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The gut is one of the most important sources of bioactive peptides in the body. In addi-
tion to their direct actions in the brain and/or peripheral tissues, the intestinal peptides 
can also have an impact on enteric nervous neurons. By modifying the endogenous-
production of these peptides, one may expect modify the “local” physiology such as 
glucose absorption, but also could have a “global” action via the gut–brain axis. Due 
to the various origins of gut peptides (i.e., nutrients, intestinal wall, gut microbiota) and 
the heterogeneity of enteric neurons population, the potential physiological parameters 
control by the interaction between the two partners are multiple. In this review, we 
will exclusively focus on the role of enteric nervous system as a potential target of 
gut peptides to control glucose metabolism and food intake. Potential therapeutic 
strategies based on per os administration of gut peptides to treat type 2 diabetes will 
be described.
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OveRview OF THe enTeRiC neRvOUS SYSTeM (enS)

Structural and Functional Organization of enS
The ENS, referred to as the “second brain,” is composed of more than 600 million of neurons and 
glial cells in human. ENS runs along the gastrointestinal (GI) tract and is organized in two main 
plexuses. The submucosal plexus (or Meissner’s plexus) lies in the submucosa of the intestinal wall 
and the myenteric plexus (or Auerbach’s plexus) between the longitudinal and circular layers of 
the external musculature. Nerve fiber bundles connect the ganglia within a plexus and between 
the different plexi (1). Despite some differences in structural organization along the GI tract, the 
ENS controls main regulator of GI functions such as secretion, barrier function, and movement of 
fluid across the lining epithelium. It is also a key regulator of local blood flow, interaction with the 
immune and endocrine systems of the gut and intestinal motility (1).

Motility reflexes, mainly regulated by myenteric neurons, are necessary for the physiology of 
digestion and to modulate gastric emptying and GI transit time (propulsion by peristaltic waves, 
induced by migrating motor complex, and mixing the chyme by segmentation, in fed conditions, 
along the digestive tract) and favor nutrients absorption (1, 2). After food intake, mechanical 
distortion and modification of luminal chemistry induced by the chyme activate first networks 
of interconnected intrinsic sensory neurons IPANs (for intrinsic primary afferent neurons) and 
MEN (for mechanosensitive enteric neurons) (3–5). Action potentials generated are conducted 
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FiGURe 1 | Schematic representation of interrelations between hormones, nutrients, neurotransmitters, and enteric nervous system. Abbreviations: SCFA, short 
chain fatty acids; GLP-1, glucagon-like peptide-1; PYY, peptide YY; IPAN, intrinsic primary afferent neurons; Ach, acetylcholine; NO, nitric oxide; VIP, vasoactive 
intestinal peptide; IGN, intestinal gluconeogenesis.
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to synaptic connections with IPANs to interneurons and to 
excitatory/inhibitory motoneurons that innervate the muscle 
(6). Each functional type of enteric neurons is defined by a neu-
rochemical code (1). The ENS is mostly composed of choline 
acetyl transferase and neuronal nitric oxide synthase (nNOS) 
neurons that, respectively, stimulate and inhibit intestinal 
smooth muscle cells [for review, see Ref. (7)] (Figure 1).

This system is closely connected to the central nervous system 
(CNS) via sensory neurons that send afferent fibers conveying 
afferent nervous message. After hypothalamic integration, effer-
ent sympathetic and parasympathetic pathways can modulate 
ENS functions such as motility, secretion, and circulation (1).

impact of nutrients on enS Activity
Once nutrients have been absorbed or produced by metabolic 
activity, they are able to activate myenteric and/or submucosal 
neurons, encoding sensory stimuli, and therefore modulate 
ENS functions. In fact, enteric neurons express transporters and 
receptors which are involved in sensing of main nutrients such 

as SGLT-1 (Na+–d-glucose transporter) for glucose sensing, 
G-protein coupled receptor (GPR) 41 and 43 for short chain 
fatty acids (SCFAs) sensing, Pept2 (dipeptide transporter) and 
amino acid receptors activated by glutamate, glycine, or GABA 
for protein/peptide sensing [for review, see Ref. (8, 9)].

Physiopathological Aspect
Alteration of nutrients and/or hormones sensing in the intestine 
are associated with aberrant hypothalamic responses that could 
lead to pathological states including T2D (10–12). For example, 
obese/diabetic mice and humans exhibit a decrease of nNOS 
expression in the digestive tract in correlation with an alteration 
of the ENS activity associated with intestinal hyper-contractility 
(12–16). In fact, physiopathological mechanism of diabetes-
induced GI enteric neuropathy is complex and multifactorial. 
Autonomic neuropathy can affect both afferent and efferent 
connections between ENS and CNS (10, 12). High-fat diet inges-
tion induces damages and plastic changes in myenteric neurons 
that disrupt neural circuits, causing symptoms of dysmotility 
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TAble 1 | Hormones and neuropeptides implicated in the control of enteric nervous system (ENS).

Peptide  
nature

Peptide impact on enS functions Mechanism of action  
on enteric neurons

experimental model Reference

Hormones Proglucagon-
derived peptides

Inhibition of the spontaneous  
and evoked mechanical activity  
of duodenum and colon  
[glucagon-like peptide-1 (GLP-1)]

Decrease of the excitatory 
cholinergic neurotransmission 
through presynaptic GLP-IRs  
and modulation of NO release

Ex vivo conditions (mice) Amato et al. (20)

Reduction of gastric motility  
and gastric emptying (GLP-1)

Exogenous GLP-1 acts in the  
antral region, through neural  
NO release

Ex vivo conditions (mice) Rotondo et al. (21)

Reduction of gastric motility  
and gastric emptying (GLP-2)

Exogenous GLP-2 increases  
locally GLP-2R expression 
depending on fed conditions

In vivo conditions (normal  
and diabetic mice)

Rotondo et al. (21)

Neuroprotective effects  
(GLP-1 and GLP-2)

Improvement of myenteric  
neurons survival in apoptose-
induced conditions

In vitro conditions  
(cultured myenteric neurons 
from rat small intestine)

Voss et al. (22)

Reduction intestinal mucosal 
inflammation (GLP-2)

Activation of vasoactive intestinal 
polypeptide (VIP) neurons of the 
submucosal plexus, reduced  
levels of inflammatory cytokines  
(IFN- gamma. TNF-alpha. IL-lbeta) 
and inducible nitric oxide (NO) 
synthase, with increased levels  
of IL-10

In vivo conditions  
(colitis rat model)

Sigalet et al. (23, 24)

Luminal infusion of cholecystokinin 
(CCK) can produce segmenting 
activity in duodenum and jejunum

Involvement of CCK-1 and  
CCK-2 receptors and serotoninergic 
pathway in the mucosa

Ex vivo conditions  
(guinea pig small intestine)

Ellis et al. (25)

CCK Promotion of oxytocin-induced 
contractions of longitudinal  
muscle ships of duodenum

Exogenous oxytocin favor the 
duodenal CCK release from the 
neurons of the myenteric plexus  
to inhibit the muscle contraction

Ex vivo conditions (rats) Lv et al. (26) 

Ghrelin Peripheral administration of 
exogenous ghrelin enhance  
fasted motor activity of the 
gastrointestinal tract 

Stimulation of enteric cholinergic 
neurons + possible role of  
serotonin

In vivo conditions (human: 
antra duodenal manometry/
record in freely moving 
conscious rats) and  
ex vivo conditions (for 
mechanism, in mice)

Human: Tract et al. (27)/
rat: Fujino et al. (28) and 
Taniguchi et al. (29)/
mouse: Edholm et al. (30) 
and Yang et al. (31)

Leptin Modulation of the activity of  
enteric inhibitory and excitatory 
neurons in proximal colon.

Impact on enteric nitrergic  
neurons and intrinsic primary  
afferent neuron

Ex vivo conditions  
(rats)

Florian et al. (32)

Apelin Inhibition of duodenal  
contractions

Stimulation of the activity of 
duodenal neuronal NO synthase 
neurons

Ex vivo conditions  
(diabetic mice)

Foumel et al. (12)
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and correlates with neuropathy in the myenteric plexus of obese 
mice with symptoms of type 2 diabetes from duodenum to 
colon (15, 17). Indeed, high-fat diet ingestion during 12 weeks 
in mice induces duodenal hyper-contractility, accelerates colonic 
transit with enhanced neuronal cholinergic and serotoninergic 
exci tation. This is a key feature of a later phase of obesity and 
is involved in altered ENS functions and abnormal duodenal 
absorption and colonic transit (12, 16, 18).

PePTiDeS MODUlATinG enS neUROnS

It is well known that numerous bioactive peptides from differ-
ent origins are able to modulate ENS activity. They are present 

in the intestinal lumen and can reach the myenteric plexus 
to modulate the activity of ENS neurons (12, 16, 19). Due to 
the great number of bioactive peptides able to control ENS  
(see Table 1), we decided to focus on some particular intestinal 
and bacterial peptides which present a potential therapeutic 
action on metabolic and feeding disorders.

intestinal bioactive Peptides
Peptide Hormone
Among the specialized cell types localized to the intestinal 
epithelium, enteroendocrine cells (EECs) take part of the gut 
homeostasis and the efficiency of nutrient absorption through 
secretion of specialized peptide hormones that act in an 

(Continued)
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Peptide  
nature

Peptide impact on enS functions Mechanism of action  
on enteric neurons

experimental model Reference

Neuropeptides Peptide  
YY (PYY)

Stimulation of propulsive  
colonic motor function

PYY inhibits basal and serotoninergic 
and cholinergic on myenteric  
neurons of the descending colon

In vivo conditions 
(microtransducer in  
conscious mice model)

Browning et al. (33)  
and Wang et al. (34)

Stimulation gastric motor  
activity

Activation of enteric excitatory 
neurons releasing acetylcholine  
and tachykinins

In vivo conditions (mice) Amato et al. (35)

Stimulation of both  
enteric plexus

PYY injected intraperitoneally 
activates small intestinal enteric 
neurons, both myenteric and 
submucosal

In vivo conditions (rat) Newman et al. (36)

Neuropeptide  
Y (NPY)

Regulation of the inflammation  
NPY severity and indirectly  
gut motility

Upregulation of NPY in ENS  
and neuropeptide Y1 receptor

In vivo conditions  
(colitis mouse model)

Wheway et al. (37)/
Chandrasekharan  
et al. (38, 39)

Galanin Improvement of myenteric  
neurons survival in apoptose- 
induced conditions
Inhibition of duodenal  
contractions

Activation of nitrergic  
myenteric neurons
Improvement of NO release  
of enteric neurons

In vitro (cultured myenteric 
neurons from rat small 
intestine)
Ex vivo conditions  
(diabetic mice)

Arciszewski et al. (40)
Abot et al. (16)

TAble 1 | Continued
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autocrine, paracrine, or endocrine manner and inform to nutrient  
availability (41). Different specialized EEC subtypes localized 
along the GI tract expressing distinct peptide families have been 
identified (42).

Proglucagon-Derived Peptides (PGDPs)
The PGDPs, notably glucagon-like peptide-1 (GLP-1) and GLP-2  
are secreted in response to meal ingestion predominantly by 
EEC L-cells located along the GI tract (43, 44). This gut PGDPs 
exhibit robust actions controlling gut motility, but also food 
intake and glucose homeostasis by reducing postprandial  
glycemia (45, 46). GLP-1 exerts not only inhibitory effects on GI 
motility and participates to glucose absorption through vagal 
afferents and central nervous mechanisms but also a direct 
influence on the GI wall from duodenum to colon (20, 45, 47)  
(Table 1). In fact, GLP-1 exerts an inhibitory effect on the spon-
ta neous and evoked mechanical activity in the duodenum and 
colon of mice by acting in the enteric neurons, to decrease the 
excitatory cholinergic neurotransmission through presyn-
aptic GLP-1Rs, which modulate NO release (20). Through this 
mechanism, GLP-1 is able to reduce gastric motility (21). GLP-2 
treatment improves survival of myenteric neurons from adult rat 
small intestine through anti-inflammatory actions and increase 
population of vasoactive intestinal peptide (VIP)-expressing 
enteric neurons (22, 23, 48). Thus, both GLP-1 and GLP-2 have 
neuroprotective effects (22).

Cholecystokinin (CCK)
Cholecystokinin is secreted by I-cells, principally localized in 
duodenum and proximal jejunum as well as enteric and CNS 
in response to feeding. CCK receptors (CCK-1 and CCK-2) are 
expressed in enteric neurons and involved in regulating nutrient-
induced segmentation, with the participation of neuronal 
serotonergic signaling, activating both intrinsic and extrinsic 
primary afferent neurons to, respectively, initiate peristaltic and 
secretory reflexes and to transmit information to the CNS (25). 

Thus, CCK is co-expressed in the neurons of the myenteric plexus 
in duodenum with oxytocin and participates to the inhibition 
of spontaneous contraction of the muscle strips, and this effect  
is abolished in response to lorglumide, a CCK1 receptor antago-
nist (26) (Table 1). This hormone is already under investigation 
in view of developing therapies for the treatment of obesity and 
type 2 diabetes (49).

Ghrelin
Ghrelin is produced in gastric endocrine cells and exerts its 
effects by interacting with ghrelin receptors (growth hormone 
secretagogue receptor 1a or GHSR1a) expressed within the GI 
enteric plexus (30, 50). Previous studies have demonstrated 
that ghrelin (endogenous or peripheral administration) pro-
motes gastric and small intestinal motility, particularly fasted 
motor activity in experimental animal models but also in 
human (27–29). In fact, ghrelin stimulates motility in the small 
intestine of rats through intrinsic cholinergic neurons (30, 31) 
(Table 1).

Apelin
Apelin is a bioactive peptide implicated in the control of glucose 
metabolism by improving insulin sensitivity in normal and 
diabetic mice (51). Apelin is also secreted by enterocytes and is 
released in the luminal part of gut to favor glucose absorption (52).

Neuropeptides
Pancreatic Polypeptides (PP) and Related Peptides
Neuropeptide Y (NPY) and peptide YY (PYY) are structurally 
related peptides that are considered to mediate inhibitory actions 
on GI motility and secretion. In the ENS, double immunofluo-
rescence demonstrates that subpopulations of the Y1 receptor-
positive nerve cell bodies are immunopositive for NPY, VIP, and 
NOS (53). Intraperitoneal injection of PYY and NPY inhibit 
fecal pellet output per hour and inhibited high-amplitude distal 
colonic contractions and cholinergic-stimulated propulsive 
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colonic motor function (34). They can increase cFOS activity 
in enteric neurons and exert powerful inhibitory effects on 
myenteric neurons of the descending colon (33, 36). In proxi-
mal part of the GI tract, exogenous PP stimulates mouse gastric 
motor activity, by activating gastric enteric excitatory neurons 
releasing acetylcholine (Ach) and tachykinins (35) (Table 1).

Galanin
Galanin is a neuropeptide largely expressed in the brain but also 
in ENS neurons (54). In the intestine, the majority of galanin 
effects are mediated by Gal-R1 predominantly expressed in 
ENS neurons and more particular in neurons that express 
Ach, nNOS, or VIP. More precisely, galanin is known to be a 
neuropeptide which exerts an inhibitory action on myenteric 
cholinergic neurons and enhance nitrergic neurons activity  
(16, 55). Galanin also exerts positive effect on survival of cul-
tured porcine myenteric neurons (40) (Table 1).

bacterial bioactive Peptides
Microorganisms are able to synthesize a large number of meta-
bolites which have beneficial or detrimental properties for human 
health. Interaction between gut microbiota and ENS in the 
control of gut motility and/or gut–brain axis is well documented. 
In fact, the gut microbiota produces bioactive molecules that act 
on enteric neurons to influence GI moti lity, and to modify the 
“gut–brain axis” by impacting on IPAN (56, 57). However, the 
exact biochemical nature of bacterial molecules implicated in the 
ENS could be extremely large. Among these, nitrogen bearing 
molecules from gut microbiota such as amino acids, amino acids 
derivatives, and oligopeptides have received great attention. Gut 
microbiota influences the biosynthesis and the release of enteric 
neurotransmitter such as serotonin, a monoamine that partici-
pates to the control of GI motility (58). Nowadays, little is known 
concerning the implication of bacterial bioactive peptides in the 
control of metabolism via ENS. In fact, signal peptides from 
bacteria are formylated, and some studies have demonstrated that 
N-formyl peptides from bacterial origin can be sense by host cells 
(59). N-formyl peptides are detected by formyl peptide receptors 
which are G-protein-coupled receptors that act as chemosen sing 
receptors. No direct link between N-formyl peptides and ENS is 
described in the literature, but Cianciulli et al. have demonstrated 
that N-formyl-methionyl-leucyl-phenylalanine, synthetized by 
Escherichia coli and other Gram-negative bac teria, could release 
NO from chick embryo nerve cells (60).

PePTiDeS/enS AnD GlUCOSe 
MeTAbOliSM

As explain earlier, numerous peptides are able to modulate the 
activity of ENS neurons to control the contraction of intestinal 
smooth muscle cells. How the control of intestinal contraction 
could have an impact on glucose metabolism? First, the fed 
state is characterized by the presence of segmental waves in the 
proximal part of the intestine which favor glucose absorption. In 
fact, a positive correlation exists between intestinal contraction 
and glucose absorption (2). Second, the duodenal contraction 

can be detected by the hypothalamus via an afferent nervous 
signal (12). Consequently, the increase of duodenal contraction 
provokes a drastic decrease of hypothalamic NO release, and then 
decrease glucose entry in tissue (16). This information suggests 
that intestinal peptide, such as apelin (12), could modulate the 
“ENS-smooth muscle” couple to favor glucose absorption at 
the beginning of food intake (12). At the opposite, a high level 
of apelin can decrease duodenal contraction to block glucose 
absorption, and then to increase the release of hypothalamic  
NO to favor glucose entry in muscle (12). Here, this last result 
supposes that intestinal peptides could have an opposite effect  
at the end of food intake and/or digestion to limit the level of 
plasma glucose in the whole body.

During metabolic disorders, obese and diabetic patients and 
mice present an alteration of ENS neurons which has repercus-
sions on colonic and duodenal contraction. Here, the duodenal 
hyper-contractility is associated with a significant increase of 
glucose absorption, and with a dysfunction of the gut–brain axis 
which favor an insulin resistant state (12). Nowadays, therapeutic 
strategies have just started to focus their attention on the impact 
of oral bioactive peptides to treat hyperglycemia and insulin 
resistance in diabetic patients (61). Recently, we have discovered 
that the chronic oral gavage of apelin in diabetic mice improves 
glucose tolerance and insulin sensitivity in skeletal muscle (12). 
At this high dose, apelin can stimulate the activity of duodenal 
nNOS neurons (1) first, to decrease glucose absorption by a 
“local” action and (2) second, to restore the gut–brain axis and 
then insulin sensitivity (12). Of course, apelin is now considered 
as an interesting potential candidate to treat type 2 diabetes via 
this novel mode of injection i.e., per os and/or by intravenous 
injection (61).

As opposed to apelin which could have a potential nega-
tive effect in the brain (62), another gut peptide candidate is 
well described in the literature. Galanin is a gut peptide that is 
also known as a neurotransmitter in the hypothalamus. Intra-
cerebroventricular and i.v. injection of galanin in mice improve 
glucose homeostasis, and in particular insulin sensitivity (63–65). 
In the gut, the level of galanin is significantly decreased in the 
duodenum during type 2 diabetes (66). Recently, Abot et  al. 
have discovered that chronic oral galanin treatment in diabetic 
mice have significantly improved glucose tolerance (16). Here, 
oral galanin is able to increase the release of enteric NO in the 
duodenum to restore the gut–brain axis similar to that previ-
ously observed with apelin. Finally, the improvement of glucose 
metabolism is associated with a significant increase of glucose 
entry in muscle, liver and adipose tissue.

How could the gut peptide reach the ENS and how can we 
use them as potential anti-diabetic drugs? Whether or not other 
mode of transport could exist in the intestine for these peptides 
is not characterized. The mechanisms used by luminal peptide to 
join the ENS neurons are not well described. Like that observed 
with leptin (19), apelin could reach the ENS via transcytosis. 
In a pharmacological point of view, peptides given orally must 
be active only in the duodenum to limit potential “indesirable” 
effect. For example, oral peptides could have a significant impact 
on gastric emptying and these could have consequences on diges-
tion and/or food intake.
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PePTiDeS/enS AnD FOOD inTAKe

As discussed earlier in this review, the regulation of food intake is 
a complex and tightly regulated system requiring the integration 
of local (i.e., intestinal, ENS) signals and distal signals (i.e., in 
the brain). As resume recently by Prinz and Stengel (67), numer-
ous gut peptides are able to control food intake. These peptides 
may exert anorexigenic (GLP-1, PPY, and CCK) or orexigenic 
(Ghrelin) effects by acting directly in the brain or by using an 
afferent vagal pathway. As these modes of action of gut peptides 
are well described in the literature and potentially do not require 
the ENS, we have decided to focus our attention on more recent 
concepts showing interactions between gut peptides, intestinal 
actors (epithelial and endocrine cells, enteric neurons, and micro-
biota), and food intake.

The role of the endogenous production of glucose by the intes-
tinal epithelial cells may constitute a major mechanism by which 
nutrients regulate food intake. Several studies led by Pr. Mithieux 
and his team have elegantly demonstrated that the so called, 
intestinal gluconeogenesis (IGN), is a key process promoting a 
decrease of hunger but also an improvement of insulin sensitivity 
while the liver is decreasing is endogenous glucose production 
(68). IGN is a process that has been shown to be activated by the 
degradation of dietary proteins in amino acids (69). Interestingly, 
the same team has found that mice deficient of the key enzyme 
involved in the IGN (i.e., glucose-6 phosphatase) exhibit increased 
basal sympathetic tone but also develop hypothalamic resistance 
to leptin, suggesting again a key link with the regulation of food 
intake and energy homeostasis.

Remarkably, IGN is massively induced after metabolic surgery 
and can finally account for up to 20% of the total endogenous 
glucose production in post-absorptive state (70). It is worth 
noting that metabolic surgery (e.g., RYGB) is associated with a 
dramatic change in the route of the food nutrients and therefore 
may directly affect the gut microbiota composition (71). Gastric 
bypass is also characterized by a massive increase in gut peptides 
involved in food intake and glucose metabolism such as GLP-1 
and PYY (72). This phenomenon can probably be attributed in 
part to the direct contact between nutrients (i.e., glucose, lipids, 
and amino acids) and EECs producing those hormones but also 
via the fermentation of non-digested food components and 
nutrients by the gut microbiota. One of the key examples linking 
the fermentation of fibers and the secretion of GLP-1 has been 
published many years before. Indeed, it has been clearly demon-
strated that the mechanisms by which specific dietary fibers 
such as prebiotics (i.e., inulin, oligofructose) reduces glycemia, 
food intake and improves insulin sensitivity directly rely on the 
production of the gut peptide GLP-1 (73, 74). More recently, it has 
been shown that the metabolites produced by gut bacteria, such 

as the SCFAs butyrate and propionate, likely contribute to the 
modulation of the production of both GLP-1 and PYY in these 
conditions (75) (Figure 1).

It is important to note that all the aforementioned mechanisms, 
such as the IGN, the bacterial fermentation (i.e., SCFAs), or the 
gut peptides production, are connected to the ENS. For example, 
in the case of the fermentation of fibers, the generated compound 
propionate has been shown to bind to GPR-41 expressed in the 
nerve endings of the portal vein wall. But it has also been discov-
ered that propionate production by microbes also controls IGN 
and eventually food intake (76) (Figure 1).

Finally, this last example clearly shows that all these interes-
ting mechanisms are intertwined. Indeed, a recent study shows 
that VIP induces glucose-6 phosphatase activity and eventually 
IGN in vivo. VIP neurons innervate the gut epithelium, in addi-
tion, in this study the authors suggest that VIP is also important 
for the bacterial metabolite propionate-induced activation 
of IGN. Thus, because VIP is expressed in neurons present in 
submucosal and myenteric plexuses, and is modulated by the 
microbiota derived compounds produced by the fermentation. 
These findings also suggest that it exist a local release of VIP by 
enteric neurons which may be a key mechanism by which nutri-
ents, peptides, and microbial metabolites are finally involved in 
the activation of IGN and thus control food intake and glucose 
metabolism (77).

SUMMARY/COnClUSiOn

Intestinal bioactive peptides by acting on ENS neurons represent 
a potential therapeutic target to treat metabolic and food disor-
ders associated with type 2 diabetes and obesity. Their origins, 
i.e., bacterial and/or intestinal wall facilitates their utilization for 
oral treatment. Whether their use alone or in combination with 
pre- and probiotics for therapeutic strategies will be tested in the 
future. Thus, the study of the gut–brain axis is only at the begin-
ning of its story, and bioactive peptides represent one, but not the 
least, of the way forward to treat multiple diseases.
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