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Role of Tumor-Derived Chemokines 
in Osteolytic Bone Metastasis
Salvatore J. Coniglio*

New Jersey Center for Science, Technology and Mathematics, Kean University, Union, NJ, United States

Metastasis is the primary cause of mortality and morbidity in cancer patients. The 
bone marrow is a common destination for many malignant cancers, including breast 
carcinoma (BC), prostate carcinoma, multiple myeloma, lung carcinoma, uterine cancer, 
thyroid cancer, bladder cancer, and neuroblastoma. The molecular mechanism by which 
metastatic cancer are able to recognize, infiltrate, and colonize bone are still unclear. 
Chemokines are small soluble proteins which under normal physiological conditions 
mediate chemotactic trafficking of leukocytes to specific tissues in the body. In the 
context of metastasis, the best characterized role for the chemokine system is in the 
regulation of primary tumor growth, survival, invasion, and homing to specific secondary 
sites. However, there is ample evidence that metastatic tumors exploit chemokines to 
modulate the metastatic niche within bone which ultimately results in osteolytic bone 
disease. In this review, we examine the role of chemokines in metastatic tumor growth 
within bone. In particular, the chemokines CCL2, CCL3, IL-8/CXCL8, and CXCL12 
are consistently involved in promoting osteoclastogenesis and tumor growth. We will 
also evaluate the suitability of chemokines as targets for chemotherapy with the use of 
neutralizing antibodies and chemokine receptor-specific antagonists.

Keywords: metastasis, bone, chemokines, chemokine receptors, CXCR4, breast carcinoma, prostate carcinoma, 
myeloma

iNTRODUCTiON

Cancer is the second leading cause of death in the developed world. Metastatic spread of tumor 
cells to vital organs results in mortality and morbidity (1, 2). The metastatic process is complex and 
involves genetic alterations of the cancer cells as well as interaction with the tumor microenviron-
ment (3–6). The multi-step process of the metastatic cascade includes local invasion of the tumor 
followed by entry into blood vessels (intravasation), survival of circulating tumor cells (CTCs) in 
the blood (CTCs), adhesion and exit of cancer cells from blood vessels (extravasation) and invasion, 
colonization and outgrowth of the primary cancer in distal secondary organs. Each stage requires 
close collaboration of cancerous cells with specific elements of the microenvironment.

Clinicians and researchers have noted for over a century that metastasis is not a random 
process and that specific cancers tend to predominantly metastasize to certain organs. The 
“seed vs soil” hypothesis first put forth by the physician Stephen Paget to explain organotropism 
suggested that local microenvironment of target organs (“soil”) provided an appropriate 
environment for tumor (“seed”) colonization and growth (7). The molecular mechanisms 

Abbreviations: BC, breast carcinoma; CTCs, circulating tumor cells; MM, multiple myeloma; OBD, osteolytic bone disease; 
OB, osteoblasts; OCL, osteoclasts; PC, prostate carcinoma; IL-8, interleukin-8.
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that govern the spread of cancers to specific organs such as 
the bone remains unclear, although technological advances 
have allowed examination of gene regulation in regards to 
organotropism. Such studies have found that tumor cells may 
acquire specific genetic phenotypes, with activation of specific 
cytokines and/or proteases which may govern metastasis to 
specific organs.

CHeMOKiNeS AND MeTASTASiS

Chemokines are a family of low molecular weight proteins which 
function in directing leukocyte cell chemotaxis to various tissues 
in both steady-state homeostasis and inflammatory conditions 
(8). There are approximately 50 chemokine ligands and 20 recep-
tors identified to date. The chemokine family is divided into four 
subfamilies based on the arrangement of cysteine residues in 
the amino terminus of the chemokine ligand. The CCL family 
is comprised of chemokines whose first two cysteine residues 
are adjacent to each other and are designated CCL1–28. The 
CXCL group contains chemokines which have a single amino 
acid between the first two cysteine residues. There is one ligand, 
CX3CL1 (also called fractalkine) which has three amino acids 
between its first two cysteines, and there are two chemokines 
which are missing two of the four conserved cysteine residues 
referred to as XCL1 and XCL2 (9).

Chemokines are recognized by a family of receptors that 
belong to the superclass of seven transmembrane spanning 
G-protein coupled receptors (GPCRs). Nomenclature for the 
receptors is based on the subfamily of ligands they bind: CCR 
receptors activated by CCL ligands, designated CCR1–10; 
CXCR receptors bind to CXCL ligands, designated CXCR1–8; 
XCR is the sole receptor for XCL1 and XCL2 ligands; and the 
CX3CR1 receptor and CX3CL1 ligand form an exclusive pair. 
There is extensive promiscuity between the CC ligands and their 
receptors. There is some degree of promiscuity between the 
CXC ligands and their receptors, but it is not as extensive as that 
observed with CC ligands (8). A certain amount of redundancy 
is likely for chemokine receptors. This is an important point as 
pharmacological inhibitors of individual receptors may have 
limited efficacy due to the redundancy, and the tendency toward 
compensatory increases in expression of other chemokine family 
members.

The activation of chemokine receptors by their respective 
ligand(s) triggers a series of biochemical events characteristic of 
GPCR signaling in general with activation of heterotrimeric G 
proteins (Gαβγ). Most chemokine receptors have been shown to 
couple to multiple Gα proteins, each of which can engage and 
modulate the activity of effector proteins. These include Gi, that 
effects adenylyl cyclase results in the inhibition of the second 
messenger molecule cAMP; and Gq that effects phospholipase 
C ultimately resulting in the release of calcium and activation 
of calcium-dependent enzymes. Some chemokine receptors have 
been shown to activate G12/13 and thus stimulate exchange factor 
activity of the rho family of GTPases and subsequent F-actin 
reorganization. Like other GPCRs, chemokine receptors also 
signal through β-arrestin proteins. These effector pathways are 
thought to be involved in engaging the cell motility apparatus 

to allow cells bearing these receptors to respond to chemokine 
gradients.

G-protein coupled receptors have proven to be excellent phar-
macological targets and amenable to high-throughput screening 
techniques (10). Chemokines receptors have no exception, with 
FDA approved drugs for CCR5 and CXCR4, and multiple drugs 
in the pipeline (10).

A landmark study in 2001 by Zlotnik and colleagues dem-
onstrated that the chemokine system may explain the pattern 
observed for organotropic metastasis (11). In this paper, it was 
shown that breast carcinoma (BC) cells express CXCR4 and 
CCR7, and activation of these receptors resulted in reorganiza-
tion, cell motility, and tissue-specific metastatic trafficking in vivo. 
Blockade of CXCR4 with neutralizing antibodies prevented 
the BC cell line MDA-MB-231 from metastasizing to the liver 
and lung as these organs express the CXCR4 ligand, CXCL12  
(SDF-1). Since this paper was published, there have been many 
studies which examined the role of chemokines in the various 
stages of metastasis (9, 12–15).

BONe MiCROeNviRONMeNT

Bone is one of the major target sites for metastasis (16–19). 
Metastatic colonization of bone often causes pathological frac-
tures, chronic pain, and neurological compression syndromes 
(20). The presence of metastatic lesions in bone is generally an 
indicator for poor prognosis (21, 22). Certain cancers, particu-
larly BC, prostate carcinoma (PC), and multiple myeloma (MM) 
exhibit a tendency to metastasize to bone. In fact, 60–85% of 
patients with metastatic breast and PC harbor bone metastases 
(23). Bone marrow is one of the most frequent metastatic sites 
for late stage BC (24). Furthermore, the 5-year survival rate for 
breast cancer patients with metastasis to bone is under 10%. As 
with other bone-metastatic cancers, morbidity and mortality is 
generally associated with bone degradation due to osteolytic bone 
disease (OBD) (25). PC is the second leading cause of cancer-
associated death in men. The 5-year survival rate of metastatic 
PC is only 23%. Bone is the major target organ of metastatic 
PC, accounting for about 90% of sites of distal metastasis for 
this cancer (26). The growth of PC in bone is predominantly 
osteoblastic as identified by radiographic analysis; however, the 
activation of osteoclasts (OCLs) is a necessary initial step in this 
process as well.

The bone microenvironment consists of mineralized extracel-
lular matrix and several specialized cell types, including osteoblasts 
(OBs), OCLs, mesenchymal stem cells, bone marrow endothelial 
cells, hematopoietic cells, and adipocytes (27, 28). OBs are one of 
the major cellular components of bone and they are responsible 
for depositing collagen and the mineralized calcium phosphate 
(hydroxyapatite) that gives the bone extracellular matrix its 
structural strength. OCLs are large multinucleated cells which 
originate from the fusion of myeloid lineage precursors. They 
adhere to and break down bone by dissolving calcium phosphate 
crystals and proteolysis of the collagen matrix scaffold. The main 
growth factors involved in OCL maturation are colony stimulating  
factor-1 (CSF-1) and receptor activator of nuclear factor KB ligand 
(RANKL). The crosstalk between OBs and OCLs modulates the 
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degree of bone synthesis and resorption. In addition to express-
ing RANKL to promote osteoclastogenesis, OBs can also secrete 
osteoprotegerin (OPG) which is a decoy receptor for RANKL. 
Generally, the ratio of RANKL/OPG dictates the level of OCL 
maturation and activity. Interestingly, OPG is associated with 
BC-mediated osteolysis and bone metastasis (29). In addition to 
its function as a negative regulator of RANKL signaling, OPG is 
able to engage other cell receptors, such as TNF-related apoptosis 
inducing ligand, Syndecan-1, and αVβ5 integrins and has been 
shown to modulate BC apoptosis and cell invasion (30, 31).

Indicators of OCL maturation include positive tartrate-
resistant acid phosphatase (TRAP) staining and the presence of 
proteases, such as cathepsin K and matrix metalloproteinase 9.

Tumor cells within the bone generally promote osteolysis 
in the process of creating a favorable microenvironment as the 
bone matrix is rich in growth factors (fertilized soil as per the 
Paget analogy). Tumors after colonization of bone secrete pro-
OCL maturation factors, such as parathyroid hormone-related 
protein, IL-11, and TNFα which stimulate OBs to increase 
RANKL and decrease OPG production (32). OCL maturation 
and bone resorption subsequently lead to bone pain and bone 
fragility. Activated OCLs then carry out bone resorption and in 
the process they release transforming growth factor β, insulin 
growth factors, and other growth factors that fuel the tumor cells 
to produce even more pro-osteolytic factors. This process results 
in a positive feedback condition often referred to as a “vicious 
cycle” that can lead to OBD (33). It has been increasingly rec-
ognized that in addition to factors such as CSF-1 and RANKL, 
chemokines are vital for OCL maturation and function. For a 
more comprehensive treatment of the molecular mechanisms 
governing OCL differentiation, maturation, and regulation of 
pro-tumorigenic growth factors, the reader is directed to more 
specific reviews on the subject (34, 35).

In this review, we focus on the role of chemokines in directly 
influencing components of the bone microenvironment which 
in turn enable osteolysis and tumor growth. The focus will be on 
BC, PC, and MM, cancer types for which bone is a prominent 
metastatic target. Particular attention will be paid to animal mod-
els where injection of tumor cells directly into bone allows for 
measuring the effect of chemokine blockade specifically on tumor 
growth as opposed to earlier steps in the metastatic cascade where 
chemokines are known to play a role.

CCL2

CCL2 (also called monocyte chemoattractant protein/MCP-1) 
is the primary ligand for the CCR2 receptor which is normally 
expressed on monocyte/macrophages (8). This signaling axis has 
shown to be important for OCL formation under steady state 
conditions (36). BC progression is associated with an increase 
in CCL2 expression (37). One of the major consequences of 
CCL2 expression by BC cells is the recruitment of CCR2 positive 
myeloid cells to the primary tumor which facilitates metastasis 
in general. Increased CCL2 expression by BC cells, however, is 
also correlated with growth within bone microenvironment 
(38) Lu and Kang examined the role of CCL2 in bone metastasis 
using bone-tropic metastatic sublines of the human BC cell line 

MDA-MB-231 (38). Their work indicated ectopic overexpression 
of CCL2 increased bone-metastatic burden of a weakly bone-
metastatic MDA-MB-231 subline by stimulating osteoclastogen-
esis. Conversely, blockade of CCL2 via a neutralizing antibody 
was shown to inhibit metastasis to bone of a strongly metastatic 
MDA-MB-231 subline (38). OB-derived CCL2 may also promote 
BC metastatic outgrowth in bone (39, 40). Several studies show 
OBs treated with conditioned media from BC cell lines increase 
in CCL2 which in turn can promote OCL maturation (as meas-
ured by TRAP positive staining and bone resorption) (39, 41, 42). 
Interestingly, OPG expression correlates with an increase in CCL2  
in BC patients which may in part explain why it is associated with  
an increase in osteolysis and growth in bone (43).

The study of PC has been hampered by the lack of models 
which exhibit spontaneous metastasis to bone. However, there 
are a number of reports which highlight the role of chemokines 
in growth within bone. The importance of the CCL2–CCR2 
axis in PC such as has been well documented and there is solid 
evidence for this pathway in mediating tumor growth in the 
bone microenvironent (44). PC patients who have advanced 
stage disease with bone metastasis have higher levels of plasma 
CCL2 levels than patients with early stage localized tumors (45). 
A study by Lu et  al. showed that CCL2/CCR2 signaling has a 
dual role in PC progression in mediating both tumor invasion 
in bone and osteolysis (45). Consistent with BC, metastatic PC 
cells secrete CCL2 which accelerates OCL maturation and bone 
resorption in  vitro and in  vivo. Human PC3 cell conditioned 
media induces bone marrow cultures and RAW 264.7 cells to 
form OCLs in vitro and this effect is partially blocked by anti-
CCL2 neutralizing antibodies (46). Depletion of CCL2 in PC3 
cell rendered them unable to efficiently form tumors when 
implanted in SCID tibias (45). This function of PC expressed 
CCL2 in conditioning the bone microenvironment has been 
confirmed by several other reports (47–49). Preclinical studies 
have shown the effectiveness of CCL2 neutralizing antibodies 
in blocking PC tumor growth in bone both as a single agent 
and in combination therapy (46, 50–54). Recently, carlumab 
(CNTO-888), an CCL2 neutralizing antibody, was tested in 
Phase 2 clinical trials in patients with metastatic castration-
resistant PC (NTC00992186) (55). Unfortunately, CCL2 levels 
were only transiently blocked and no stable inhibition of CCL2/
CCR2 signaling was observed in these patients.

Lung carcinoma also tends to metastasize to bone, and there 
are several reports which implicate the chemokine system as 
being central to this process (56). As has been observed in other 
cancer models, lung tumor expression of CCL2 is associated with 
tumor growth in bone which likely mediated via an increase 
in OCL maturation. In one study, RNAi-mediated depletion 
of CCL2 in A549 carcinoma cells prevented osteoclastogenesis 
in tibias orthotopically injected with these cells and this had a 
modest effect of tumor cell proliferation within the bone (56). 
Oral squamous cell carcinoma (OSCC) and nasopharyngeal car-
cinoma and osteosarcoma are other cancers which are associated 
with bone pathology (57–59). These tumor types express high 
levels of CCL2 which have been shown to be responsible for OCL 
maturation and bone resorption by tumors generated by these 
cells (57, 59).
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CCL3

CCL3 (also called MIP-1α) is the principal chemokine ligand 
associated with MM growth in bone (60–62). MM is a malig-
nancy of monoclonal plasma cells of post-germinal origin. They 
re-enter the bone marrow and disrupt the normal physiology of 
the bone microenvironment. As a result, common symptoms 
of MM include osteolysis and hypercalcemia. MM cells express 
high levels of CCL3 which was shown to promote OCL matura-
tion in a RANKL-independent fashion in vitro (63). The in vivo 
role of CCL3 expression was examined in a xenograft model of 
MM (61). In this study, the human MM line ARH engineered 
to express antisense RNA against CCL3 was unable to efficiently 
promote OCL maturation or form tumors in bone. Similar results 
were observed when neutralizing antibodies against CCL3 were 
administered to mice bearing 5TGM1 MM tumors (64). The 
principal receptor for CCL3 is CCR1 which normally expressed 
on cells of the myeloid lineage (including OCLs) as well as 
NK cells and certain T-cell subsets (8, 65). CCR1 has been shown 
to interact with many other CCL family ligands, including CCL5 
(RANTES), the mouse specific ligands, such as CCL6 and CCL9 
(MIP-1γ), and human-specific ligands, such as CCL14, CCL15 
(MIP-1δ), and CCL16. This ligand/receptor system shows a 
significant degree of promiscuity as CCL3 and CCL5 can activate 
CCR5 as well. Given the involvement of CCR1 and CCR5 in 
various diseases, such as rheumatoid arthritis and HIV/AIDS, 
there has been an intense effort to develop effective antagonists 
against these receptors (66, 67). The availability of CCR1- and 
CCR5-specific inhibitors enabled researchers to test relative 
involvement of the main CCL3 receptors in MM bone metastasis 
using the 5TMM experimental myeloma mouse model which is 
thought to recapitulate the human disease in several key aspects 
(68). Small molecule inhibitors BX471 and TAK779, which 
selectively inhibit CCR1 and CCR5, respectively, prevent OCL 
differentiation in  vitro; however, only BX471 had a significant 
effect on 5TMM tumor burden and bone lesions in vivo. Since in 
this study, additional CCR1-specific inhibitors have confirmed 
CCR1 as being the critical CCL3 mediating OCL maturation  
(69, 70). A structurally unrelated CCR1 inhibitor CCX721  
(an analog of the clinical compound CCX354) was able to show 
an even more potent effect in preventing MM and growth within 
the bone (71). These results are consistent with the model that 
CCL3 is a major pro-osteoclastogenic factor in MM and that 
these effects are mediated by CCR1.

iL-8/CXCL8

Interleukin-8 (IL-8/CXCL8) is a member of the CXCL class of 
chemokines which bind to the receptors CXCR1 and 2 (8). IL-8 
has pleiotropic effects on cancer cells and can impact many stages 
of tumor progression, including survival, proliferation, epithelial 
mesenchymal transition, invasion, and angiogenesis (72, 73). 
IL-8 also has potent pro-osteoclastogenic activity and has been 
identified as an osteolytic factor (74). BC overexpression of IL-8 
has been observed in tumor samples and an elevated serum IL-8 
level is associated with osteolysis and bone metastasis in BC 
patients (75, 76). A more recent study clearly demonstrates an 

important role for IL-8 in osteolysis associated with BC using 
the MDA-MB-231 model. Disruption of IL-8-mediated signal-
ing through use of neutralizing antibodies slowed the growth 
of bone tumors in mice injected with MDA-MET BC cells  
(a bone-tropic subline of MDA-MB-231) (76). Strikingly, over 
80% of mice harboring BC xenograft in bone that underwent 
treatment with anti IL-8 for 1 month showed no sign of tumor 
and these animals survived at higher rate (76). This study also 
showed that MDA-MB-231 parental cells engineered to overex-
press IL-8 confer a greatly enhanced ability to stimulate osteoclast 
maturation and grow within the bone. BC cells also utilize OBs 
to generate more IL-8 within the bone microenvironment (40). 
MDA-MB-231 cells secrete Semaphorin 4D induces IL-8 (or the 
murine homolog of IL-8, CXCL5) expression in OBs within the 
bone marrow which in turn was shown to promote osteoclas-
togenesis and bone resorption (77). Interfering with Semaphorin 
4D expression, prevented the upregulation of these ligands in 
OBs and dramatically reduced bone metastasis.

As is observed with BC, enhanced IL-8 expression correlates 
with bone metastasis in PC tumors (78). As mentioned in 
the previous section, human PC3 cell conditioned media can 
stimulate OCLs maturation and activity in vitro (46). This effect is 
partially blocked by individual treatment by blocking antibodies 
against CCL-2 or IL-8, however, a much stronger inhibition is 
observed in the presence of both antibodies indicating CCL2 
and IL-8 activate parallel pathways and work synergistically to 
promote OCL maturation (46). Xenografts of bone-metastatic 
PC tumors were found to express high levels of IL-8 (49). One 
study showed that repression of IL-8 in PC cells overexpressing 
the N-myc downstream regulated gene 2 resulted in a decrease 
in PC bone metastasis and osteolysis (79). There is also evidence 
for IL-8 expression being important in osteolysis associated with 
lung carcinoma (80). A consistent pattern has emerged as car-
cinoma derived bone metastases use CCL2 and IL-8 in tandem 
within the bone microenvironment to promote osteolysis and 
growth.

CXCL12/CXCR4

CXCL12 is secreted by several cell types within the bone marrow 
including OCLs and endothelial cells and this expression is well 
established in mediating osteotropism of several metastatic can-
cers (9). CXCR4 is highly conserved throughout evolution and is 
expressed on many cells. The role of CXCL12/CXCR4 signaling 
in tumor cell motility and invasion is well established (81–83). 
In addition to metastasis, CXCR4 signaling has been shown to 
mediate many pro-tumorigenic functions in cancer cells, includ-
ing proliferation, survival, angiogenesis, and chemoresistance 
(84). As noted in the original Muller et al. paper, CXCR4 is associ-
ated with highly metastatic BC cells (11). The role of CXCR4 in 
metastasis has been the subject of extensive investigation since 
this initial report (15, 19, 25). CXCR4 is one of several genes 
that is consistently and universally upregulated in carcinoma 
cells which metastasize to the bone. Gene expression analysis 
of a subline of MDA-MB-231 selected in  vivo for its ability to 
metastasize to bone revealed that CXCR4 is a major component 
of the bone-metastatic signature (85). CXCR4 has been validated 
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in preclinical models as a target for BC metastasis (86–88). There 
are several studies which attempt to specifically address the role 
of CXCL12/CXCR4 in mediating tumor osteolysis and tumor 
growth within bone. The preponderance of evidence indicates 
that CXCL12/CXCR4 signaling is pro-osteolytic. CXCL12 has 
been recognized to stimulate migration of osteoclast precursors 
and upregulate several pro-osteoclastic genes (89, 90). There is at 
least one study, however, which shows the lack of CXCR4 results 
in an increase in OCL function (91).

Prostate carcinoma was one of the first cancer cell types 
shown to express CXCR4 (92–94). Tumor expression of CXCR4 
is associated with poorer survival in PC patients (95). Several 
studies showed that interfering with the CXCL12/CXCR4 
pathway directly influences PC growth within bone (96, 97). 
CXCR4-specific antagonists have been examined in preclinical 
studies including the small molecule pharmacological inhibi-
tors Plerixafor (also known as AMD3100), CTCE-9908, and 
monoclonal neutralizing antibodies. Administration of these 
agents inhibits PC association with bone, decreases growth of 
bone-metastatic PC tumors and improves overall survival in 
mice (93, 96, 98, 99). However, there is another report in which 
inhibition of CXCR4 primarily blocks PC trafficking to bone 
without influencing tumor growth (99). This report noted that 
CXCR4 inhibition will, in addition to blocking tumor migration 
to bone, mobilize hematopoietic stem cell out of the bone marrow 
creating an even more favorable niche for tumor growth. It is 
likely that a balance of these different parameters will determine 
if blockade of CXCR4 will have a stronger effect on homing or 
growth within bone.

Inhibition of CXCR4 may have additional benefits in addition 
to anti-metastatic function as CXCR4 signaling can deliver anti-
apoptotic signals to the cell and mediate resistance to standard 
chemotherapy such as doclitaxel (98). As described above, 
CXCL12 is a prominent bone marrow ligand and its involvement 
in recruitment of normal and cancerous trafficking to bone mar-
row has been studied extensively. Because inhibition of CXCR4 
in vivo does not result in a complete inhibition of metastasis and 
disease progression, it suggests an additional CXCL12 receptor, 
CXCR7, which may function in a partially redundant fashion. 
Intriguingly, CXCR4 is able to regulate the expression of CXCR7 
and overexpression of CXCR7 induces an increase IL8 in PC3 
cells (100). These findings indicate a significant degree of cross-
talk between different chemokine pathways.

Multiple myeloma cells express CXCR4 and as with BC and 
PC, there is evidence suggesting this receptor plays an important 
role in the expansion of MM in bone. Stimuli which enhance 
CXCR4 expression on MM (such as hypoxia) enhances coloniza-
tion of bone (101). In addition to the receptor, CXCL12 is also 
highly expressed by MM cells (102). Neutralization of CXCL12 
prevents both homing and growth of MM within bone. Direct 
intratibial injection of the MM line RPMI-8226 resulted in a 
modest level of bone loss which correlated with CXCL12/CXCR4 
activity (103, 104).

Lung carcinoma metastasis of bone also involves CXCR4/
CXCL12 signaling, however, the relative importance of pathway in 
survival, homing, and osteolysis is not clear (105, 106). Recently, 
CXCR4 was discovered to be a biomarker for NSCLC bone 

metastasis and presumably expression of this receptor facilitates 
homing to the CXCL12 expressing bone marrow as observed in 
other metastatic cancers (107, 108). As is observed with other 
cancers, CXCR4 expression correlates with “cancer stem-cell” 
properties which include a propensity for tumor initiation and 
metastasis (109, 110). However, one study using AMD3100 
showed that NSCLC metastatic colonization of bone did not 
require CXCR4 activity, however, outgrowth of metastases and 
subsequent osteolysis was dependent on the receptor (106).

OTHeR CHeMOKiNeS

CCL4
Other cell types within the bone marrow stroma can contribute 
to tumor growth. The murine cell line 4T1 model is used to study 
BC in the context of an immunocompetent animal. A subline 
(named 4T1.3) was selected for bone metastasis by repeated 
cycles of isolation of mammary fat pad injection and isolation 
from bone marrow (111). DNA microarray analysis of this 
subline revealed higher levels of CCL3 and CCL4 (both ligands 
for CCR5) expression relative to parental line (111). It was found 
that BC expression of CCL4 activates CCR5 on bone marrow 
fibroblasts which results in their expression of connective tis-
sue growth factor/CCN2 (111). This, in turn promotes BC cell 
proliferation and subsequent growth of tumor within the bone. 
Knockdown of CCL4 had no effect on cancer cells in vitro but 
limited in its ability to form tumors in bone marrow in  vivo, 
clearly highlighting the role of the microenvironment for pro-
moting tumor expansion. A similar phenotype to knockdown of 
CCL4 was observed in CCR5 loss of function experiments. When 
4T1.3 cells were injected into the bone of either CCR5 knockout 
mice or mice treated with a CCR5 antagonist, they failed to 
grow efficiently. The ongoing efforts to develop CCR5-specific 
antagonists are, therefore, expected to have efficacy against 
metastatic tumors that utilize CCL3 and CCL4 to condition the 
bone microenvironment.

CCL15
Renal cell carcinoma (RCC) is a relatively rare tumor of the kidney 
which often metastasizes to bone. Kominsky et al. showed that 
metastatic RCC expressed higher levels of CCL15 than patient 
matched primary tumors (112). The study proposed that CCL15 
conditions the bone microenvironment by directly stimulating 
OCL differentiation. As CCL15 is a ligand for CCR1, this finding 
is consistent with MM model, whereby CCL3 (the principal CCR1 
agonist) is necessary for OCL maturation (63). Recombinant 
CCL15 was confirmed to be a pro-osteoclastogenic factor (113). 
In addition to CCR1 and CCR5, mature OCLs express significant 
levels of an additional MIP-family ligand receptor, CCR3 (112). 
The relative roles of CCR3 (as opposed to CCR1) in metastasis 
and tumor growth in bone were not addressed and its potential 
importance in bone metastasis in vivo remains to be studied.

CXCL1/2
It was discovered that PC tumors utilize other ligands for CXCR1/2 
in addition to IL-8 during the process of bone metastasis (114).  
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TABLe 1 | Summary of chemokine ligands and receptors used by tumor cells 
within the bone microenvironment.

Cancer type Chemokine 
ligand/receptor 
(reference)

Function

Breast  
carcinoma (BC)

CCL2 (38) Osteolysis

CCL4 (111) Communication with bone fibroblasts/
growth within bone

IL8/CXCL8 (75) Osteolysis and tumor growth in bone

CXCR3 (121) Osteolysis and growth in bone

Prostate 
carcinoma

CCL2 (45, 46) Bone resorption, tumor  
growth in bone

CCR5 (122) Osteolysis

CXCL1 (114, 123) Paracrine action on endothelial cells 
and osteoblasts, osteolysis

CXCL2 (114) Osteolysis

CXCL8 (46, 49) Osteolysis, tumor growth in bone

CXCR4 (92, 93) Trafficking and migration to bone, tumor 
growth in bone

Multiple myeloma CCL3 (60) Osteolysis

CCR1 (68, 69) Osteolysis, tumor growth in bone

FigURe 1 | Role of tumor-derived chemokines in osteolysis. Osteoclasts (OCL) are multinucleated cells which mediate the resorption of bone. This process 
generally favors tumor growth within the bone microenvironment. Tumor cells can directly promote OCL activity by secreting the chemokines, such as CCL2,  
CCL3, and CXCL8/IL-8. In addition, tumor cells can stimulate osteoblasts to activate OCL differentiation and activation.
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Bone marrow adipocytes were shown to be a source of CXCL1 
and CXCL2, and these chemokines were shown to drive OCL 
maturation. Recombinant CXCL1 can modestly increase TRAP 
positive cells and adipocyte conditioned media stimulated osteo-
clast formation in vitro in a CXCL1 and CXCL2-dependent fash-
ion. Consistent with this role for adipocytes, a high fat diet was 
observed to enhance PC-mediated bone osteolysis (114).

CX3CL1
Fractalkine (CX3CL1) is also associated with bone metastasis. 
CX3CL1 is predominantly expressed in tissue macrophages and 
certain lymphoid subsets and it exists as a membrane bound 
precursor which is ultimately processed into the mature soluble 
ligand. Blockade of proteolytic CX3CL1 cleavage and release has 
been suggested as an alternative therapeutic avenue as a means 
of disrupting the chemokine gradient that attracts CX3CR1-
bearing tumor cells to the bone (115). It was demonstrated that 
CX3CR1 signaling mediates metastasis of BC specifically to 
the bone marrow (116). In this study, BC cells that expressed 
CX3CR1 showed a high preference for metastasizing to the 
bone. CX3CL1 is expressed on endothelial cells and stromal 
cells within the bone marrow. MDA-MB-231 metastasis to 
bone was dramatically reduced in CX3CL1 null mice, whereas 
metastasis to adrenal glands was relatively unaffected. CX3CR1 
is important for mediating adhesion and extravasation to bone 
marrow epithelium. Recently, a novel small molecule inhibitor 
of CX3CR1 was effective in preventing skeletal metastasis in 
a BC pre-clinical model (117). CX3CR1 is also expressed by 
OCL precursors and treatment with CX3CL1 accelerates their 
differentiation contributing to bone resorption which suggests 
that increased production of this chemokine may play a role in 
osteolysis as well as trafficking (118).

THeRAPeUTiC TARgeTiNg OF 
CHeMOKiNeS iN BONe MeTASTASiS

Current therapies for treating bone metastasis attenuate osteo-
clast activity. These include bisphosphonates which are taken 
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TABLe 2 | Summary of chemokine antagonists used in preclinical animal models 
that show efficacy in treating bone metastasis.

Chemokine 
receptor/pathway

Cancer model 
(reference)

Chemokine antagonist used 
in study

CCR1 Myeloma (68) BX471
Myeloma (71) CCX354 (CCX721)

CCL2/CCR2 Breast (38) CNTO-888 (anti-CCL2 antibody)
Prostate (47, 51–54) CNTO-888/C1142 (anti-CCL2 

antibody)

CCR5 Myeloma (68) TAK-779
Prostate (122) Maraviroc

CXCL8/CXCR1 Breast (76) Anti-CXCL8/IL-8 antibody

CXCL1-5/CXCR2 Breast (126) Anti-CXCL5 and Anti CXCR2 
antibodies

Prostate (127) Anti-CXCL1 antibody

CXCL10/CXCR3 Breast (121) Anti-CXCL10 antibody
Melanoma (121) Anti-CXCL10 antibody

CXCL12/CXCR4 Myeloma (102) Plerixafor/AMD3100
Breast (86) CTCE-9908
Breast (88) POL5551
Prostate (93) Anti-CXCL4 antibody
Prostate (96) Plerixafor/AMD3100 and 

CTCE-9908
Prostate (98, 99, 128) Plerixafor/AMD3100
NSCLC (106) Plerixafor/AMD3100

CXCL16/CXCR6 Prostate (127) Anti-CXCL16 antibody

CXCR7 Myeloma (129) POL6926

CX3CL1/CX3CR1 Breast (117) JMS-17-2

These anti-chemokine agents demonstrated an inhibition of either metastasis to bone, 
osteolysis, or tumor growth within bone.
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up by OCLs and interfere with their ability to lyse bone and 
anti-RANKL antibodies (such as denosumab) which prevent 
OCL maturation. Interestingly, certain bisphosphonates (such 
as zoledronic acid) may impart some of their benefit by acting 
on chemokine signaling (97, 119). Discovery of novel therapies 
which target bone-metastatic PC, such as radium-223 dichloride 
(Xofigo®) a calcium-mimetic agent that specifically targets bone 
lesions, has been shown to have an impact on survival rates for 
this disease (120). The current treatments, however, are mainly 
palliative and are not very effective at slowing tumor growth 
within bone. Chemokines are an attractive target for metastatic 
bone cancer and OBD. Not only are chemokines involved in most 
steps of the metastatic cascade, including survival, angiogenesis, 
invasion, and trafficking to bone but are also strongly associated 
with OBD and growth. Chemokine receptors are also amenable 
to inhibition by small pharmacological compounds. The relevant 
chemokines and the roles they play during bone metastasis are 
summarized in Table 1.

Although many different chemokine systems are involved in 
these processes depending on the tumor type studied, a broad 
consensus has emerged. There is clear evidence that carcinomas, 
such as BC, PC, lung, and OSCC often utilize both CCL2 and 
IL-8 to condition the bone microenvironment and promote OBD  
(49, 75, 76). These tumors overexpress CCL2 and IL-8 and 
stimulate OB production of these chemokines to act on OCLs in 
a paracrine fashion. These chemokines synergize in OCL matura-
tion. In vivo blockade of both of these pathways may prove to be 
very effective on treating bone-metastatic cancers.

The role of CCL3 and its receptor CCR1 in bone metastasis 
have been best characterized in the context of MM and blockade 
of this receptor has promising effects in pre-clinical animal 
cancer models. Lending weight to this therapeutic avenue is 
the fact that CCL15, another CCR1 agonist, is associated with 
osteoclastogenesis and bone metastasis (112). This pathway, 
however, is complex and although most studies indicate CCR1 
as being the major receptor expressed on OCLs, there might be 
some degree of redundancy as CCR1, CCR3, and CCR5 share 
many of the same pro-osteoclastic ligands. It will be interest-
ing to determine if pharmacological inhibition of one receptor 
results in the upregulation another as a potential mechanism of 
chemoresistance.

The role of CXCL12/CXCR4 in cancer cell trafficking to bone 
has been explored extensively; however, there is a potential 
function for this pathway in modulating OCLs and bone resorp-
tion. Blockade of CXCR4 in most tumor models prevents OCL 
maturation and osteolysis. However, it is has been reported that 
mice reconstituted with CXCR4 null hematopoetic cells display 
more OCLs and osteolysis (91) It was noted in this paper that 
CXCR4 null macrophages proliferated and differentiated into 
OCLs at a higher rate. The tumor model used in this study was 
the B16 melanoma cell line which perhaps also suggests that the 
role of CXCR4 in osteolysis is dependent on the context of other 
factors secreted by tumor cells. Regardless, the conflicting data 
give pause to potential use of CXCR4 antagonists in treating 
metastatic bone cancers.

This review would not be complete without mentioning 
that the study of bone metastasis (and metastasis in general) is 

hampered by the death of human cell lines which are capable of 
exhibiting consistent and reliable metastatic behavior in mouse 
models. Even the cell lines that do provide metastasis in mouse 
models often fail to display the full spectrum of malignant 
features. Most pre-clinical studies have been carried out using 
only a limited number of cell lines or genetic mouse models of 
cancer. Novel in  vitro and ex vivo 3D culture systems are cur-
rently being developed to augment the study of tumor cells 
within the bone microenvironment (124, 125). However, even 
with these limitations, many of the findings discussed have been 
validated by the fact that the same chemokine systems appear to 
be involved in mediating bone metastasis regardless of the cancer 
of origin, in particular CCL2/CCR2, CCL3/CCR1, IL-8/CXCR1, 
and CXCL12/CXCR4. A summary of these findings are shown 
in Figure 1.

The use of neutralizing antibodies against soluble ligands 
and small molecule pharmacological inhibitors that target the 
relevant chemokine receptors have yielded encouraging results 
in a number of pre-clinical models (Table 2). For those patients 
diagnosed after metastasis has occurred the efficacy of tumor 
anti-migration/invasion strategies which may depend on the fre-
quency of secondary metastatic events. Targeting the chemokine 
system to slow or prevent OBD has the potential for palliative, if 
not curative results. Stopping the vicious cycle induced by cancers 
in the bone may not only slow the formation of osteolytic lesions 
but may also cause the tumor cells to slow their growth.
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Given that multiple chemokine ligand/receptor pairs may 
be driving bone metastasis, a combinatorial approach targeting 
multiple chemokine pathways simultaneously, may be required 
for effectively preventing bone metastasis. In most of the in vivo 
pre-clinical model studies, targeting a single receptor fails to 
completely inhibit bone metastasis and the effect on prolonging 
animal survival is modest. It is possible in these cases that other 
chemokine receptors are involved in the residual migration, 
invasion, and growth within the bone. For example, the expres-
sion of several chemokines by BC cells (CCL2, CCL4, IL-8) have 
been shown in various models to promote growth within bone. 
Blockade of one of these results in upregulation and/or usage 
of one of the others to carry out the pro-metastatic function. 
Advanced cancers are notorious for being able to develop chem-
oresistance and switching from one chemokine system to another 
would seem to be a likely strategy adopted by malignant tumors. 
To target multiple chemokine ligand/receptor pairs would require 
combinations of anti-chemokine agents or use of pharmacologi-
cal inhibitors which have a broader target range. Either strategy 
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may be advantageous in this scenario. Given the diversity of 
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it may be necessary to profile individual patients for chemokine 
ligand/receptor expression to determine which agent is likely to 
be most effective for a given patient. The chemokine expression 
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it is the possible tumor cells which may acquire resistance by 
switching ligand expression.
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