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Mitochondria are important organelles for the adaptation to energy demand that play a 
central role in bioenergetics metabolism. The mitochondrial architecture and mitochon-
drial machinery exhibits a high degree of adaptation in relation to nutrient availability. 
On the other hand, its disruption markedly affects energy homeostasis. The brain, 
more specifically the hypothalamus, is the main hub that controls energy homeostasis. 
Nevertheless, until now, almost all studies in relation to mitochondrial dysfunction and 
energy metabolism have focused in peripheral tissues like brown adipose tissue, muscle, 
and pancreas. In this review, we highlight the relevance of the hypothalamus and the 
influence on mitochondrial machinery in its function as well as its consequences in terms 
of alterations in both energy and metabolic homeostasis.
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inTRODUCTiOn

Maintenance of mitochondrial function across an individual’s life spam is needed for general homeo-
stasis. In fact, one of the hallmarks of aging is alterations in mitochondrial function (1). In addition, 
mitochondrial dysfunction has emerged as a factor responsible for many metabolic diseases, such as 
obesity and type 2 diabetes (T2D) (2).

The mitochondrion is the principal organelle for the production of ATP in the cell. This essential 
process is localized in the inner membrane of mitochondria and involves the electron transport chain 
and oxidative phosphorylation. The generation of ATP could be mediated for different processes 
such as nutrient oxidation, autophagy, mitophagy, and apoptosis (3).

Mitochondria play an essential role for nutrient adaptation. In an environment with excess of 
nutrients, the energy storage is first used by the organism, and then the mitochondria play a key 
role because of its implication in bioenergetics and metabolism of amino acids and lipids (4). In this 
aspect, the bioenergetic implications of mitochondria were studied using different approaches in 
relation to energy demand and supply balance, resulting in a link with mitochondrial architecture 
(4). Specifically, it was demonstrated that a nutrient-rich environment is associated with a frag-
mented mitochondrial network, whereas fasting states is associated with elongated mitochondria 
(fusion machinery) (5, 6). In summary, the regulation of mitochondrial fission and fusion is neces-
sary for eliminating damaged materials or other components in order to maintain the mitochondrial 
population in good conditions.

Neurons are cells with high energy needs, and therefore, the mitochondrial machinery plays an 
important role that ensures a constant energy supply and subsequently an adequate function of these 
cells (7). In addition and in relation to different nutrients, it was demonstrated that in lipid nutrient 
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FigURe 1 | Hypothalamic control of energy metabolism. The brain integrates metabolic signals (leptin, insulin, ghrelin, PYY3–36) from peripheral tissues such as 
pancreas, adipose tissue, and gut. In the brain, specialized neuronal networks coordinate adaptive changes in food intake and energy expenditure. Neuropeptide Y/
agouti-related protein (AgRP)-gamma aminobutyric acid (GABA) and proopiomelanocortin (POMC)-Cocaine and amphetamine-related transcript (CART) producing 
neurons in the hypothalamic arcuate nucleus primarily sense the body energy state. These neurons project to other second order neurons to control the regulation 
of energy balance. Abbreviations: ARC, arcuate nucleus; PYY3-36, peptide YY3-36; CK, cholecystokinin; GLP-1, glucagon-like peptide-1; OXM, oxyntomoduline; 
PP, pancreatic polypeptide.
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brain sensing, mitochondrial activity is implicated with the reac-
tive oxygen species (ROS) signaling pathway (8). Nevertheless, 
although the regulation of energy homeostasis in hypothalamic 
neurons by mitochondria is very important, only few studies have 
addressed this issue, and we will focus on it in this review.

CenTRAL COnTROL OF eneRgY 
HOMeOSTASiS

The regulation of energy homeostasis is essential for the mainte-
nance of life. In this context, the central nervous system, and more 
specifically the brain, is the “master” that controls the regulation 
of food intake and energy expenditure through different neuronal 
circuits distributed to different areas in the brain (9).

It is generally accepted that the hypothalamus is a key region 
in the brain in the sense that it plays an essential role in modu-
lating feeding behavior and energy expenditure. To this end, 
the hypothalamus integrates signals from the periphery and, 
through energy and nutrient sensing mechanisms, it generates 
an appropriate response by different organs (10, 11). From an 
anatomic-functional point of view, the hypothalamus is com-
prised of different nuclei, including the arcuate nucleus (ARC), 
paraventricular nucleus, lateral area (LHA), dorsomedial nucleus 

(DMH), and ventromedial nucleus (VMH) (12), all of which have 
an important role in energy homeostasis.

In the ARC, there are two main neuronal populations that 
are involved in the regulation of energy balance and glucose 
homeostasis; one that co-expresses the orexigenic neuropeptides 
NPY (Neuropeptide Y), agouti-related protein (AgRP), and 
gamma aminobutyric acid (GABA) (13–15) and another that 
expresses amphetamine-regulator transcriptor (CART) and the 
anorexigenic neuropeptide α-MSH which is a processing product 
of the precursor proopiomelanocortin (POMC). These neurons 
could respond to peripheral signals from the adipose tissue (such 
as leptin), pancreas (such as insulin), and gut hormones [such 
as, ghrelin, glucagon-like peptide-1, peptide YY3-36, cholecys-
tokinin (CK), and pancreatic polypeptide (PP)] (Figure  1) to 
maintain energy balance (16). In general terms, the effects of these 
peripheral signals are mediated by influencing the expression of 
the orexigenic neuropeptides NPY and AgRP or anorexigenic 
neuropeptides such as α-MSH acting through melanocortin 
receptors (17, 18).

Among the peripheral signals, there is little doubt about the 
important role played by leptin. The main effect of leptin in energy 
homeostasis is exerted in the hypothalamus. Leptin binding to its 
receptor (LepR-b) activates a signaling cascade, which leads to 
the activation of STAT3 and subsequent depolarization of POMC 
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FigURe 2 | Mitochondrial dynamics. (A) Excessive food intake produce excess of ROS and mitochondrial dynamic dysfunction leading to altered fission or fusion. 
Fusion is driven by Mfn1 and Mfn2 localized on mitochondrial outer membranes, while OPA1 mediates mitochondrial inner membrane fusion. Mitochondrial fission is 
driven by DRP1 and it may involve FIS1. (B) Summary of the effects of HFD or mutations of Mfn2 or Mfn1/2 in specific arcuate neurons such POMC or AgRP in 
mitochondrial dynamic and energy homeostasis.
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neurons, as well as hyperpolarization of NPY/AgRP/GABA 
neurons, thus, exerting its powerful anorexigenic effect (19, 20). 
Similarly, insulin also inhibits food intake, albeit to a much lesser 
extent than leptin, by binding to the central InsR. Upon this, IRS 
is activated through a classic phosphorylation cascade. The leptin 
signaling and insulin signaling converge in a common signaling 
pathway through PIP3K-PIP3-PDK1-FoxO1 (21). Within the 
nucleus, FoxO1 can activate AgRP and inhibit POMC expression 
(22). The activation of AKT for PDK1 produces phosphorylation 
of FoxO1 and leads to its translocation, facilitating STAT3 to bind 
to POMC/AgRP (22, 23).

In contrast to leptin, circulating ghrelin levels are increased 
in conditions of negative energy balance. Orexigenic effects of 
ghrelin are mediated by enhancing NPY and AgRP transcript 
expression though a mechanism which includes AMPK, p53, 
Sirt1, pCREB, FoxO1, and Bsx (24–26), as well as producing 
depolarization of POMC neurons, thus reducing α-MSH release 
(27–30).

The hypothalamus can also interact synergistically with other 
gut hormones, such as PYY3-36, CK, GLP-2, oxyntomodulin, and 
PP, to suppress appetite in contrast to ghrelin (11, 16) in terms of 
interaction with NPY/AgRP and POMC/CART.
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MiTOCHOnDRiAL DYnAMiCS

The combination of different events related to mitochondrial 
movements, such as fusion, fission, mitophagy, and tethering, are 
responsible for the mitochondrial architecture. In addition, the 
structural relation and functional contacts of mitochondria with 
other subcellular organelles is very important for regulation of 
energy metabolism. One well-known example is the association 
between ER and mitochondria in the ER–mitochondria- associated 
membranes (Figure 2) (31, 32). They are very important for the 
regulation of mitochondrial and cellular functions like mitochon-
drial division, apoptosis, or lipid and Ca2+ biogenesis (33, 34).

Mitochondrial Fusion Machinery
Mitofusins (Mfn1 and Mfn2), GTP proteins localized in the 
outer membrane, as well as Optic atrophy (OPA1) localized in 
the inner membrane (35, 36) are the principal proteins involved 
in mitochondria compartmentalization for the mitochondrial 
fusion (37).

Mfn1 and Mfn2 are fusogenic proteins belonging to the fam-
ily of transmembrane GTPases (38, 39). They are integral outer 
mitochondrial membrane proteins that require GTPase activity 
to mediate mitochondrial fusion. The function of Mfn1 and 
Mfn 2 seems to overlap, since Mfn1 partially rescues the defects 
caused by Mfn2 mutations (40, 41). Mitofusins are essential for 
mitochondrial fusion as shown by a study of in vivo KO models. 
Both Mfn1 and Mfn2 KO mice died in the middle of the gestation 
period (35), as a consequence of mitochondrial fusion failure in 
the placenta.

The protein or mRNA expression of Mfn1 and Mfn2 is variable 
among different tissues; Mfn1 is preferentially expressed in heart, 
liver, pancreas, adrenal glands, and testis (42, 43), whereas Mfn2 
is more abundant in heart, skeletal muscle, brain, adrenal glands, 
and brown adipose tissue (4, 42, 44).

The mitofusin proteins regulate mitochondrial fusion, albeit 
at different stages. Indeed Mfn1 exhibits more efficiency in the 
mediation of mitochondrial docking and fusion than Mfn2. 
Moreover, Mfn1 is required to mediate Opa-1-driven mitochon-
drial fusion, showing both transcriptional and posttranscriptional 
regulation (43). Mfn2 exerts a key role in the brain, protecting 
against neurodegeneration in different brain regions, such as 
the cerebellum, hippocampus, and cortex (45), and in different 
populations such as dopaminergic neurons (46, 47).

In the periphery, Mfn2 promotes insulin signaling increasing 
insulin sensitivity since genetic ablation in muscle or liver resulted 
in impaired insulin signaling (48, 49). Furthermore, Mfn2 is 
involved in the association between ER and mitochondria (38).

As we have described, Mfn1 and Mfn2 have non-redundant 
and distinct roles. This could be partially explained by interac-
tions with specific partners, modulators of their activity, and 
possibly distinct posttranslational regulations (4).

Mitochondrial Fission Machinery
The fragmentation of a mitochondrion into two is a process called 
mitochondrial fission. Failure in this process elicits an increase 
in the generation of ROS and causes a mitochondrial population 
with non-uniform DNA distribution (50, 51).

The dynamic regulated protein 1 (DRP1) and FIS1 are involved 
in the regulation of mitochondrial fission. DRP1 is a cytosolic 
protein that is recruited to the outer mitochondrial membrane 
where the scission takes place. Once DRP1 assembles into mito-
chondrial fission sites, it produces the hydrolysis of GTP thereby 
promoting its division (52–54). Interestingly, DRP1 is regulated 
by posttranscriptional modifications like phosphorylation and 
SUMOylation (55). In addition, DRP1-ablation causes embry-
onic lethality in mice, whereby in embryos there appeared altera-
tions in the liver, alterations in heart development, and deficient 
synapse formation (56). On the other hand, FIS1 is located mainly 
in the OMN, and it is linked via its COOH terminal part to the 
outer mitochondrial membrane. Studies investigating mutations 
showed that an overexpression of FIS1 produced mitochondrial 
fragmentation, and knock down of this protein caused a highly 
fused mitochondrial network, indicating that FIS1 activates 
mitochondrial fission (57–59). Finally, MFF (mitochondrial fis-
sion factor), MiD49, and MiD51 are other mitochondrial fission 
proteins that also participate in this process (60, 61).

HYPOTHALAMiC MiTOCHOnDRiA AnD 
RegULATiOn OF eneRgY MeTABOLiSM

It has been recognized for some time that mitochondrial dysfunc-
tion is at the root of some of the pathophysiological features related 
to metabolic disorders such as diabetes. Thus, it was shown some 
time ago that the “metabolic inflexibility” linked states of insulin 
resistance in T2D can be explained to some extent by alteration 
in mitochondrial activity in peripheral tissues such as muscle (5, 
62). Although the presence of mitochondrial dysfunction in T2D 
is beyond doubt (63), whether this is a cause or a consequence and 
whether improvement/deterioration in insulin sensitivity run in 
parallel to changes in mitochondria dynamics is controversial.

In addition, in the liver, mitochondrial dynamics have an 
important role in the fasting–feeding transition and maintaining 
postprandial mitochondrial quality; and it is directly connected 
to some clock genes such as diurnal Bmal1 gene (64).

Mitochondria participate in many processes and mitochon-
drial dysfunction is thought to trigger many chronic diseases, 
including liver disorders, diabetes, and aging processes (65, 66). 
In addition, mitochondria is very important for the development 
of obesity because it integrates different metabolic information, 
such as ATP levels, oxidative stress, ER stress, inflammation, 
and cell signaling, which play important roles in the onset and 
maintenance of obesity.

Several studies have linked obesity with mitochondrial altera-
tions (67–70). This is because the excessive intake of nutrients 
provokes the mitochondria to become overloaded with fatty 
acids and glucose, leading to an increase in the production of 
Acetyl-CoA. This then causes the production of NADH through 
the Krebs cycle, which promotes an increase of electrons with the 
ability to enter the mitochondrial intermembrane space, which 
subsequently produces an excess of ROS, leading to oxidative 
stress to the cell (71, 72). This causes the activation of several 
transcription factors, among which is NFκB, the main mediator 
of the inflammatory response (73).
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Oxidative stress has been associated with adiposity, insulin 
resistance, and metabolic syndrome, and it is postulated that 
oxidative stress could be an early event in the etiology of these 
chronic diseases (74, 75).

Several studies have shown using murine models the relevance 
of these phenomena in obesity. Ma and collaborators identified 
that diet-induced obesity in rats produced an increase of oxida-
tive stress and mitochondrial dysfunction in the brain; they also 
showed that excessive fat intake reduced the activity of the main 
antioxidant enzymes (SOD, CAT, GPx) (76). More specifically 
within the hypothalamus, the neuronal activity of both POMC 
neuron and AgRP neuron populations is modified by ROS (18, 
77, 78). More recently, it was demonstrated that the link between 
ROS and effect of food intake in POMC neurons could be medi-
ated by mTORC (79).

Another phenomenon connected with obesity development is 
ER stress. ER stress is produced by the imbalance between protein 
folding capacity and protein load (80). The direct result of ER 
stress is the accumulation of misfolded proteins. The association 
of obesity and ER stress is essential for mitochondria and RE, 
and it is modulated at least partially by mitochondrial fission and 
fusion (81).

The mitochondrial dysfunction is a result of decreased ATP 
production for ER stress and alterations in mitochondrial mem-
brane, and it has been described that diet-induced obesity and 
genetics factors in mice are associated with increased ER stress 
in the hypothalamus (82, 83). In this aspect, Mfn2 has emerged 
as an important link between mitochondria and ER. In fact, its 
ablation has been found to be associated with ER stress in differ-
ent cell types and tissues (49, 84). Moreover, there is a multitude 
of evidence suggesting that hypothalamic ER stress is a causative 
factor in the development of obesity by inducing leptin and 
insulin resistance (85, 86). In addition, ER stress mediated the 
effects of thyroid hormones on energy balance (87) approach for 
ameliorating the genetic obesity exhibited by obese Zucker rats or 
diet-induced obesity in normal rats (88).

Taking into account that Mfn 2 plays a key role in mitochon-
drial fusion and establishing ER–mitochondria interactions, 
some studies generated KO mice with specific deletions of Mfn 
2 or Mfn1 in specific hypothalamic neurons such as POMC 
or AgRP (89, 90). Animals with a specific deletion of Mfn 2 
in POMC neurons exhibited a striking phenotype. The main 
features could be summarized as follows: POMCMfn2KO in 
the arcuate nucleus exhibited marked obesity, which was due 
to both increased food intake and reduced energy expenditure 
associated with decreased BAT activity and reduced expres-
sion of thermogenic markers (UCP-1) in BAT. These animals 
exhibited early onset leptin resistance and presented the 
expected alterations in mitochondrial morphology, mitochon-
dria–ER contacts, intra-mitochondrial respiratory capacity, and 
enhanced ROS production, as well as ER stress. The marked phe-
notype presented by these animals was specific for Mfn2 since 
animals with deletion of Mfn1 did not show this phenotype and 
had normal body weight. Such marked phenotype was indeed 
due to ER stress since its inhibition by chemical chaperones, 
such as TUDCA, led to an almost complete reversal of the 
obesity-related phenotype of POMCMFN2KO mice (90). In 

addition, other study indicate that activation of CB1R receptors, 
that induces a well-known hyperphagic response, is associated 
to a paradoxical activation of POMC neurons and that such 
response involves β-endorphin release—but not α-msh—from 
these neurons, and a UCP2-dependent mitochondrial switch 
in these neurons leading to ROS production and changes in 
mitochondria–ER interaction (91).

The data described above by Schneeberger et al. (90) appear 
to be neuron-specific since a similar approach conducted by 
deleting Mfn1 or Mfn2 in AgRP neurons led to a very different 
phenotype (89). In fact, there was no evidence of ER stress in any 
of these animals in contrast to when the deletion was performed 
in POMC neurons. The most interesting findings in these mice 
were related to altered mitochondrial size and density. In terms of 
energy balance, the most striking feature was that these animals 
were resistant to HFD-induced obesity. Although the mechanism 
is not clear-cut, this could be largely due to decreased ATP bio-
availability, which led to impaired electrical activity in these 
neurons (89).

Independent of the fact that these results indicate the exist-
ence of different mechanisms in both neuronal cell types, they 
demonstrate that the whole body response to HFD is markedly 
dependent on specific patterns of mitochondrial dynamics in 
these neurons.

MiTOCHOnDRiA BRAin DYSFUnCTiOn 
AnD iMPAiReD gLUCOSe MeTABOLiSM

The evidence regarding the relevance of mitochondrial function 
in glucose homeostasis is extensive. Among the supporting evi-
dence includes data showing changes in mitochondrial structure 
in postmortem islets derived from patients with diabetes (92) and 
data showing that mutations in mitochondrial DNA (93) can be 
linked to higher incidence of glucose intolerance. Further, a more 
direct support came from experimental studies showing that 
depletion of mitochondrial DNA in INS-1 cells led to an impair-
ment in glucose-induced mitochondrial membrane potential 
hyperpolarization and insulin secretion (94).

Finally, recent studies demonstrated that obese Zucker rats 
with impaired glucose sensing in the hypothalamus showed an 
abnormal redox signaling that originates from the mitochondrial 
function (95); nevertheless, when the redox state was restored, 
the glucose sensing in the brain was also restored (96).

Although such data provided conclusive evidence of the rel-
evance of mitochondrial dysfunction in relation with impaired 
glucose metabolism, recent evidence uncovered a further mecha-
nism acting at the hypothalamic level. Following data obtained 
with selective deletion of Mfn2 in energy homeostasis, some 
authors undertook a similar approach with Mfn1 in relation to 
glucose homeostasis. Selective deletion of Mfn1 in POMC neu-
rons led to structural and functional alterations in mitochondria 
(90). These changes led to abnormal glucose homeostasis, which 
was due to impaired pancreatic insulin secretion. A more recent 
publication from this group also demonstrated other conse-
quences in the alteration of Mfn1 in mitochondrial dynamics, 
which are essential for the appropriate responsiveness of POMC 
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neurons to the increase or decrease of glucose concentrations (97). 
Nevertheless, not only the proteins implicated in fusion mecha-
nism but also mitochondrial fission regulators like DRP1 were 
directly implicated in the control of glucose sensing in POMC 
neurons (98). In addition, data from ventromedial hypothalamus 
neurons clearly demonstrated that increased extracellular glucose 
concentrations resulted in UCP2-dependent mitochondrial 
fission in these neurons and this effect was mediated by DRP1 
(dynamin-related peptide-1) (99). This unsuspected finding led 
to the hypothesis of considering mitochondrial remodeling in 
these hypothalamic neurons as a sensing mechanism implicated 
in whole body homeostasis.

More studies confirmed the importance of astrocytes in the 
co-regulation of hypothalamic glucose sensing and systemic 
glucose metabolism. In relation with mitochondrial dynamics, 
the astrocyte-specific loss of insulin receptors produce altera-
tions in mitochondrial integrity and mitochondria–ER contacts 
in POMC neurons, impairing the appropriate response of these 
neurons to glucose changes (100).

At to which point these neurons can be considered a target 
of current drugs for clinical use is currently being investigated. 
Peripheral treatment with metformin improved peripheral insu-
lin resistance, decreased plasma and brain oxidative stress, and 
restored brain mitochondrial function, that were all produced 
from high-fat diet (101). On the other hand, direct administration 
of metformin in the brain for up to 7 days in mice caused severe 
hypoglycemia and alterations in mitochondrial function/viability 
(102). Finally, using an experimental model of diet-induced obe-
sity in rats, it was found that HFD caused brain mitochondrial 
dysfunction indicated by an increase of brain mitochondrial 
ROS and increase of the size of mitochondria in the brain (103). 
In this model, using incretin-drug-based vildagliptin in obese 
insulin-resistant rats ameliorated peripheral insulin resistance 
and improved brain insulin sensitivity and mitochondrial func-
tion (104, 105). Dapagliflozin, a sodium glucose cotransporter 
2 (SGLT2) inhibitor, also restored peripheral insulin sensitivity 
and decreased brain oxidative stress, which led to improved brain 
mitochondrial function, brain inflammation, normalized brain 
insulin signaling, improved brain insulin sensitivity, decreased 
brain apoptosis, and increased hippocampal synaptic plasticity 
(106). Further studies assessing the effects of direct administra-
tion in specific hypothalamic nuclei and neuronal populations 
are needed in order to clarify which specific neurons are involved 
in these effects.

THe MiTOCHOnDRiAL BiOeneRgeTiCS 
in THe HYPOTHALAMUS AS new 
THeRAPeUTiC TARgeT

Data gleaned in recent years suggest that mitochondrial bio-
energetics could represent a useful target in different diseases 
spanning the fields of cancer, metabolism, or neurodegeneration 
to mention a few (1, 90, 107–110).

Overall, currently available data strongly document that 
mitochondrial fusion proteins are novel pharmacological 
targets (111, 112). This potential is related to the major impact 

that mitochondria plays in cell bioenergetics since they are the 
most relevant producer of ROS as well as the main antioxidant 
(113), both of which are involved in the root and/or progression 
of many diseases. However, it has become a daunting task to 
develop specific compounds, without side effects, that could be 
targeted to a specific cell population affected by the disease and 
not healthy cells (114). In order to overcome such pharmacologi-
cal issues, some studies have tried to develop alternative strategies 
linked to changes in lifestyle or nutritional intake, such as caloric 
restriction, physical exercise, or diet supplementation with anti-
oxidants (115–117). Although there are clear benefits in disease 
progression in some instances with these approaches, it remains 
unclear as to what extent this process is mediated by changes in 
mitochondrial bioenergetics. Another indirect approach is to try 
to influence the activity of targets that could in turn influence 
mitochondrial function. Among these approaches are studies 
assessing the influence of rosiglitazone, resveratrol, or metformin 
(118, 119), which could exert their effects via PPAR, Sirtuins, or 
AMPK. However, it is also unclear as to what extent the effects 
of the aforementioned targets are dependent on mitochondrial 
function, since these drugs can exert their action independently 
of these targets. In any case, it should be emphasized that most 
studies failed to document a clear-cut benefit in those patients 
with severe mitochondria dysfunction.

A more direct strategy would be to target the cell machinery 
directly involved in mitochondrial biogenesis and/or function. 
One example of this is the search for molecules that upregulate 
Mfn2 expression and induce mitochondrial fusion (111) led to 
discovery of a molecule, called leflunomide, that was approved 
by the FDA (111). This compound induced the expression of 
Mfn2 and Mfn1 in C2C12 muscle and in HeLa cells (120). The 
active metabolite for leflunomide is teriflunomide, which also 
increases Mfn2 transcriptional activity and mitofusin mRNA 
levels in Hela cells. Interestingly, it was found that leflunomide 
inhibits dihydroorotate dehydrogenase (DHODH), an inner 
mitochondrial membrane enzyme that catalyzes the fourth 
step in the novo synthesis of pyrimidines, in  vitro (121, 122). 
Additional experiments showed that leflunomide and terifluno-
mide induced the upregulation of mitofusin and mitochondrial 
elongation by depletion of the cellular pyrimidine pool second-
ary to DHODH inhibition (123). This study also demonstrated 
that deficiency in cellular pyrimidine pool induced mitochon-
drial fusion using BRQ (brequinar) and DHODH inhibitor. 
Using different experiments with inhibitors of the components 
to different pathways, the authors showed that Leflunomide 
blocks pyrimidine biosynthesis by inhibiting DHODH and thus 
functionally connected with respiratory complex III. In addi-
tion, other inhibitors of Complex III or DHODH also increased 
mitofusin expression and promoted mitochondrial fusion (111). 
All these studies may lead to new strategies for the treatment of 
patients with genetic defects who exhibit marked alterations in 
mitochondrial dynamics, and for which there is currently no 
adequate treatment. At present, the major hope is focused in the 
development of gene therapy or exogenous stem cell treatments 
for which preclinical studies support their feasibility, although 
some issues still need to be resolved before being applied in the 
clinical setting (112).
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COnCLUDing ReMARKS AnD 
PeRSPeCTiveS

Mitochondrial dynamics is essential for maintaining cell homeo-
stasis and their dysregulation has been historically linked to 
different rare diseases which usually share common features of 
patients suffering marked disabilities. Most recently, they were 
also linked to some high incidence diseases such as neurodegen-
erative diseases, cancer, and diabesity (obesity and T2D). From 
a basic point of view, several seminal discoveries were made 
over the last few years. These include the characterization of the 
molecular machinery involved in mitochondrial dynamics and 
their mechanism of action, in terms of cell bioenergetics and 
maintenance of adequate control of ROS. In addition, the genera-
tion of in vivo models for these molecules using standard gain/
loss of function approaches in specific neuronal cell populations 
helped to uncover some unsuspected biological roles. This led in 
some instances, e.g., mitofusins, to be now considered as major 
regulators of energy homeostasis at the whole body level. Even 
more, Mitifusin 1 has emerged as a nutrient sensor in hypotha-
lamic (POMC) neurons that plays a key role in the central control 
of insulin release from the pancreas. In fact, these components of 
the mitochondrial machinery are being considered as drug tar-
gets for diabesity despite the difficulties related to this approach. 
Nevertheless, taking into account the well-known interrelation-
ship between diabesity, cancer, and neurodegenerative disease, 

and the sharing of some common molecular features that are 
involved with mitochondrial bioenergetics at the root of these 
comorbidities is being studied in depth. Overall, these major 
breakthroughs should translate into new therapies in the near 
future. While most attempts thus far have been linked to failure 
or at most no clear benefit, new approaches like gene therapy 
may overturn this current status. Such therapies are something 
desperately needed, since there is none currently available for 
many of the patients with severe genetic defects in mitochondrial 
function.
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