B). The standardization of viability analysis is a key 
point to determine common standardized quality criteria for 
islet preparation.

The automated method developed in this study allows to 
strongly reduce the time spent for analysis in comparison with 
the manual technique. Our results showed a decrease of the 
analysis duration from approximately 1 h 45 min to 15 min for 
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users trained to the macro’s utilization. The saving process during 
the analysis steps allows a visual feedback of the software results, 
and a check of analysis if desired.

The availability of the code in Supplemental Material 
allows users with programming skills to perform few modifi-
cations to adapt the software to many different applications. 
Thus, this code allows the viability measurement of different 
cells type in all complex tissues which cannot be mechanically 
separated.

As co-encapsulation of islets and MSCs appears to be a highly 
promising technique to major the efficacy of islets graft in the 
diabetes medical care, we have developed a new standardized 
approach to measure and distinguish the viability of co-encap-
sulated cells through an automated and time saving method 
preserving the 3D conformation of the structure.
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