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Pediatric obstructive sleep apnea (OSA) is a syndrome manifesting with snoring and 
increased respiratory effort due to increased upper airway resistance. In addition 
to cause the abnormal sleep, this syndrome has been shown to elicit either growth 
retardation or metabolic syndrome and obesity. Treating OSA by adenotonsillectomy 
is usually associated with increased risk for obesity, despite near complete restoration 
of breathing and sleep. However, the underlying mechanism linking upper airways 
obstruction (AO) to persistent change in food intake, metabolism, and growth remains 
unclear. Rodent models have examined the impact of intermittent hypoxia on metab-
olism. However, an additional defining feature of OSA that is not related to intermittent 
hypoxia is enhanced respiratory loading leading to increased respiratory effort and 
abnormal sleep. The focus of this mini review is on recent evidence indicating the 
persistent abnormalities in endocrine regulation of feeding and growth that are not 
fully restored by the chronic upper AO removal in rats. Here, we highlight important 
aspects related to abnormal regulation of metabolism that are not related to intermittent 
hypoxia per se, in an animal model that mimics many of the clinical features of pediatric 
OSA. Our evidence from the AO model indicates that obstruction removal may not be 
sufficient to prevent the post-removal tendency for abnormal growth.

Keywords: sleep-disordered breathing, upper airway obstruction, sleep, growth, metabolism, rats

inTRODUCTiOn

Obstructive sleep-disordered breathing includes a spectrum of clinical entities with variable 
seve rity ranging from primary snoring to obstructive sleep apnea (OSA) (1, 2). Children with 
OSA suffer from upper airway obstruction (AO) during sleep that is manifested by increased 
respiratory efforts, large variations in intrathoracic pressure (up to −50  mmHg during peak 
inspiration), intermittent hypoxia, ultimately leading to sleep fragmentation and nonrestora-
tive sleep. OSA is relatively common in children, and it may have serious consequences on 
longitudinal growth, body weight, energy metabolism, cardiovascular and neurobehavioral 
abnormalities, and increased health-care utilization (1–10). Estimates of OSA prevalence range 
between 1 and 5.7% depending mainly on the populations studied (1, 2, 11, 12). It is estimated 
that 5–56% of OSA cases develop growth retardation, with the lower prevalence probably reflect-
ing increased awareness and earlier diagnosis and treatment (13–17). The mechanisms underly-
ing the development of growth retar dation in OSA continue to be highly controversial. Three 
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main possibilities have been put forward to explain growth 
retardation in OSA. First, it is possible that dysphagia (18) is 
due to enlarged tonsils and adenoids, and decreased appetite 
due to changes in olfactory acuity in some cases. Second, it 
has been postulated that dysregulation of energy supply/
energy expenditure balance (3, 18–20), due to the increased 
respiratory efforts (work of breathing) during sleep, will lead to 
increased metabolic expenditure and contribute to slow weight 
gain in these children (3). However, this mechanism has been 
disputed, as total energy expenditure was not affected by OSA 
(21). Third, more recently, impaired homeostasis of hormones 
such as growth hormone (GH), ghrelin, and leptin has been 
reported (4, 5, 22–25). The GH homeostasis is recognized as 
a key mechanism underlying impaired longitudinal growth  
(1, 4, 5). GH secretion occurs in pulses from the anterior pituitary 
somatotropic cells mainly during deep slow wave sleep onset 
(26, 27). Deep slow wave sleep is initiated in the preoptic area  
of the hypothalamus and consists of delta electroencephalo-
gram activity, i.e., high-amplitude brain waves with a frequency 
of oscillation between 0.5 and 4 Hz (23, 28–31). OSA has also 
been shown to cause growth failure in some young children, 
and metabolic syndrome and obesity were reported in other 
cases (1, 3, 5, 6, 13, 15, 16, 18). OSA is most prevalent in 2- to 
8-year-old children, when tonsil and adenoid volume is largest 
relative to the upper airway diameter; these children are usually 
referred to adenotonsillectomy as the first-line treatment (1, 3,  
6, 15, 32). A currently poorly understood phenomenon is the 
fact that treatment of OSA can lead to accelerated weight gain 
in children, i.e., it normalizes weight in children who have 
failure to thrive, but increases the risk for obesity in overweight 
patients (1, 2, 5, 6, 15, 32–35). Regulation of energy expenditure 
is multifactorial and includes factors such as metabolic rate at 
rest, physical activity, and thermic effect of food intake (19, 20, 
36, 37). Whole-body energy balance to promote weight gain 
may be altered following treatment of OSA (19, 20). However, 
study design and the between-group variability make a conclu-
sion on the effect of treatment difficult. Although adenotonsil-
lectomy in children and positive airway pressure (in adults) 
treatments predispose humans to a positive energy balance and 
accelerate body weight gain, sedentary lifestyles, dietary intake, 
and selection of high caloric/glycemic index foods may have 
greater impacts on weight change (6, 19, 20, 38–40). However, 
the majority of clinical studies concentrated on elucidating  
the endocrine consequences of the surgical treatment while 
data on normal healthy controls barely exist.

Experimental models of sleep apnea provide mechanistic 
insight into the apnea generation as well as into its impact on car-
diovascular, metabolic, and psychological consequences (41, 42).  
The commonly used model to study OSA involves implementa-
tion of intermittent hypoxia, i.e., the repetitive brief hypoxic 
episodes like those that occur in OSA (43) or specifically dust-
ing sleep (44, 45) to explore the impact of intermittent hypoxia 
on cardiovascular (43, 46), sleep (47, 48), and neurocognitive 
parameters (42). Another defining feature of OSA, however, is the 
mechanical changes in work of breathing that are not associated 
with intermittent hypoxia. To elucidate the role of the mechanical 
load, we first developed a model of mechanical obstruction in 

rodents in 1991 (49). We used this model 2 years later to eluci-
date the impact of chronic upper AO on cardiac function in rats  
(50). Here, we highlight important aspects related to abnormal 
regulation of metabolism that are not related to intermittent 
hypoxia per  se, in an animal model that features many of the 
clinical signs of pediatric OSA.

THe UPPeR AO MODeL

In the AO model, respiratory load is surgically induced in 
22-day-old rats by tracheal narrowing and animals were fol-
lowed up to 7 weeks; this period is comparable to half a year 
up to 20 years in humans (25). AO induces adaptive response 
in the respiratory system including alterations in respiratory 
muscles (49, 51), control of ventilation (52, 53), sleep, growth, 
and metabolism (23–25, 31, 54–57). Following surgery trachea 
diameter was reduced by 45%, its resistance increased by 
46–100%, and respiratory effort more than doubled (23, 52, 
53, 55); following obstruction removal, trachea diameter was 
normalized to control values (25). One of the limitations of 
this model is the fact that respiratory loading was both inspira-
tory and expiratory and not sleep related, resembling pediatric 
subglottic stenosis. In clinical OSA, however, the upper AO 
is predominately inspiratory and manifested mainly during 
sleep (58). The similarity of this model and sleep apnea are 
striking as obstructed animals exhibit sleep fragmentation and 
abnormal growth similar to OSA (1, 2, 23, 54, 55). The AO 
elicits audible wheezing, especially following activity, whereas 
no sign of respiratory distress was observed at rest (49, 50, 53).  
Under these conditions, animals maintain PO2 in the nor-
mal range with no evidence for gas exchange abnormalities  
(24, 25, 50, 52, 54, 57), hemoglobin and lactate levels (23, 25, 52, 
54, 57), and daily food intake were higher (25, 53, 54). By con-
trast, inter mittent hypoxia can lead to decreased food intake, 
erythropoiesis, and liver injury (59–65). In children with OSA, 
oxygen saturation may decrease with airway loading during 
sleep (66). However, in AO, no changes were found in liver 
enzymes, liver histology, prolyl-hydroxylase 2, or hypoxia-
inducible factors (25). These findings support the notion that 
intermittent hypoxia does not play a role in this abnormal 
energy metabolism and growth observed in the AO animal  
model.

OReXin AnD BReATHinG

Airways obstruction leads to adaptive changes in the respira-
tory mechanics including large inspiratory swings in pleural  
pressure and increased diaphragmatic contractile force (49, 50) 
to maintain respiratory homeostasis (Figure  1) (25, 52–54). 
These adaptations are critical especially during sleep, a condition 
where respiratory muscle force may not be sufficient to support 
obstructed ventilation. AO leads to increased hypothalamic 
orexin level, wakefulness, and hunger (23–25). The orexins 
(orexin A and orexin B) are novel hypothalamic peptides derived 
from the common precursor prepro-orexin that acts through 
two subtypes of receptors [orexin receptor 1 (OX1R) and OX2R]. 
Orexin neurons have emerged as a key orchestrator of sleep–wake 
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FiGURe 1 | Possible effects of upper airway obstruction (AO) on sleep  
and growth. Upper AO leads to adaptive changes in the respiratory 
mechanics to maintain respiratory homeostasis. Orexin plays a role in 
maintaining breathing homeostasis in AO via its primary role in carbon 
dioxide chemoreception. Orexin inhibits growth hormone (GH) release from 
the pituitary gland through inhibition of hypothalamic hormone-releasing 
hormone (GHRH) neurons. Abnormalities in GHRH underlie both growth  
and sleep disorders in AO. The continuous ghrelin elevation in AO possibly 
due to partial sleep loss and increased orexin was sufficient to desensitize 
the hypothalamic–pituitary–GH axis. AO causes suppression of the GH axis, 
and of the global and local growth plate IGF-1 levels leading to growth 
retardation. Orexin receptor 1 (OX1R) plays a role in growth retardation  
by modulation of local ghrelin levels.
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activity, and breathing and feeding centers receive stimula-
tory inputs from orexin neurons (67–70). Orexin neurons are 
active during wakefulness but show little or no activity during 
paradoxical sleep (rapid eye movement sleep in humans) and 
slow wave sleep (70–72). Orexin-containing neurons located in 
the lateral hypothalamus contribute to carbon dioxide (CO2) 
chemo reception (73–77) in a vigilance-state- and diurnal-cycle-
dependent manner (73, 76). Prepro-orexin knockout mice 
exhibit a large decrease in the ventilatory response CO2 during 
wakefulness that contributes to a higher arterial PCO2 (78). 
Hypothalamic orexin cell firing can be stimulated by extracel-
lular pH levels, at least partial closure of TASK-like channels 
(74), and possibly via acid-sensing ion channels (77, 79).  
Respiratory acidosis produced by OSA causes arousal and 
stimulates breathing, which normalizes extracellular levels 
of protons (79). In the AO model, increase in hypothalamic 
orexin plays an important role in maintaining respiration (23, 
24, 54) and increased food intake (24, 25). Administration of 

almorexant (dual orexin receptor antagonist) normalized sleep 
(54) but induced severe breathing difficulties in the AO group, 
while it affected neither sleep nor breathing in control animals. 
Similar breathing difficulties were found during recovery sleep 
from 4-h sleep deprivation protocol when sleep was stimulated and 
orexin level is minimal. Orexin plays a role in maintaining breath-
ing homeostasis in AO, probably via its primary role in CO2 
chemoreception (76). Further studies are needed to quantify the 
role of TASK-like channels (74) and acid-sensing ion channels 
in regulation of breathing in AO model. Leptin has an important 
role in central chemoreception; leptin deficiency in ob/ob mice 
produces marked depression of the hypercapnic ventilatory 
response (62). In AO rats, however, leptin decreases and does 
not play a role in respiratory regulation (25, 54).

OReXin–GH AXiS AnD FeeDinG

The need to maintain ventilation in AO is associated with 
upregulation of hypothalamic orexin, which causes suppression 
of the growth hormone-releasing hormone/growth hormone 
axis (GHRH/GH) and decreased sleep (Figure  1) (23, 31, 54). 
AO disruption of sleep leads to adverse health outcomes in 
rodents, i.e., increased appetite hormones (orexin, ghrelin) and 
food intake and GH suppression (23–25). Orexin serves as an 
important link between peripheral metabolism and homeostatic 
challenges including sleep, respiration, feeding, and neuroendo-
crine homeostasis (67–70, 80–82). Orexin-A inhibits GH release 
from the pituitary gland through inhibition of GHRHergic 
neurons of the periventricular nucleus and of the arcuate 
nucleus and stimulation of somatostatin in the hypothalamus 
(82–85). Enhanced GH secretion and induction of sleep are two 
parallel and closely interrelated consequences of hypothalamic 
GHRHergic neurons activation (29, 86, 87). Abnormalities in 
GHRH levels could underlie both growth and sleep disorders 
in AO (23). The decreased GHRH content in AO was related to 
increased hypothalamic orexin and somatostatin levels, and in 
obstruction removal group to increased somatostatin (25, 54). 
Administration of ritanserin (selective 5HT2 antagonist) normal-
ized both GHRH content and slow wave sleep (23, 31, 54).

Interestingly, AO elicits sustained ghrelin elevation, suf-
ficient to desensitize the hypothalamic–pituitary–GH axis 
while still causing hyperphagia (25). This hyperphagia was 
also attributed to upregulation of orexin and mediators that are 
activated by ghrelin, such as neuropeptide Y and agouti-related 
peptide, and to decreased circulatory leptin levels. Gut-derived 
ghrelin both stimulates feeding behavior and causes release of 
GHRH from the hypothalamus in response to fasting (88–90) 
by activation of the GH-secretagogue receptors (91). At least 
three types of neurons, such as GHRHergic, neuropeptide Y, 
and agouti-related peptidergic, are well-defined targets for 
ghrelin action on feeding (92). Acceleration of growth by 
ghrelin depends on its level and pattern of secretion (93). Short 
exposure to ghrelin causes augmentation of GH release and 
increases appetite via the hypothalamic GHRH receptor, while 
continuous exposure increases feeding but suppresses the 
GH release. The most prevalent explanation of the impaired 
somatic growth in OSA patients is that their GH homeostasis is 
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disturbed (4). A meta-analysis study (5) found the evidence of 
improved endocrine homeostasis of the GH axis that is associ-
ated with improved somatic growth following adenotonsillec-
tomy, supporting the concept that GH homeostasis is impaired 
in pediatric OSA. However, the limitation of these studies was 
that the comparison has been done to hormone levels in the 
short time windows before and after the surgical intervention, 
not including healthy controls. Levels of IGF-1 and of its main 
binding protein, IGF-binding protein 3, are well-established 
predictors of the mean GH levels across the day (94–96). One 
of the interesting findings in the AO model is that following the 
obstruction removal, the GH/IGF-1 axis does not normalize 
and these animals still exhibit substantial growth retardation 
(25). Both GHRH and IGF-1 levels do not reach control values 
and obstruction removal animals continue to exhibit shorter 
body length despite normalized tracheal diameter, indicating 
persistent deregulation of GH axis (25). Increased food intake 
in AO was probably a physiological adaptation required to pro-
vide the extra energy needed for increased additional wakeful-
ness (23, 31, 36, 54) and possibly elevated energy expenditure 
due to increased work of breathing (49, 51). Increased feeding 
behavior was associated with persistent remodeling of the 
appetite homeostasis long after the successful removal of the 
upper AO (25). It is possible that AO (treated or untreated) 
leads to persistent alterations of appetite homeostasis and 
increases the preference for a carbohydrate-rich diet. Further 
studies are needed to explore the whole-body energy balance 
using an open-circuit indirect calorimeter (36) and to find out 
whether AO obstruction removal affects nutritional prefer-
ence for carbohydrate-rich vs. high-fat diet that in turn may 
contribute to abnormal body weight gain. In children, despite 
resuming normal sleep and ventilation by adenotonsillectomy, 
the risk for obesity remains high (3, 6, 32–35). This has been 
attributed to a shift toward less active lifestyle and, possibly, to 
unhealthy food choices, highlighting the importance of chang-
ing the lifestyle following surgery (6, 19, 32, 38–40).

MeTABOLiC COnSeQUenCeS OF AO

Airways obstruction leads to partial sleep loss, i.e., 30–45% 
elevation of wake duration, from early life to adulthood (23, 24,  
31, 54). Low weight gain and growth were observed in AO ani-
mals despite increased energy intake and increased intestine 
surface area to absorb water and nutrients (25, 54), similar to 
the effect observed during chronic partial sleep loss in rats 
(97). Sleep fragmentation, regardless of the methodology, 
including the AO in rats, leads to considerable pathophysi-
ological abnormalities including decreased body temperature 
(98), decreased GHRH/GH axis (27, 99), and increased feeding 
behavior (61, 97). Similar sleep abnormalities in humans may 
increase risk for type 2 diabetes, obesity, and cardiovascular 
diseases (100, 101). The difference in metabolic response to 
sleep abnormalities between humans and rats may simply 
reflect an inter-species difference (102), although other 
contributing factors such as intermittent hypoxia cannot 
be excluded in the case of sleep apnea (1, 2, 22). Moreover, 

the different levels of physical activity in human (6) and AO 
animals may also play a role. A striking reduction of adipose 
tissue content and distribution was the main factor contrib-
uting to the slow body weight gain in AO rats (54). Slower 
weight gain (or even weight loss) was also reported in earlier 
studies of sleep deprivation in rodents, but these reports were 
not consistent. Thus, whereas most studies showed an increase 
in food intake (97, 103), some groups reported no change in 
energy intake following sleep loss (102). Short sleep duration 
augments gut-derived ghrelin and appetite (99). Ghrelin 
drives motivated behavior such as motivated movement, 
feeding, and increased arousal (88, 104). The essential need 
to provide the energy required to support loaded breathing in 
AO (49) accompanied by enhanced wakefulness (36) makes 
the increased feeding essential for physiological adaptation to 
the chronic respiratory condition.

BOne MeTABOLiSM AnD 
ARCHiTeCTURe

Growth retardation is highly prevalent in children suffering 
from OSA. It aging adults, OSA has been shown to affect bone 
metabolism and bone mass via decreased sleep quality, noctur-
nal hypoxia, inflammation, etc. (105). The endocrine effect of 
GHRH/GH is induction of IGF-1 in various organs, including 
the epiphyseal growth plate (EGP) in bones (106). AO causes a 
significant suppression of the GH axis, and of the global and local 
EGP IGF-1 levels (Figure 1) (55, 57). The global IGF-1 levels are 
primarily determined by liver synthesis; other peripheral tissues 
contribute somewhat to circulating global IGF-1 levels but their 
contributions are less significant (107). Local IGF-1 mediates  
the GH effect on the EGP by binding to the specific receptors  
(94, 108). Reduced local IGF-1 release in the EGP will lead to 
growth retardation (109).

We assessed somatic growth by measuring long bones length 
and by microCT scanning (24, 55, 110). Longitudinal growth 
is a well-orchestrated process that occurs via endochondral 
ossification at the growth plates (111). In AO animals, growth 
gain was inversely correlated with enhanced upper airways 
resistance (55). Both proliferative and hypertrophic zones 
were narrowed in the AO animals and these animals exhibited 
reduced bone mass. These pathophysiological bone abnormali-
ties were related to EGP failure and dysregulation of the levels 
of endochondral ossification markers (e.g., collagen type II, X, 
Sox9, and RankL) (24). Pharmacological stimulation of GH 
release restored local EGP IGF-1. The growth parameters were 
only partially restored (55), however, indicating that other 
pathways are involved. Seeking the identity of these pathways, 
we focused our attention on orexin and ghrelin peptides in AO 
animals. OX1R has been shown to play an important role in bone 
remodeling and metabolism by modulation of local ghrelin levels 
(112). Several ghrelin related signaling pathways, including 
phosphatidylinositol 3-kinase/AKT, apparently are involved in 
bone metabolism and development (113, 114). Orexins activate 
transcription factor peroxisome proliferator-activated recep-
tor gamma (PPARγ) in bone marrow adipose tissue, causing 
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bone mass loss and leading to fatty bone marrow (115–117). 
Obstruction removal and administration of almorexant norma-
lized sleep but did not reverse the phenomena (24); these finding 
indicate persistent bone remodeling that is not related to loss 
of developmental time per  se. Increased expression of orexin 
and OX1R, and suppression of GH-secretagogue receptor and 
local ghrelin in the EGP are the main mechanisms contributing 
to increased adipocyte differentiation and fatty bone marrow 
found in AO. Dual orexin receptor antagonist considerably 
improved EGP growth and restored sleep in AO animals. Our 
findings support the possibility that OX1R plays a significant 
role in bone development in AO animals (Figure 1) (24). The 
robust increase of PPARγ and reduction in Sox9 levels strongly 
suggest that the course of early bone development has been 
impaired (118). Orexins have been shown capable to stimulate 
marrow PPARγ that in return upregulates marrow adipogenesis 
and causes bone mass loss (112, 115, 116). Downregulation of 
Sox9 also promotes adipocyte differentiation, a process that is 
activated by PPARγ (119).

COnCLUSiOn

The AO model provides mechanistic insight about functional 
interactions between orexin and the hypothalamic–pituitary axis 
in regulation of sleep, breathing, and growth. AO leads to adap-
tive changes in the respiratory mechanics to maintain respiratory 
homeostasis. The available information supports the notion that 
AO leads to increased hypothalamic orexin release, which plays 
an important role in maintaining respiration, but elicits sleep, 
energy metabolism, and growth abnormalities.
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