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Type 2 diabetes is caused by chronic insulin resistance and progressive decline

in beta-cell function. Optimal beta-cell function and mass is essential for glucose

homeostasis and beta-cell impairment leads to the development of diabetes. Elevated

levels of circulating fatty acids (FAs) and disturbances in lipid metabolism regulation

are associated with obesity, and they are major factors influencing the increase in the

incidence of type 2 diabetes. Chronic free FA (FFA) treatment induces insulin resistance

and beta-cell dysfunction; therefore, reduction of elevated plasma FFA levels might be an

important therapeutic target in obesity and type 2 diabetes. Lipid signals via receptors,

and intracellular mechanisms are involved in FFA-induced apoptosis. In this paper, we

discuss lipid actions in beta cells, including effects on metabolic pathways and stress

responses, to help further understand the molecular mechanisms of lipotoxicity-induced

type 2 diabetes.
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INTRODUCTION

Type 2 diabetes is a heterogeneous syndrome that is related to both defective insulin secretion
and peripheral insulin resistance. Beta cells are the major organs for secreting insulin; hence, it
is important to maintain an adequate beta-cell mass in response to various changes. Free fatty
acids (FFAs) are nutrients involved in the energy metabolism of most organisms and are known
to regulate beta-cell equilibrium. There is some evidence that elevated fasting and postprandial
FFA concentrations increase the risk of developing type 2 diabetes and obesity (1, 2). When
insulin resistance occurs, elevated FFA levels acutely increase beta-cell mass and insulin secretion
to compensate for insulin insensitivity. However, chronic increases of plasma FFA concentrations
result in disturbances in lipid metabolism regulation, which contribute to decreased beta-cell
function and viability (lipotoxicity), and consequently induce type 2 diabetes (3) (Figure 1).

Prospective studies with subjects at risk for type 2 diabetes demonstrate that development of
abdominal obesity is correlated with loss of beta-cell function (4). Lipotoxicity caused by chronic
dyslipidemia impairs the metabolism of lipids in a detrimental cycle, leading to further beta-cell
damage (5). In PROMISE cohort study during 6 years, total FFA concentration, but not specific
fatty acid composition, was a strong predictor of beta- cell function (6). However, FA composition
is one of the critical factors in the induction of lipotoxicity in beta-cells and type 2 diabetes (7).

Fatty acids are classified by carbon chain length. Short-chain fatty acids (SCFA) contain
fewer than 6 carbons, medium-chain fatty acids (MCFAs) have 6–12 carbons, and long-chain
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FIGURE 1 | Mechanisms underlying pancreatic beta-cell failure induced by lipotoxicity. When insulin resistance occurs, elevated free fatty acid (FFA) such as palmiate

(PA) acutely increases beta-cell mass and insulin secretion to compensate for insulin insensitivity. Chronic increases of plasma FFA result in lipotoxicity, which

contributes to beta-cell dysfunction and apoptosis and, as a consequence, induces type 2 diabetes.

fatty acids (LCFAs) contain more than 12 carbons. Moreover,
according to the double bond configuration, saturated fatty acids
(SFA) and unsaturated fatty acids are categorized, that can be
classified as mono (MUFA) or polyunsaturated (PUFA) (8). The
effects of a specific fatty acid (FA) on insulin secretion and beta-
cell survival are related to the degree of saturation and carbon
chain length of the FA. Saturated molecules with a chain length
of carbon (C)16 or greater [palmitate (C16:0) or stearate (C18:0)]
induced cytotoxicity, whereas a reduction of the carbon chain
length to C14(C) (myristate) or C12:0 (laurate) are less toxic
to beta-cells (9). But unsaturated fatty acids (both mono and
poly unsaturated fatty acids) do not induce beta-cell apoptosis
and this effects was chain length independent. Treatment of
beta cells with an unsaturated FA, such as arachidonic acid
(C20:4), increases glucose-stimulated insulin secretion (GSIS)
and beta-cell proliferation (10). Docosahexaenoic acid (DHA,
C22:6) and eicosapentaenoic acid (EPA, C20:5) also prevent
cytokine induced cell death in pancreatic islets and enhance
insulin secretion (11). Other studies demonstrated that cytokine
treatment induced cell death in the wild type islets, but islets
from the mfat-1 transgenic mice (containing DHA and EPA)
showed resistance to cytokine induced cell death (12, 13).
Therefore, controlled supplementation of PUFAs has been shown
to decrease triglyceride and cholesterol levels and enhance insulin
secretion (14).

Dietary fats, specifically unsaturated fatty acids can modulate
type 2 diabetes development and among them, palmitic acid is
one of the main fatty acid involved in the lipotoxicity during
the type 2 diabetes progression. Prolonged exposure to palmitate
(PA), an ester of the saturated palmitic acid, inhibits the secretory
capacity of beta cells, impairs insulin gene expression, and
increases beta-cell apoptosis (15).

It is widely reported that lipotoxicity induced by PA promotes
beta-cell apoptosis, but the mechanisms are not fully described

and many proposed models are still being investigated (14). This
review discusses mechanisms, such as expression of receptors,
synthesis of de novo ceramide, lipid droplet (LD) formation,
endoplasmic reticulum (ER) stress, mitochondrial dysfunction,
and autophagy, that regulate beta-cell death and dysfunction with
a focus on development of type 2 diabetes.

FATTY ACIDS AND LIPOTOXICITY

Prolonged exposure of isolated islets or insulin-secreting cells to
elevated FA levels is associated with inhibition of GSIS, reduction
of insulin gene expression, and induction of cell death by
apoptosis. Compared to untreated rat islets, rat islets cultured for
7 days in the presence of high levels of FFAs exhibit the hallmark
events of apoptosis such as DNA fragmentation, increased
caspase activity, ceramide formation, and expression of apoptotic
genes (16). When a high-fat diet (HFD) is administrated to
non-obese Goto-Kakizaki (GK) rats, beta-cell dysfunction is
increased (17). Moreover, intralipid-induced impairment in
beta-cell function is accelerated in obese subjects with glucose
intolerance and mild hyperglycemia (18). Lipid or FFA exposure
activates FFA receptors and cell stress responses including
ceramide formation, LD formation, ER stress, mitochondria
dysfunction, and autophagy, and these responses result in beta-
cell damage and impaired insulin secretion (Figure 2).

FFA Receptors
CD36

CD36 is an N-linked glycosylated transmembrane protein
that is also known as FA translocase (FAT). After cross the
cell membrane via CD36, fatty acids are activated by fatty
acyl-CoA synthetase to generate acyl-CoA which undergoes
β-oxidation. Acyl-CoA also enters the glycerolipid/free fatty
acid cycle or participates in sphingolipid synthesis to generate
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FIGURE 2 | Involved mechanisms regarding impaired insulin secretion and beta-cell apoptosis under lipotoxic condition in pancreatic beta-cells. Palmitate (PA)

activates CD36 or FFA receptors (FFARs) and cell stress responses including ceramide formation, lipid droplet (LD) formation, endoplasmic reticulum (ER) stress,

mitochondrial dysfunction, and autophagy. These responses result in beta-cell damage and impaired insulin secretion.

metabolites such as ceramides and sphingosine-1 phosphate
(19). The binding of long chain FFA to CD36 stimulates the
tyrosine phosphorylation of downstream proteins, including
proinflammatory response associated with diabetes (20). CD36
is upregulated in response to high glucose in beta-cell, and
upregulation of CD36 transporter in beta-cells increases uptake
of FA, which are amelioration of the GSIS and impaired oxidative
metabolism (21). Sulfo-N-succinimidyl derivatives have been
developed as selective inhibitors for CD36, and preincubation
with CD36 inhibitor prevents saturated FFA-induced apoptosis
via reduced reactive oxygen species (ROS) production (22). In
addition to role in FFA transport, CD36 has an important role in
signal transduction through activation of non-receptor tyrosine
kinases of the Src family (20). These results suggested that CD36
could be a therapeutic target for the treatment of diabetes induced
by lipotoxicity.

G-Protein Coupled Receptors (GPRs)

FFAs bind to GPRs and regulate insulin secretion pathways.
Four FFA receptors, FFAR1 (GPR40), FFAR2 (GPR43), FFAR3
(GPR41), and FFAR4 (GPR120), are expressed in human and
rodent beta-cells, but those receptors have different chain length
specificities, and the degree of saturation affects insulin secretory
function (23). FFAR1 and FFAR4 are activated by medium-
and long-chain FAs, while the other two receptors are activated
by short-chain FAs. Among the receptors, FFAR1 and FFAR4

are the most closely related to lipotoxicity-induced beta-cell
apoptosis.

FFAR1 (GPR40) is activated by medium- and long-chain
FFAs [especially, ecosatrienoic acid (C20:3)] and facilitates GSIS
in pancreatic beta cells (24, 25). Insulin secretory effect of
FFAs on beta-cells was decreased by loss of FFAR1 function.
Steneberg et al. demonstrated that loss of FFAR1 protects
mice from obesity induced hyperinsulinemia, hyperglycemia
and glucose intolerance, but overexpression of FFAR1 in
beta-cell of mice leads to impaired beta-cell function and
diabetes (26). PA treatment of human islets decreases insulin
content and secretion, and those decreases can be prevented
by treatment with FFAR1 antagonists (27). These results
suggested that FFAR1 antagonists may have therapeutic benefits.
However, other studies showed that upregulation of FFAR1
protects against lipotoxicity in rat insulinoma (INS-1) cells
(28), while FFAR1 overexpression in islet beta cells improves
GSIS and glucose tolerance in vivo (29). In human study,
a single nucleotide polymorphism at the FFAR1 locus is
correlated with insulin secretory dysfunction (30). FFAR1 is
also expressed intestinal L and K cells, which secrete incretin
hormones such as glucagon-like peptide 1 (GLP-1) and glucose-
dependent insulinotropic polypeptide (GIP) (31), suggested
that FFAR1 regulate FFA-induced insulin secretion from beta-
cells directly and indirectly by regulation of incretin secretion.
Therefore, many pharmaceutical companies and academic

Frontiers in Endocrinology | www.frontiersin.org 3 July 2018 | Volume 9 | Article 384

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Oh et al. Lipotoxicity-Induced Beta-Cell Apoptosis

institutes are undertaking development of FFAR1 agonists such
as Tak-875, LY2881835, and AMG-837 (32). Tak-875 reduced
glycemia in diabetic patients but not in normoglycemic people
without diabetes and progressed to phase III clinical trials
(33). However, the development was discontinued because of
hepatotoxicity (34). Recently, some agonist such as P11187,
LY2922470, and SHR0534 are currently in phase I clinical trials
(32).

FFAR4 (GPR120) is unsaturated FFA (ω-3, ω-6, and ω-9) and
saturated FFAs with long- chain carbon sensor. Among them, two
ω-3 FAs, docosahexaenoic acid (DHA) and α-linoleic acid, are the
most potent and most common GPR120 agonists (35). GPR120
increases insulin release from beta cells via increases in incretin
(glucagon-like peptide-1) secretion by intestinal cells (35) and
exhibits an anti-apoptotic effect via activation of extracellular
signal-regulated kinase (ERK) and phosphoinositide 3-kinase
(PI3K)-Akt (protein kinase B) (36). FFAR4 KO mice develop
glucose intolerance, and a dysfunctional variant of FFAR4
(R279H) is associated with obesity in humans (37). Therefore,
activation of pancreatic GPR120 may mediate the anti-apoptotic
effects of poly unsaturated FAs in diabetic beta cells.

FFAR2 (GPR43) and FFAR3 (GPR41) are short-chain FA
[propionate (C3), butyrate (C4), and valerate (C5)] receptors
that mediate inhibition of insulin secretion by coupling with G
proteins. Genetic deletion of both receptors in beta- cells show
enhanced insulin secretion and improved glucose tolerance in
HFD-fed diabetic mice compared with that in controls (38).
However, GPR43 andGPR41 are involved in GLP-1 secretin from
intestinal L cells. They were abundantly expressed in L cells and
knockout mice of these receptors exhibited reduced short chain
FA-mediated GLP-1 secretion both in vitro and in vivo and results
in impaired glucose tolerance (39). These results suggest that
development of agonist or antagonists of GPR43 and GPR41may
be expected to be efficacious in improving insulin secretion in
type 2 diabetic subjects.

Agonists for GPR119, a highly expressed beta-cell receptor for
FA metabolites (lysophosphatidylcholine, oleoylethanolamine),
act as insulin secretagogues. A GPR119-specific agonist,
AR231453, increases insulin release in HIT-T15 cells (a hamster
pancreatic beta-cell line) and rodent islets. Moreover, AR231453
treatment in diabetic KK-Ay mice improves glucose tolerance
(40). N-oleoyldopamine, a lipid amide, activates GPR119,
enhances insulin secretion in RIN-5F cells (a rat islet cell line),
and improves glucose tolerance when administered orally to
C57BL/6J mice (41).

Nuclear Receptors

Peroxisome proliferator-activated receptor alpha (PPAR-α)
serves as a long-chain FA sensor and regulates FA metabolism
by decreasing lipid content and minimizing lipotoxicity (42).
PPAR-α has a role in protecting beta-cells from oleate-induced
dysfunction. In INS-1 cells, insulin secretory dysfunction induced
by oleate is accelerated by PPAR-α siRNA treatment, and
overexpression of PPAR-α stimulates insulin secretion in human
islets (43).

Farnesoid X receptor (FXR), a bile acid receptor, is another
key nuclear receptor regulating beta-cell function in human islet

and beta-cell cell lines (44). FXR is predominantly localized
in the cytosol of islets of normal mice but translocates to the
nucleus under a diabetic condition. GSIS is impaired in islets of
FXR KO mice, and FXR activation protects human islets from
lipotoxicity and enhances insulin secretory function (44). V-
maf musculoaponeurotic fibrosarcoma oncogene homolog (Maf)
A, Beta2/Neuro D1, and pancreatic and duodenal homeobox
(Pdx)-1 (a master transcription factor regulating the insulin
gene), and GSIS are reduced in FXR KO islets. The molecular
mechanisms by which FXR activation leads to insulin secretion
and protects lipotoxicity is unclear, but expression of FGF-19,
a member of the FGF family was increased by treatment with
FXR agonist and increased FGF-19 might be reduced palmitate
induced triglyceride accumulation and apoptosis (44).

Ceramide Formation
Exposure to excess long-chain saturated FFAs [palmitate (16:0),
stearate (C18:0), arachidate (C20:0)] and linocerate (C24:0), but
not shorter saturated [myristate (C12:0)] or unsaturated FFAs
induces ceramide accumulation by serine palmitoyl transferase
and ceramide synthase (CerS) (45, 46). de novo ceramide
synthesis has been suggested to be a mediator of FFA-induced
beta-cell toxicity. Overexpression of CerS4 potentiates PA-
induced accumulation of ceramides and enhances apoptosis
through the production of additional toxic ceramide species such
as C18:0, C22:0, and C24:1 (47). The C2-ceramide, an analog
of ceramide, is able to potentiate the pro-apoptosis and anti-
proliferative effects of PA in beta-cells (48). ER stress, alterations
in mitochondrial membrane integrity, and inhibition of Akt
by ceramide are proposed to induce apoptosis in beta-cells.
Synthetic ceramide is accumulated in the ER of beta cells and
reduces ER sphingomyelin (SM) and cholesterol, which results
in the disruption of ER lipid rafts (49). Lei et al. demonstrated
that inhibition of SMase, an enzyme that hydrolyzed SM
to generate ceramide, protects beta-cells from ER stress-
induced apoptosis (50). Also, ceramide increases mitochondrial
membrane permeability and leads to the activation of intrinsic
pathways via decreased anti-apoptotic molecules Bcl-2 and
increased caspase 3/7 (47). Ceramide has been shown to disrupt
electron transport at complex I and complex III, resulting in
enhanced ROS generation, which facilitates cytochrome c release
and caspase activation (51). Akt inactivation by ceramide is
involved in the mechanisms by which ceramide causes beta-
cell apoptosis. Inhibition of ceramide biosynthesis restores Akt
activation (52), and Akt inactivation with ceramide accumulation
is observed in human treated with saturated fat (53).

Inhibition of de novo ceramide synthesis by using serine
palmitoyl transferase (L-cycloserine) or ceramide synthase
(fumonisin-B1) inhibitors attenuates FFA-induced beta-cell
apoptosis and lowers hyperglycemia (54). Tang et al. reported that
beta-cell-secreted active neutral ceramidase protects beta cells
from FFA-induced apoptosis through regulation of sphingolipid
metabolites (55).

As ceramide and its derivatives have a variety of roles in
beta-cell biology, further investigation will help to elucidate the
mechanisms underlying beta-cell failure caused by lipotoxicity.
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Lipid Droplet Formation
Lipid droplets (LDs) is one of the important organelles in cellular
energy balance. LD contains a core or neutral lipid (triglyceride
(TG) and cholesterol ester) coated by an interface composed
of a monolayer of phospholipids, free cholesterol and proteins
(56). The storage droplets help transport the neutral lipids to
specific cellular destinations or direct them to specific metabolic
pathway. Such metabolic pathway was controlled by the LD
coat proteins of the perilipin family such as perilipin (PLIN),
adipocyte differentiation-related protein (ADFP), tail-interacting
protein of 47 kilodaltons (TIP47) and oxidative tissue-enriched
PAT protein (OXPAT) (57). PLIN protects against lipotoxicity
when overexpressed beta-cells (58), but recently reported that
that downregulation of PLIN2 ameliorates chemical induced
ER stress (59). Identifying the role of PLIN on the lipotoxic
beta-cells will be elucidated in the future. Besides PLIN, ADFP
also plays a crucial function in intracellular lipid metabolism.
Expression level of ADFP was increased in mouse islets from
HFD administration and downregulation of ADFP in beta-cells
results in the suppression of TG accumulation upon FA loading
(60). However, few studies focused on the association of ADFP
and beta-cell function under lipid stress. Further studies of PLIN
and ADFP to increase understanding of lipid droplet formation
in lipotoxic beta-cells will be needed.

ER Stress
The ER is one of the important metabolic organelles playing a key
role in beta-cell function. Activation of ER plays a crucial role in
the synthesis, correct folding and sorting of insulin in response
to glucose. ER forms the main intracellular Ca2+ reservoir and
the controlled release of Ca2+ into the cytosol is a critical
step for insulin synthesis. Therefore, beta-cells are particularly
sensitive to ER stress and unfolded protein response (UPR) such
as ER transmembrane proteins PKR-like endoplasmic reticulum
kinase (PERK), inositol-requiring enzyme (IRE)-1, and activating
transcription factor (ATF)-6. Saturated FAs promote ER stress
and induce beta-cell apoptosis (61, 62). ER stress markers are
elevated in pancreatic islets in animal models of diabetes and
in patients with type 2 diabetes (63). Chemical chaperone 4-
phenylbuturic acid treatment restores ER morphological changes
induced by PA (64), and deletion of C/EBP homologous protein
(CHOP, transcription factor in the ER stress response) in HFD-
fed mice improves beta-cell function and promotes cell survival
(65).

Many pathways were involved in the regulation of ER stress
induced apoptosis. Activated UPR pathways have been directly
linked to the intrinsic apoptotic pathway (62). Proapoptotic
signals of c-Jun N-terminal kinase (JNK), induced by PA, are
activated downstream of IRE-1. Eukaryotic translation initiation
factor 2 alpha subunit (eIF-2α) phosphorylation via PERK
leads to loss of the myeloid cell leukemia sequence 1 (MCL1)
protein, which is an anti-apoptotic member of the BH3 family
(66). In addition, PA-induced ER stress interacted with the
inflammatory response by activating several proinflammatory
pathway, such as NF-kB, JNK, double stranded RNA-dependent
protein kinase and nucleotide-binding oligomerization domain
NLRP inflammasome (67).

Disruption of protein processing and trafficking or incorrect
Ca2+ regulation in ER are involved in FA-induced beta-cell
apoptosis. Compared with cytokines and glucotoxicity, PA
efficiently decreased ER Ca2+ levels (68), and reduced Ca2+

levels in ER triggers the unfolded protein response to rescue cells
from misfolded protein overload or programmed cell death (68).
Marnugi et al. reported that Sorcin, a calcium sensor protein
in ER, is downregulated under lipotoxic stress conditions, and
resulting in ER stress and beta-cell dysfunction (69). Santulli et al.
demonstrated that mutation of type 2 ryanodine receptor (RyR2),
Ca2+ release channel on the ER, caused activated ER stress
response, mitochondrial dysfunction and results in impaired
insulin secretion and glucose homeostasis (70).The accumulation
of misfolded protein causes ROS generation from the oxidative
folding process in the ER and mitochondria. Defective disulfide
bond formation reduces glutathione in the ER and produces
oxygen radicals (71). Lipotoxicity also disrupts ER-to-Golgi
protein trafficking, resulting in impaired proinsulin maturation
and loss of insulin content (72).

The UPR causes accumulation of human islet amyloid
polypeptide, which occurs in 90% of type 2 diabetic patients (73).
Many studies have demonstrated that islet amyloid polypeptide
formation is cytotoxic (74, 75) because amyloid polypeptide
accumulates intracellular ROS and induces lipid peroxidation
(74).

There are close connections between oxidative stress and
organellar Ca2+ homeostasis. Interaction between ER and
mitochondria was involved in the lipotoxicity- induced ER
stress via regulation of Ca2+ signaling (76). Prolonged ER
stress leads to release of Ca2+ from the ER lumen at the
mitochondria-associated membranes (NAM) and consequently
leads to increased Ca2+ uptake into the mitochondrial matrix.
Prolonged mitochondrial Ca2+ accumulation triggers opening
of the mitochondrial permeability transition pore (mtPTP) and
these results in swelling the organelle, rupture of the outer
mitochondrial membrane and release of proapoptotic protein
into the cytosol (77). Ly et al. also suggested that palmitate
induced deprivation of Ca2+ from ER and this leads to ER stress
and CHOP upregulation. Moreover, released Ca2+ transfers
into mitochondria and mitochondrial Ca2+ overload causes
superoxide production and induces apoptosis (78).

These results suggest that several mechanisms are involved
in lipotoxicity-induced ER stress. Therefore, reducing ER stress
in beta- cells could lead to novel and efficient therapeutic
treatments for palmitate-induced lipotoxicity. Several studies
have demonstrated that knockdown of ER stress proteins (ex,
CHOP) has protective effects on palmitate-induced apoptosis
in beta cells (79), and chaperones such as taurine-conjugated
ursodeoxycholic acid (TUDCA) and 4-phenylbutyruc acids have
been tested to protect from PA-induced ER stress and apoptosis
(80).

Mitochondrial Dysfunction
Mitochondria play an essential role in adenosine triphosphate
(ATP) synthesis, Ca2+ homeostasis, and the integration of
apoptotic signals (81). In beta-cells, glucose sensing and
subsequent insulin secretion was controlled by mitochondrial

Frontiers in Endocrinology | www.frontiersin.org 5 July 2018 | Volume 9 | Article 384

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Oh et al. Lipotoxicity-Induced Beta-Cell Apoptosis

metabolism. During the glycolysis and tricarboxylic acid (TCA)
cycle, reduced form of nicotinamide adenine dinucleotide
(NADH) or flavin adenine dinucleotide (FADH2) are generated
and electron transfer to the mitochondrial electron-transport
chain (ETC) leads to production of ATP via the process of
oxidative phosphorylation. Increased in ATP/ADP ratio allows
Ca2+ uptake, contributing to secretion of insulin (82). Therefore,
defects in mitochondrial function impair this metabolic process
and consequently promote apoptosis and beta-cell death. Various
factors have been identified that may contribute to mitochondrial
dysfunction.

Increased FA levels leads to incomplete FA oxidation and
induces ROS production, with concomitant mitochondrial stress,
which leads to lipotoxicity (83). PA is known as a potent
inducer of ROS and ROS attack insulin secreting cells and these
results in mitochondrial inactivation and interruption of signal
transduction correlated with insulin secretion (84). CD 36 is
required for FA-induced ROS production and proinflammatory
pathways (7).

Mitochondrial electron transport chain is an important site
of ROS production within the cells, but beta-cells are low in
antioxidant enzymes such as catalase, glutathione peroxidase,
and superoxide dismutase, thus they are sensitive to ROS (85).
Human islets from diabetic individuals show lipid peroxide
protein adducts (86) and lipid infusion increases islet ROS
and impairs insulin secretion (87). These lipid peroxides
have lipotoxic effects on mtDNA, RNA and proteins of the
mitochondrial machinery, leading to mitochondrial dysfunction
(88).

Mitochondrial uncoupling refers to the dissociation of
electron-dependent oxygen consumption from ATP generation.
Uncoupling protein (UCP)-1,−2, and−3 are expressed in a
tissue-specific manner, but only UCP-2 is expressed in pancreatic
beta cells (89). Increased expression of UCP-2 is observed in islets
of HFD-fed rodents and in FFA-treated islets (90), and activation
of UCP-2 attenuates GSIS. Islets from UCP-2 KO mice show
resistant to PA-induced cellular toxicity and remains normal
insulin secretion (91). However, another report demonstrated
that UCP-2 KO in mice causes oxidative stress and impairs GSIS
(92). Recently, it was reported that UCP-2 is not involved in PA-
induced impairment of insulin secretion in INS-1 cells (93). As
there are contrasting results on the biochemical and physiological
functions of UCP-2, further clarification of the role of UCP-2 in
the lipotoxicity of beta-cells and the pathogenesis of diabetes is
needed.

Mitochondrial morphology contributes to the maintenance
of insulin levels by regulating apoptosis and beta-cell mass.
Exposure of beta-cells to glucolipotoxicity induces mitochondrial
fragmentation and restoring normal morphology prevents
apoptosis (94). Mitochondria dynamics are modified by fission
and fusion, as fusion can compensate for damage to the contents
of dysfunctional organelles by fusing them with functionally
competent ones, whereas fission drives damaged organelles to
mitophagy and prevent apoptosis (95). It was reported that beta-
cell specific deletion of autophagy related 7 (Atg-7) results in
dispersed, small, and swollen mitochondria and accompanied by
reduced beta-cell mass with reduced GSIS (96). It was reported

that disconnected, swollen and shorter beta-cell mitochondria
was observed in Zucker diabetic fatty rats (ZDF) (97) and
beta-cells from diabetic patients (98). Molina et al. reported
that PA treatment results in mitochondrial fragmentation and
impairs network dynamics; moreover, manipulations that shift to
fusion prevent lipotoxicity-induced apoptosis (99). In addition,
Wiederkehr et al. demonstrated that inhibition of mitochondrial
networking augments sensitivity to lipotoxicity (100). These
results indicated that mitochondrial morphodynamics such as
fusion and fission are involved in lipotoxicity in beta-cells and
in the pathophysiology of type 2 diabetes.

Further elucidation of mitochondrial dysfunction and
identification of mitochondrial targets against lipotoxicity will be
helpful in identifying pharmacological targets for the protection
of beta-cell mass and beta-cell function in type 2 diabetic
subjects.

Autophagy
Autophagy is a dynamic process that has a major role in the
elimination of pathogens, dysfunctional organelles, and protein
aggregates through lysosomal mechanisms. Upon induction of
stress such as ROS exposure or ER stress, autophagy is stimulated
to protect the cell by clearing accumulated damaged components.
The activating complex UNC-51-like kinase (ULK1)/ autophagy-
related protein (ATG)1, the Beclin/PI3K (VPS34) complex, two
transmembrane proteins (ATG9 and VMPL), two ubiquitin-
like conjugation systems (ATG12/ATG5 and ATG8/LC3) are
molecular components involved in the autophagy process
(101). Under normal condition, autophagy is inhibited by the
activation of the mTORC1 complex, a modulator activated
during the insulin pathway or in states of abundant nutrients.
However, during energy reduction or in the presence of mTOR
inhibitors, ATG proteins recruited to form a autophagy complex
(102).

The role of autophagy in FFA-induced toxicity is unclear.
When appropriate stimulation occurs, autophagy is activated as a
survival mechanism (103). Numbers of autophagosomes are high
in ZDF rats, db/dbmice, and HFD-fed C57BL/6mice (104). Long
term treatment with PA or oleate to INS-1 cells show increased
autophagosome numbers, and activation of autophagosomes
indicates their protective role against PA-induced death (105,
106). Mice with a beta-cell-specific KO of ATG7 display impaired
glucose tolerance as well as impaired insulin secretion after
being fed a HFD (105), and reduction of autophagosome
formation augments PA-induced beta-cell death (107). Choi
et al also demonstrated that ATG5 downregulation enhanced
susceptibility to cell death induced by lipotoxicity but stimulation
of autophagy using rapamycin ameliorated lipotoxicity (106).
These results suggested that increase autophagy in response to
FA plays a protective mechanism from lipotoxicity.

In contrast, activation of autophagy by FAs in beta-
cells has been reported to be an apoptotic signal. ATG7
overexpression sensitizes cells to PA-induced autophagy, which
increases inflammatory mediators via cathepsin B and NLRP3
inflammasome, resulting in exacerbation of lipotoxicity in INS-
1 cells (108). Ebato et al. also reported that genetic deletion of
ATG7 in beta-cells results in degeneration of islets and impaired
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glucose tolerance with reduced insulin secretion during high fat
diet (105).

These contrary results suggest that induction of autophagy has
either detrimental or protective roles in beta cells; therefore, the
role of autophagy in beta-cell failure in type 2 diabetes requires
further investigation.

CONCLUSION

Beta-cell failure is a major risk factor at the onset and during
progression of type 2 diabetes. FFAs have both positive and
negative effects on beta-cell survival and insulin secretory
functions. However, chronic PA treatment results in lipotoxicity
and beta-cell dysfunction, consequently resulting in type
2 diabetes. Several FFARs that are specifically activated by
FFAs, disturbances in lipid metabolism and intracellular
pathways, including cellular stress responses such as
oxidative stress, ER stress, autophagy, and ceramide/LD
formation are involved in lipotoxicity-induced beta-cell
death. This review helps to understand the molecular
mechanisms of lipotoxicity-induced type 2 diabetes, and

identification of the molecular mechanisms related to FFAs
that regulate beta-cell mass and function could provide
guidance in the development of new therapeutic targets for
diabetes.
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