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T cell response plays an essential role in the host resistance to infection by the protozoan 
parasite Trypanosoma cruzi, the causative agent of Chagas disease. This infection is 
often associated with multiple manifestations of T cell dysfunction, both during the acute 
and the chronic phases of disease. Additionally, the normal development of T cells is 
affected. As seen in animal models of Chagas disease, there is a strong thymic atro-
phy due to massive death of CD4+CD8+ double-positive cells by apoptosis and an 
abnormal escape of immature and potentially autoreactive thymocytes from the organ. 
Furthermore, an increase in the release of corticosterone triggered by T. cruzi-driven 
systemic inflammation is strongly associated with the alterations seen in the thymus of 
infected animals. Moreover, changes in the levels of other hormones, including growth 
hormone, prolactin, and testosterone are also able to contribute to the disruption of 
thymic homeostasis secondary to T. cruzi infection. In this review, we discuss the role 
of hormonal circuits involved in the normal T cell development and trafficking, as well 
as their role on the thymic alterations likely related to the peripheral T cell disturbances 
largely reported in both chagasic patients and animal models of Chagas disease.

Keywords: Chagas disease, thymus atrophy, thymocytes, hypothalamus–pituitary–adrenal axis, growth hormone, 
prolactin

iNTRODUCTiON

Chagas disease, or American trypanosomiasis, is a tropical neglected illness caused by the hemo-
flagellate protozoan Trypanosoma cruzi. Chagas disease transmission to humans can be classified 
in primary (vectorial, blood transfusion, congenital, and orally) and secondary (less frequent, such 
as laboratory accident, handling of infected animals, organ transplantation from infected donors, 
and hypothetically through sexual) routes of T. cruzi infection (1, 2). Presently, oral transmission of 
human Chagas disease is the most important transmission route in the Brazilian Amazon region, 
mainly secondary to food/beverage contamination with T. cruzi. It is noteworthy that oral transmis-
sion has been associated with high mortality and morbidity, increased prevalence and severity of 
the cardiac pathology (myocarditis) (3–6). Argentina, Bolivia, Colombia, Ecuador, French Guiana, 
and Venezuela have also reported acute Chagas disease cases associated with contaminated food 
consumption (7–9).
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Trypanosoma cruzi infection is presently considered as a world-
wide health problem with deficiencies in treatment, absence of 
appropriated vaccines and world spreading (10, 11). The infection 
leads to an acute phase, with symptoms such as fever, muscle pain, 
swollen lymph nodes, hepatosplenomegaly, edema, tachycardia, 
dyspnea, pericardial effusion and inflammatory reaction at 
the vector’s biting site of the vector (chagoma) (2, 12). During 
the acute phase, circulating parasite numbers are systemically 
increased, and they are able to infect several tissues and cell types, 
such as skeletal and cardiac myocytes, macrophages, fibroblasts, 
neurons and epithelial cells. For this reason, amastigote nests were 
already described in glands, skeletal muscle, as well as, lymphoid 
and nervous tissues (11, 13). Following recovery from the acute 
phase, the patient enters into a long indeterminate, latent, phase 
with no symptoms and very low parasitism. The latent infection 
may remain silent for 10–30 years. One-third of infected patients 
in the latent phase develop clinical symptoms as chronic cardiac 
dysfunction (cardiomyopathy), megacolon or megaesophagus. It 
is believed that chronic chagasic cardiomyopathy has an autoim-
mune pathophysiological component, with involvement of T and 
B autoreactive cells, as well as promoted by the persistence of the 
parasite. At this phase, life expectancy decreases about 9 years in 
these clinical forms of chronic patients (14).

T Cell Changes During T. cruzi infection
In the immune system, T. cruzi infection promotes changes in 
the dynamics and in the size of T lymphocyte populations, con-
tributing to regional response in primary, including thymus and 
secondary lymphoid organs (15). In infected mice, the thymus 
suffers a strong atrophy in the acute phase, due to massive death 
of CD4+CD8+ double-positive (DP) and CD4+Foxp3+ regulatory 
T cells (Treg) by apoptosis, accompanied by an abnormal escape 
of immature and potentially autoreactive T  lymphocytes from 
the organ (11, 16). Interestingly, T cell abnormal escape was also 
documented in chronically T. cruzi-infected patients (17, 18). 
On the other hand, it is known that under physiological condi-
tions, the re-entry of CD4+ and CD8+ T cells into the thymus is 
restricted to activated/memory cells (19), being driven by CCL2/
CCR2 interactions (20). Some authors speculate that the re-
entrance of T effector cells may influence the tolerance induction 
by promoting Treg development, since they represent the main 
source of IL-2 (21). Furthermore, Treg with a clear maturational 
phenotype were observed in the infected thymus, suggesting that 
they may correspond to peripheral Treg that have re-entered into 
the thymus (16). In any case, the physiological consequences of 
the Treg cell re-entry into the thymus remains undetermined.

Diverse groups have shown an expansion in secondary lym-
phoid organs such spleen and subcutaneous lymph nodes due 
to T and B cell polyclonal activation. In contrast, the mesenteric 
lymph nodes and Payer’s patches show atrophy and T lymphocyte 
death (15, 22–33).

An increase in IL-2 production is involved in subcutaneous 
lymph nodes hyperplasia in T. cruzi infection (15, 31). Spleen and 
subcutaneous lymph node hypertrophy is a consequence of tissue 
T/B lymphocyte activation and proliferation (15, 23, 31, 34, 35).  
Moreover, trans-sialidase, racemase, and T. cruzi DNA seem to 
contribute to T and/or B lymphocyte activation and cytokine 

production by interfering with interaction between dendritic 
cells and lymphocytes (36–40). In contrast to the hyperplasia seen 
in spleen and subcutaneous lymph nodes of infected mice, mes-
enteric lymph node atrophy is related to a local decrease in IL-2 
and IL-4 production, with apoptotic death of T/B lymphocytes 
(15). In a second vein, it has been shown in the mouse model that 
splenectomy or mesenteric lymph node excision prior to T. cruzi 
inoculum increases susceptibility to infection, suggesting that 
these lymphocytes are involved in T. cruzi host immune response 
(15, 22–33).

SYSTeMiC HORMONAL iMBALANCe iN 
CHAGAS DiSeASe

Endocrine and immune systems control several physiological, 
biochemical, and functional activities in the organism both dur-
ing homeostasis, including early development and aging (41), 
as in pathological situations, such as infectious and metabolic 
diseases (42, 43). Immunoendocrine interactions occur through 
bidirectional circuits, characterized by highly specialized signal-
ing molecules known as cytokines and hormones, respectively 
(44). Given the extensive diversity of interactions between 
endocrine and immune cells, it is conceivable that disturbances of 
one or more of these components of the immunoendocrine axes 
lead to the development and/or exacerbation of several illnesses, 
including Chagas disease (42).

The hormonal imbalance in patients with Chagas disease has 
been discussed since the discovery and description by Carlos 
Chagas, who divided the symptomatology of chronic form of 
American Trypanosomiasis according to thyroid, heart, and cen-
tral nervous system disease. In fact, the inclusion of the thyroid 
form of the disease was based on both clinical aspects, association 
of goiter with myxedema, and the detection of the parasite and 
inflammation in thyroid during autopsy (45). Currently, it is 
believed that Chagas disease by itself is not able to cause goiter, 
but may predispose patients to develop goiter (46).

One of the main endocrine circuits studied in Chagas disease 
is the hypothalamus–pituitary–adrenal (HPA) axis, since the 
release of glucocorticoid (GC) hormones is a protective mecha-
nism of the host against the harmful effects of pro-inflammatory 
cytokines (47). Acute T. cruzi infection induces increased cor-
ticosterone levels in both C57BL/6 and BALB/c mouse strains 
(48), indicating a hyperactivation of HPA axis. Such an increase 
in circulating corticosterone levels is in close correlation with 
the hypertrophy of adrenal glands, including its zona fasciculata, 
and a rise in the expression of several steroidogenic enzymes, 
such as cytochrome P450, family 11, subfamily A, polypeptide 1 
(CYP11A1), CYP11B1, 11β-hydroxysteroid dehydrogenase type 
1 (HSD1), and steroidogenic acute regulatory protein (StAR) (49).

This HPA axis activation observed in experimental models 
of Chagas disease is associated with the presence of nests of T. 
cruzi amastigotes in the adrenals, as well as parasite-derived 
antigens in both adrenals and pituitary gland (50). Although 
by now, the underlyning mechanisms are not fully elucidated, 
the presence of T. cruzi-derived antigens (proteins, DNA, or 
glycolipids) in the endocrine glands of HPA axis may promote 
a local inflammatory response via the engagement of TLRs, as 
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shown in bacterial models of infection (51). In particular, the 
stimulation of TLR-9, which recognizes T. cruzi DNA (52), may 
cause the local production of cytokines and consequent increase 
in the release of corticosterone, as seen in a model of sepsis (53). 
Similarly, TLR-2 or TLR-4 pathways might be stimulated by 
TLR agonists expressed by T. cruzi like GPI or GIPL anchors, 
respectively (54). In fact, C57BL/6 mice infected with T. cruzi 
showed, not only in plasma but also intra-adrenal, increased 
levels of TNF-α, IL-1β, and IL-6 (55), suggesting that these 
proinflammatory cytokines are involved in the hyperactivation 
of HPA axis at different levels.

Although infected mice presented the parasite and a pro-
nounced inflammatory response in the pituitary gland, the 
systemic levels of adrenocorticotropic hormone (ACTH) are not 
changed (49, 50), suggesting that the increase in circulating cor-
ticosterone levels noted in infected mice occurs independently 
of ACTH. In fact, both systemic and intra-adrenal cytokine 
production may favor adrenal inflammation during infection, 
which can directly trigger and sustain an alternative way of 
adrenal secretion of GC, resulting uncoupled from the hypo-
thalamic–pituitary unit (56). Structural alterations like vascular 
changes within the endocrine microenvironment may also lead 
to a transient HPA dysfunction (56). Also, local inflammation 
driven by the presence of T. cruzi or their antigens may promote 
the income of inflammatory cells. Strikingly, adrenals of infected 
mice showed leukocyte infiltration, characterized by the presence 
of CD8+ and CD4+ T lymphocytes, as well as macrophages and 
enhanced expression of extracellular matrix (ECM) deposition, 
including fibronectin and laminin (44). These ECM molecules 
might fix pathogen-derived antigens as well as pro-inflammatory 
cytokines released during immune response, thus contributing to 
the establishment of inflammation and sustaining GC production 
(56).

Pituitary hormones, including growth hormone (GH) and 
prolactin (PRL), act as modulators of the immune system (57, 
58). Similarly to GC, GH and PRL are considered stress-related 
hormones (59, 60), having opposing actions of GC on the viability 
and proliferation of thymic cells (61). In GH-/PRL-secreting GH3 
cells, the infection with T. cruzi in vitro induces a reduction in 
the secretion of both GH and PRL (62). These results suggest 
that T. cruzi infection decreases GH and PRL production by the 
pituitary. In fact, chagasic patients showed decreased GH levels 
in response to glucose or insulin compared to healthy subjects 
(63), and mice infected with T. cruzi presented a reduction in 
plasma PRL levels (64). In effect, the low production of PRL by 
pituitary induced by T. cruzi infection seems to directly affect the 
high corticosterone synthesis by the adrenals (65). Interestingly, 
while asymptomatic patients showed a tendency to diminish the 
secretion of GH, individuals with severe cardiomyopathy show 
increased levels of this hormone and also an altered GH/IGF-1, 
suggesting an imbalance in this axis (65).

Besides GC and pituitary hormones, some gonadal steroid 
hormones, including dehydroepiandrosterone-sulfate (DHEA-s) 
and testosterone, can be altered in human or experimental 
Chagas disease (66, 67). Animals infected with T. cruzi presented 
a reduction in serum testosterone levels in the acute phase 
of infection. However, histological analyses in testes, seminal 

vesicles, and epididymis did not reveal any differences between 
control and infected animals (68). In addition, T. cruzi-infected 
animals showed an increase in circulating levels of estradiol (67). 
Regarding DHEA-s levels, rats infected with T. cruzi did not alter 
the DHEA-s systemic levels. However, chronic chagasic patients 
with different degrees of myocarditis presented a marked reduc-
tion in DHEA-s levels. Interestingly, although the alterations 
in the levels of DHEA in animals are not seen in patients with 
Chagas disease, both animals and patients presented an increase 
in GC/DHEA-s ratio, which is important for the development of 
an anti-inflammatory milieu (66, 67).

HORMONeS AND THeiR ReLATiONSHiP 
wiTH THYMUS ATROPHY iN T. cruzi 
iNFeCTiON

T cell response plays an essential role in the host resistance to 
the T. cruzi infection, but sub-clinic and clinic manifestations of 
Chagas disease can be associated with multiple manifestations 
of T  cell dysfunction (69–73). Additionally, as seen in animal 
models of Chagas disease, there is a strong thymic atrophy char-
acterized by loss of thymus weight, massive death of CD4+CD8+ 
DP cells by caspase-dependent apoptosis (32), alterations in the 
double-negative (DN) T-cell population (74, 75), depletion of 
thymic Treg (16) and also an abnormal and premature escape of 
immature and potentially autoreactive DP and DN thymocytes 
from the organ (17, 26, 74, 76). Furthermore, it has been recently 
described that during experimental T. cruzi infection, bone mar-
row aplasia and a diminution in common lymphoid progenitors 
appear before thymic alterations (75).

Due to the possible autoimmune component of chagasic 
myocarditis, it is plausible to hypothesize that thymic selection 
mechanisms could be altered as a consequence of the infection. 
In this regard, in BALB/c mice, some T-cell receptor (TCR) Vβ 
families, which under normal conditions should have undergone 
negative selection through apoptosis, appear in the periphery of 
the immune system during T. cruzi infection and might poten-
tially conduce to autoimmune reactions (77). Nevertheless, in the 
same study, potentially autoimmune mature T cells were not seen 
within the thymus. Using an (OVA)-specific TCR transgenic sys-
tem, we confirmed that the negative selection process is normal 
during experimental T. cruzi infection. In addition, the expression 
of autoimmune regulator factor (AIRE) expression and tissue-
restricted antigen genes were normal in the thymus of infected 
animals (17). However, similarly to what is described in the 
murine model, activated DP T cells with an activated phenotype 
are found in the blood of patients with chronic Chagas disease in 
association with severe myocarditis (17), suggesting that some 
intrathymic checkpoints might be failed. This may have related 
to T cell trafficking alterations due to changes in the patterns the 
ECM protein deposition within the organ, expression of ECM 
receptors on thymocytes and thymic Tregs, as well as changes in 
cell migration-related cytokines (16, 32, 78, 79).

Normal T cell development is tightly controlled not only by 
cell–cell interactions and cytokines, but also by hormones, inter-
acting via a diversity of endocrine and paracrine pathways, acting 
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on thymocytes and thymic microenvironmental cells via specific 
receptors (42, 80). Moreover, thymic cells not only respond to 
systemic levels of hormones but also constitutively synthetize 
and secrete hormones locally, such as GC, GH and PRL. In this 
context, disturbances in hormone levels caused by inflammation 
can interfere with the normal T cell development. Accordingly, 
increased evidence indicates that the thymic alterations seen 
during T. cruzi infection are strongly associated to hormonal 
imbalance, involving systemic or intrathymic axes.

The HPA Axis
It is well known that, if not controlled, systemic effects of GC 
on the adaptive immunity can promote immunological distur-
bances. The HPA axis activation, through the production and 
action of GC, plays a major role in protecting the host against the 
inflammatory acute stress caused by T. cruzi infection (48, 55). 
Nevertheless, immature DP thymocytes are major targets of HPA 
axis activation, since enhanced levels of GC seen in experimental 
acute T. cruzi infection induce DP thymocyte depletion through 
caspase-dependent apoptosis (32, 81). In this regard, blockade 
of GC receptor activity with RU486 prevented DP thymocyte 
apoptosis (48, 55) together with caspase-8 and caspase-9 activa-
tion (32). Interestingly, both thymic epithelial cells and DP thy-
mocytes can also synthetize GC, suggesting that both paracrine 
and autocrine loops influence thymocyte survival during T. cruzi 
infection (82, 83). In addition, T. cruzi is able to infect thymic 
epithelial cells (84), indicating that the parasite per se may alter 
the local production of hormones and determining thymocyte 
fate. Yet, this hypothesis needs experimental confirmation.

GH and PRL
Prolactin is not only produced in the anterior pituitary gland 
but also in a range of tissues including adipose tissue, skin, and 
thymus. Actually, both GH and PRL exert relevant roles upon 
thymus physiology and are constitutively produced and secreted 
by thymocytes and thymic epithelial cells (TEC) (85–87). 
Increased intrathymic expression of GH leads to an enlarged 
thymus, as can be observed in transgenic mice that overexpress 
the hormone or in individuals treated with recombinant forms of 
GH (88–90). In addition, GH and IGF-1 (the hormone that medi-
ates several GH effects) favor thymocyte migration, augmenting 
ECM deposition (85). Moreover, specific receptors for GH, IGF-1 
and PRL are constitutively expressed by TEC and thymocytes, 
indicating autocrine and paracrine regulatory loops, in addition 
to the systemic effects of these hormones (57, 90).

The action of these anti-stress hormones is actually one of the 
ways that counterregulate systemically or in an organ-specific 
fashion, the action of the GC produced during T. cruzi infection. 
We have shown that PRL plays a critical role in balancing the 
effects of corticosterone in the thymus during T. cruzi infection 
(65, 74). In the mouse model of T. cruzi acute infection, we found 
an intrathymic cross-talk between GC receptors (GR) and PRL 
receptors that seems to work to counteract the effects of the infec-
tion, toward the neutralization of GC-related systemic deleterious 
effects on DP thymocyte survival during parasite-induced thymic 
atrophy. Furthermore, we showed that injection of metoclopra-
mide (known to enhance PRL secretion by the pituitary gland), 

during experimental infection, preserved the thymus from atro-
phy during infection with T. cruzi (65). This event was associated 
with partial prevention of DP thymocyte apoptosis as well as 
thymic release of undifferentiated and potentially autoreactive 
DP cells to the peripheral lymphoid tissues. These findings point 
to a modulation of the stress-related hormonal circuits in the 
intrathymic T cell development during T. cruzi infection.

Testosterone and DHeA
Androgens in general, and especially testosterone, have immu-
nosuppressive actions on the immune system, whereas the 
androgen DHEA seems to have immunostimulating properties, 
and counteracts the immunosuppressive effects of GC (91). In 
a second vein, it is widely accepted that sexual dimorphism is 
strongly related with differences in immune function and disease 
outcome. Concerning experimental Chagas disease, females are 
more resistant to infection than males, and androgen depletion 
improved the resistance against T. cruzi (92–94). Interestingly, in 
male mice, DP thymocyte death within thymic nurse cells seems 
to be caused by testosterone (95) and testosterone supplementa-
tion causes a diminution in thymocyte proliferation (96). Unlike 
GC, known to activate caspase-8 and caspase-9-mediated apop-
tosis in thymocytes, testosterone is able to activate thymocyte 
apoptosis through a caspase-3-dependent pathway (95). Studies 
in the rat model of T. cruzi acute infection revealed that DHEA 
supplementation promotes thymocyte proliferation, suggesting 
that DHEA treatment may prevent DP loss and other thymic 
alterations (96). Nevertheless, more studies are needed to evalu-
ate the role of sex hormones in the thymic atrophy that occurs 
during T. cruzi infection.

MeTABOLiC ALTeRATiONS AND 
ADiPOKiNeS

In parallel to the endocrine imbalance, animals infected with 
T. cruzi also show a clear metabolic disturbance, including hypo-
glycemia, weight loss and leptin alterations (97). It is known that, 
besides controlling saciety, leptin plays protective affects upon 
intrathymic T  cell development under physiologic conditions 
(98, 99). Nevertheless, in acute T. cruzi-infected C57BL/6 mice, 
its systemic and adipose tissue derived-expression is sharply 
diminished, suggesting that its loss may fuel thymic atrophy (97) 
However, and unlike what happens in models of experimental 
endotoxemia (100), leptin replacement during the acute infection, 
while attenuating GC release, fails in reversing thymic atrophy 
(97). The reason of this difference should be investigated, but it is 
possible to speculate that thymic ObR expression during T. cruzi 
infection could be also diminished, as previously observed at the 
hypothalamic level (97). In this regard, when infected db/db mice 
(that lack ObR) were reconstituted with the brain ObR, the infec-
tion was less obvious (101). These data suggest that leptin axis is 
dysregulated during infection. Strikingly, in chronic obese model 
of infection and also in human chronic disease, it was reported 
that adipokine disturbances are related to myocardial damage 
and heart autonomic dysfunction (102, 103), while their effects 
upon T cell dynamics has not been estimated.
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FiGURe 1 | Systemic and intrathymic hormonal imbalance affects the thymus during experimental Trypanosoma cruzi infection. Acute T. cruzi infection in mice 
induces a rise in plasma levels of proinflammatory cytokines, which are involved in the hyperactivation of the hypothalamus–pituitary–adrenal (HPA) axis. Pro-
inflammatory cytokines can enhance HPA axis activation, by acting at the hypothalamus–pituitary unit and/or on peripheral glands, i.e., the adrenals. In situ 
inflammatory reactions caused by T. cruzi-derived antigens or structural changes like vascular alterations or an enhanced extracellular matrix deposition in the 
endocrine microenvironment may also lead to sustain glucocorticoid hormone (GC) levels. The increment of systemic and intrathymic GC levels causes thymic 
atrophy by depletion of CD4+CD8+ double-positive (DP) thymocytes through apoptosis. In parallel, there is an abnormal export of immature DP and double-negative 
(DN) T cells to the periphery of the immune system. Growth hormone (GH) and prolactin (PRL) have positive effects upon the thymus, but T. cruzi infection decreases 
GH and PRL production by pituitary cells. Male animals acutely infected with T. cruzi also present a reduction in serum testosterone levels, although DP thymocyte 
death seems to be induced by this androgen, whereas testosterone supplementation induced a diminution in thymocyte proliferation. Abbreviation: H–P unit, 
hypothalamus–pituitary unit.
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CONCLUSiON

There is no doubt that acute T. cruzi infection induces an immu-
noendocrine imbalance, which somehow favors the ability of 
the parasite to settle in the host, and the development of distinct 
pathological events, among which the massive thymocyte death 
and consequent thymic atrophy. Yet, this is a complex network of 
events (summarized in Figure 1 and Table 1) that needs further 
investigation, including the possibility of endocrine axes being 
target for complementary therapeutic intervention in Chagas 
disease.
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TABLe 1 | Effects of hormonal imbalance upon thymocytes during Trypanosoma cruzi infection.

GC DHeA PRL GH Testo Leptin (*) Reference

Weight/size ↓ ↑ ↑ ↑ ↓ ↓ (18, 42, 44, 45, 53, 104)
Cellularity ↓ ↑ ↑ ↑ ↓ ↓ (25, 42, 44, 46, 54, 55, 66, 73, 88, 104)
Apoptosis of DP cells ↑ ↓ ↓ ↓ ↑ ↓ (25, 42, 44, 46, 54, 55, 73, 87, 88, 104)
Loss of Tregs ↑ ND ND ND ND ND (66)
Vβ T-cell repertoire/negative selection ND ND ND ND ND ND (19, 67)
Altering intrathymic cell migration ND ND ND ND ND ND (21, 66, 69, 80)
Escape of DP/DN cells to periphery ND ND ↓ ND ND ND (11, 55, 64, 67, 89, 105)

DP, CD4+CD8+ double-positive; GC, glucocorticoids; DHEA, dehidroepiandrosterone; PRL, prolactin; GH, growth hormone; Testo, testosterone; ND, not determined; ↑, increase; ↓, 
decrease; (*) effects caused by administration.
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