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Large birthweight, or macrosomia, is one of the commonest complications for

pregnancies affected by diabetes. As macrosomia is associated with an increased risk

of a number of adverse outcomes for both the mother and offspring, accurate antenatal

prediction of fetal macrosomia could be beneficial in guiding appropriate models of

care and interventions that may avoid or reduce these associated risks. However,

current prediction strategies which include physical examination and ultrasound

assessment, are imprecise. Biomarkers are proving useful in various specialties and

may offer a new avenue for improved prediction of macrosomia. Prime biomarker

candidates in pregnancies with diabetes include maternal glycaemic markers (glucose,

1,5-anhydroglucitol, glycosylated hemoglobin) and hormones proposed implicated in

placental nutrient transfer (adiponectin and insulin-like growth factor-1). There is some

support for an association of these biomarkers with birthweight and/or macrosomia,

although current evidence in this emerging field is still limited. Thus, although biomarkers

hold promise, further investigation is needed to elucidate the potential clinical utility of

biomarkers for macrosomia prediction for pregnancies affected by diabetes.
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INTRODUCTION

With the increasing prevalence amongst women of childbearing age, diabetes mellitus is one of
most common pre-existing medical conditions affecting pregnancy (1). Together, type 1 diabetes
mellitus (T1DM) and type 2 diabetes mellitus (T2DM) affect around 1% of pregnancies (2).
Gestational diabetes mellitus (GDM) is also on the rise, particularly since the changes in diagnostic
criteria (3), with a prevalence of around 13% (4). This is of concern as maternal diabetes increases
the risks associated with pregnancy (5, 6).

While there are higher rates of many adverse pregnancy outcomes, abnormal fetal growth
and birthweight is particularly important due to the substantial frequency of occurrence (7, 8).
Indeed, reports estimate macrosomia occurs in up to 60% of pregnancies affected by pre-existing
diabetes (9). While macrosomia is common and occurs even in otherwise uncomplicated diabetic
pregnancies (10), fetal growth restriction (FGR) and small-for-gestational-age (SGA) tend to occur
in diabetic pregnancies complicated by other conditions, such as underlying maternal vascular
disease (11, 12). For this reason, macrosomia in pregnancies affected by diabetes will form the focus
of this review.
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Macrosomia is defined in various ways. One method of
defining macrosomia is according to the absolute birthweight
being equal to or above a certain threshold, usually 4,000 g
(13). Another definition is according to a birthweight
percentile that accounts for the gestational age at birth,
with macrosomia commonly defined as being above the 90th
centile (also called large-for-gestational-age, LGA)(13, 14).
The term macrosomia used here will encompass both of
these definitions. Where possible, the abbreviated definition
used by a referenced study will be mentioned, with the full
definition provided in the supplementary table (Supplementary
Table 1).

Given the potentially serious consequences for the mother
and child, there is significant interest in predicting fetal
macrosomia (13). Accurate identification holds potential for
guiding appropriate management and interventions, with the
aim of improving outcomes (15). However, currently available
methods of macrosomia prediction demonstrate only modest
predictive ability, which limits their use in tailoring obstetric
decisions (13, 15).

The latest area of interest for potentially improving
macrosomia prediction has been in the field of biomarkers.
A biomarker in this context refers to a biological molecule that
can be objectively assessed as an indicator of a physiological or
pathological process or state, and therefore may have potential
value for predicting certain outcomes (16, 17). A number
of biomarkers have been investigated to determine whether
they have an association with birthweight and macrosomia.
Relevant biomarkers have been purposefully selected for further
discussion.

The aim of this review is to examine the available literature
for a relationship between selected biomarkers and birthweight
and/or macrosomia. Pregnancies without diabetes in addition
to pregnancies affected by diabetes will be discussed for
comparison. The review will provide a brief overview of
the determinants of fetal growth, the need for macrosomia
prediction, and current prediction strategies. It will then focus
on the selected biomarkers and provide evaluation of their
birthweight/macrosomia prediction potential.

METHODS

Medline, Embase, and PubMed databases were searched in 2017.
The following subject headings (and synonyms) were combined:
pregnancy, diabetes mellitus, type 1 diabetes, type 2 diabetes,
gestational diabetes, birthweight, fetal weight, macrosomia, large-
for-gestational-age, biomarker, predictor. Specific searches also
included the terms blood glucose, glycosylated hemoglobin,
1,5-anhydroglucitol, lipids, adiponectin, and insulin-like growth
factor-1, as well as a search without diabetes terms. In addition,
bibliographies of collected publications were manually searched.

Articles were selected if a biomarker from a maternal or
fetal/neonatal biological sample was tested for an association
with any measure of birthweight or macrosomia. This search
identified a list of previously studied biomarkers (Table 1).
Exclusion criteria included samples taken from pregnancies

affected by FGR/SGA, multiple pregnancy, non-human studies,
conference abstracts, and non-English articles.

DISCUSSION

Determinants of Fetal Growth
Normal fetal growth relies on the complex interplay of multiple
factors, including genetic and environmental influences arising
from the parents, fetus, and placenta (218). A key determinant
of abnormal growth is altered substrate supply to the fetus
(219). In normal pregnancy, maternal insulin resistance increases
across gestation, becoming most pronounced in the third
trimester when the majority of fetal growth takes place (220).
This adaptive change promotes diversion of glucose across the
placenta down its concentration gradient to the fetus (221).
However, in pregnancies affected by diabetes, such transfer is
exaggerated due to maternal hyperglycaemia (221). This excess
glucose supply is believed to be central to diabetes-related
fetal overgrowth. Indeed, the hyperglycaemia-hyperinsulinaemia
hypothesis (also known as the Pedersen hypothesis), has been the
prevailing explanation for macrosomia in diabetic pregnancies
(220). It proposes that maternal hyperglycaemia leads to fetal
hyperglycaemia, which stimulates maturation and hypertrophy
of the fetal pancreas (222). This results in hypersecretion of
insulin, and as insulin is a dominant fetal growth hormone,
acceleration of fetal growth occurs (219). The modified Pedersen
hypothesis also includes maternal amino acids and lipids in
addition to glucose, contending that these insulin-responsive
maternal fuels lead to an increase in “mixed nutrients” supplied to
the fetus, which in turn elevates fetal insulin and drives excessive
growth (220).

Rationale for Macrosomia Prediction
Antenatal prediction of fetal macrosomia prediction is desirable
for many reasons. Firstly, macrosomia is a common obstetric
complication, affecting a significant number of pregnancies.
According to recent Australian figures, the rate of macrosomia
(birthweight ≥ 4,000 g) amongst pregnancies with pre-existing
type 1 and type 2 diabetes was 25 and 18% for male and female
offspring, respectively (2). However, as previously mentioned,
other populations have reported rates up to 60% (for pre-existing
diabetes), which is approximately six times the rate for women
without diabetes (9).

Secondly, macrosomia carries risks for the mother and fetus
(Figure 1). Prominent risks include obstructed labor, cesarean
section, instrumental delivery, perineal trauma, and birth injuries
such as shoulder dystocia, an obstetric emergency involving
difficulty delivering the fetal shoulders (14, 223, 224). Moreover,
the risk of shoulder dystocia is greater in pregnancies affected by
diabetes for any given birthweight, perhaps due to the altered fetal
body proportions (14, 232). Longer-term risks include obesity
and diabetes in the offspring (225, 226), possibly reflecting fetal
programming as proposed by the “developmental origins of adult
disease” or Barker hypothesis (233, 234).

By identifying pregnancies at increased perinatal risk,
macrosomia prediction allows for tailoring obstetric care.
Appropriate management and interventions could be employed
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TABLE 1 | Biomarkers investigated for an association with birthweight or macrosomia (excluding FGR/SGA).

Biomarker

(Alphabetical order)

Source Significant association with birthweight/

macrosomia (Most adjusted result used. Maternal

diabetes status of sample population provided; all

were pregnant unless otherwise stated)

Non-significant association with

birthweight/macrosomia (Most adjusted result used.

Maternal diabetes status of sample population

provided; all were pregnant unless otherwise stated)

1,5-Anhydroglucitol • Maternal blood (18) T1DM, T2DM, GDM

(19) T1DM, T2DM, GDM

(20) T1DM

(21) GDM, No diabetes

25-Hydroxyvitamin D

(25(OH)D)

• Maternal blood (22) T2DM, GDM, No diabetes

32-33 Split proinsulin • Umbilical cord blood (23) T1DM, No diabetes

Acid-Labile Subunit (ALS) • Umbilical cord blood (24) Diabetes status not stated

Acylation Stimulating

Protein (ASP)

• Umbilical cord blood (25) No diabetes (pregnant),

No diabetes (non-pregnant)

Adiponectin • Maternal blood (26) GDM, No diabetes

(27) GDM, No diabetes (pregnant),

No diabetes (non-pregnant)

(28) GDM, No diabetes

(29) GDM, No diabetes

(30) GIGT, No diabetes

(31) No diabetes

(32) No diabetes

(33) No diabetes

(31) No diabetes

(34) No diabetes

(34) No diabetes

(35) No diabetes

(36) GDM, No diabetes

(37) GDM, No diabetes

(38) No diabetes

(39) No diabetes

• Umbilical cord blood (36) GDM, No diabetes

(40) GDM, No diabetes

(32) No diabetes

(39) No diabetes

(41) No diabetes

(42) No diabetes

(43) No diabetes

(44) No diabetes

(45) No diabetes

(23) T1DM, No diabetes

(46) T2DM, GDM, No diabetes

(47) No diabetes

(48) No diabetes

(38) No diabetes

• Amniotic fluid (49) Diabetes status not stated

Albumin • Amniotic fluid (50) GDM, No diabetes

Alpha-Feto Protein (AFP)

ratio

(maternal serum AFP /

amniotic fluid AFP)

• Maternal blood

• Amniotic fluid

(51) Diabetes status not stated

Alpha Human Chorionic

Gonadotropin (α-hCG)

• Maternal blood (52) IDDM, No diabetes

Amino acids • Umbilical cord blood (53) IDDM, No diabetes

Anti-insulin antibodies • Maternal blood

• Cord blood

(54) IDDM, GDM, No diabetes

Apelin • Maternal blood

• Cord blood

(54) GDM, No diabetes

Apolipoprotein A1

(ApoA1)

• Maternal blood (30) GIGT, No diabetes

(55) No diabetes

Apolipoprotein A5

(APOA5) S19W

polymorphism

• Umbilical cord blood (56) Diabetes status not-stated

Apolipoprotein B (ApoB) • Maternal blood (30) GIGT, No diabetes

(55) No diabetes

Aspartate

aminotransferase

• Maternal blood (57) No diabetes

Beta Human Chorionic

Gonadotrophin (β-hCG)

• Maternal blood (58) Diabetes, No diabetes (59) No diabetes

(Continued)
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TABLE 1 | Continued

Biomarker

(Alphabetical order)

Source Significant association with birthweight/

macrosomia (Most adjusted result used. Maternal

diabetes status of sample population provided; all

were pregnant unless otherwise stated)

Non-significant association with

birthweight/macrosomia (Most adjusted result used.

Maternal diabetes status of sample population

provided; all were pregnant unless otherwise stated)

Beta-Hydroxybutyrate

(β-OHB)

• Maternal blood (60) Diabetes, No diabetes

Bilirubin • Maternal blood (57) No diabetes

Carcinoembryonic

Antigen (CEA)

• Maternal blood

• Umbilical cord blood

(61) Diabetes status not stated

Chemerin • Umbilical cord blood (62) GDM, No diabetes

Coenzyme Q10 (CoQ10

or ubiquinone)

• Amniotic fluid (63) GDM, No diabetes

Copeptin • Umbilical cord blood (64) Diabetes, No diabetes

Cortisol • Maternal saliva (65) No diabetes

(66) Diabetes status not stated

• Amniotic fluid (67) No diabetes

C-peptide • Umbilical cord blood (53) IDDM, No diabetes

(48) No diabetes

(68) No diabetes

• Amniotic fluid (69) Diabetes status not stated

C-Reactive Protein

(CRP)

• Maternal blood (30) GIGT, No diabetes

(34) No diabetes

Creatinine • Maternal blood (70) T1DM

(57) No diabetes

Cytokines: Interleukin

(IL) IL-β, IL-6, IL-8

• Maternal blood (71) No diabetes

Epidermal Growth

Factor (EGF)

• Umbilical cord blood (72) IDDM, GDM, No diabetes

• Amniotic fluid (73) Diabetes status not stated

E-selectin • Maternal blood (74) T1DM, T2DM

Estriol • Maternal blood (38) No diabetes

• Umbilical cord blood (38) No diabetes

Estradiol • Maternal blood (57) No diabetes

Free thyroxine (FT4) • Maternal blood (75) No diabetes

Fructosamine • Maternal blood (76) IDDM

(77) Diabetes (type not specified)

(54) IDDM, GDM, No diabetes

(78) Pre-existing diabetes, GDM, No diabetes

(79) GDM, No diabetes

(80) Pre-existing diabetes, GDM, No diabetes

(81) T2DM, GDM

(82) GDM, GIGT, No diabetes

• Umbilical cord blood (78) Pre-existing diabetes, GDM, No diabetes

Fat mass- and obesity-

associated (FTO) gene

mRNA

• Placenta (83) No diabetes

Ghrelin • Neonatal blood (84) GDM, No diabetes

(85) No diabetes

Glucagon-like peptide 1

(GLP-1) - active

• Maternal blood (86) No diabetes

Glucose • Maternal blood (87) Pre-existing diabetes

(88) IDDM

(89) IDDM

(90) T1DM

(91) T1DM

(92) T1DM

(93) T1DM, No diabetes

(94) GDM, GIGT, No diabetes

(95) GDM, GIGT, No diabetes

(96) GDM, No diabetes

(97) GDM, No diabetes

(98) GDM, No diabetes

(109) IDDM

(110) GDM

(111) GDM

(25) No diabetes (pregnant), No diabetes (non-pregnant)

(Continued)
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TABLE 1 | Continued

Biomarker

(Alphabetical order)

Source Significant association with birthweight/

macrosomia (Most adjusted result used. Maternal

diabetes status of sample population provided; all

were pregnant unless otherwise stated)

Non-significant association with

birthweight/macrosomia (Most adjusted result used.

Maternal diabetes status of sample population

provided; all were pregnant unless otherwise stated)

(99) GDM, No diabetes

(100) GDM, No diabetes

(101) GDM

(30) GIGT, No diabetes

(102) No diabetes

(103) No diabetes

(104) No diabetes

(105) No diabetes

(106) No diabetes

(107) No diabetes

(108) No diabetes

• Umbilical cord blood (48) No diabetes

• Amniotic fluid (112) No diabetes

• Maternal urine (113) No diabetes

Glycated albumin • Maternal blood (114) GDM, No diabetes

Glycine/valine ratio • Amniotic fluid

Glycosylated hemoglobin

(HbA1c)

• Maternal blood (115) Pre-existing diabetes, GDM

(116) Pre-existing diabetes, No diabetes

(109) Pre-existing diabetes

(117) IDDM, GDM, ‘Probably normal’, Normal

(118) IDDM, No diabetes

(119) IDDM

(120) IDDM, GDM, No diabetes

(121) T1DM, T2DM

(122) T1DM, T2DM

(81) T2DM, GDM

(123) T1DM

(124) T1DM

(20) T1DM

(125) T1DM

(126) T1DM

(127) T1DM

(91) T1DM

(128) T1DM

(90) T1DM

(92) T1DM

(129) T1DM, No diabetes

(130) No diabetes

(131) No diabetes

(103) No diabetes

(132) No diabetes

(87) Pre-existing diabetes

(88) IDDM

(18) T1DM, T2DM, GDM

(19) T1DM, T2DM, GDM

(133) T1DM

(95) GDM, IGT, No diabetes

(134) GDM, IGT, No diabetes

(21) GDM, No diabetes

(111) GDM

(135) GDM

(136) GIGT, No diabetes

(137) No diabetes (pregnant), No diabetes (non-pregnant)

(138) No diabetes

(139) No diabetes

• Umbilical cord blood (68) No diabetes

Glycosylated proteins • Maternal blood (140) T1DM, No diabetes

(103) No diabetes

(118) IDDM, No diabetes

• Umbilical cord blood (140) T1DM, No diabetes

Growth factor

receptor-bound protein

10

(GRB10) gene single

nucleotide

polymorphism

rs12540874 A>G

• Placenta (141) No diabetes

Growth Hormone

Binding Protein

• Maternal blood (142) IDDM, NIDDM, No diabetes

HDL-Cholesterol

(HDL-C)

• Maternal blood (143) T1DM, T2DM, No diabetes

(111) GDM

(144) GDM

(Continued)
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TABLE 1 | Continued

Biomarker

(Alphabetical order)

Source Significant association with birthweight/

macrosomia (Most adjusted result used. Maternal

diabetes status of sample population provided; all

were pregnant unless otherwise stated)

Non-significant association with

birthweight/macrosomia (Most adjusted result used.

Maternal diabetes status of sample population

provided; all were pregnant unless otherwise stated)

(145) GDM, No diabetes

(100) GDM, No diabetes

(146) No diabetes

(55) No diabetes

(146) No diabetes

(147) No diabetes

(21) GDM, No diabetes

(30) GIGT, No diabetes

(57) No diabetes

• Umbilical cord blood (43) No diabetes (148) T1DM, No diabetes

(68) No diabetes

Hepatocyte Growth

Factor (HGF)

• Amniotic fluid (149) No diabetes

Homocysteine • Maternal blood

• Umbilical cord blood

(150) Diabetes status not stated

Insulin • Maternal blood (30) GIGT, No diabetes

• Umbilical cord blood (151) IDDM, No diabetes

(23) T1DM, No diabetes

(62) GDM, No diabetes

(64) Diabetes, No diabetes

(43) No diabetes

(152) No diabetes

(48) No diabetes

(68) No diabetes

• Amniotic fluid (153) IDDM, GDM, No diabetes

(154) T1DM, T2DM, GDM, GIGT, No diabetes

(155) T1DM

(69) Diabetes status not stated

Insulin-like Growth

Factor-1 (IGF-1)

• Maternal blood (156) IDDM

(142) IDDM, NIDDM, No diabetes

(157) T1DM, T2DM, GDM, No diabetes

(158) T1DM

(159) GDM, No diabetes

(160) Diabetes status not stated

(161) No diabetes

(162) No diabetes

(163) IDDM, No diabetes

(164) T1DM, No diabetes

(126) T1DM

(165) GDM, No diabetes

(166) Diabetes status not stated

(38) No diabetes

(167) No diabetes

(168) No diabetes

• Umbilical cord blood (169) Pre-existing diabetes, GDM, No diabetes

(170) IDDM, NIDDM, No diabetes

(171) T1DM, T2DM, GDM

(172) T1DM, GDM, No diabetes

(173) T1DM, No diabetes

(174) GDM, No diabetes

(24) Diabetes status not stated

(175) Diabetes status not stated

(166) Diabetes status not stated

(161) No diabetes

(176) No diabetes

(177) T1DM, No diabetes

(164) T1DM, No diabetes

(38) No diabetes

(178) No diabetes

(168) No diabetes

Insulin-like Growth

Factor-2 (IGF-2)

• Maternal blood (142) IDDM, NIDDM, No diabetes

(156) IDDM

(158) T1DM

(159) GDM, No diabetes

(159) GDM, No diabetes

(168) No diabetes

(176) No diabetes

• Umbilical cord blood (38) No diabetes

(169) Pre-existing diabetes, GDM, No diabetes

(168) No diabetes

Insulin-like Growth Factor

Binding Protein-1

(IGFBP-1)

• Maternal blood (142) IDDM, NIDDM, No diabetes

• Umbilical cord blood (179) T1DM, T2DM, GDM

(178) No diabetes

Insulin-like Growth Factor

Binding Protein-2

(IGFBP-2)

• Maternal blood (142) IDDM, NIDDM, No diabetes

(Continued)
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TABLE 1 | Continued

Biomarker

(Alphabetical order)

Source Significant association with birthweight/

macrosomia (Most adjusted result used. Maternal

diabetes status of sample population provided; all

were pregnant unless otherwise stated)

Non-significant association with

birthweight/macrosomia (Most adjusted result used.

Maternal diabetes status of sample population

provided; all were pregnant unless otherwise stated)

Insulin-like Growth Factor

Binding Protein-3

(IGFBP-3)

• Maternal blood (38) No diabetes

(142) IDDM, NIDDM, No diabetes

• Umbilical cord blood (24) Diabetes status not stated (38) No diabetes

Insulin-like Growth

Factor-1 Receptor

(IGF1R) mRNA

• Placenta (180) GDM, No diabetes

Interlukin-6 (IL-6) • Umbilical cord blood (48) No diabetes

Irisin • Umbilical cord blood (181) GDM, No diabetes

LDL-Cholesterol

(LDL-C)

• Maternal blood (143) T1DM, T2DM, No diabetes

(21) GDM, No diabetes

(111) GDM

(30) GIGT, No diabetes

(55) No diabetes

(57) No diabetes

(146) No diabetes

• Umbilical cord blood (148) T1DM, No diabetes (43) No diabetes

(68) No diabetes

Leptin • Maternal blood (182) T1DM, No diabetes

(30) GIGT, No diabetes

(183) GDM, No diabetes

(184) No diabetes

• Umbilical cord blood (182) T1DM, No diabetes

(184) No diabetes

(43) No diabetes

(185) No diabetes

(41) No diabetes

(47) No diabetes

(178) No diabetes

(48) No diabetes

Lipoxin A4 (LXA4) • Maternal blood (186) GDM, No diabetes

Metabolites: taurine,

creatinine, betaine,

glycine, citrate,

myo-inositol

• Neonatal urine (187) Diabetes status not stated

MicroRNA-21 (miR-21) • Placenta (188) No diabetes

MicroRNAs (miR):

miR-141-3p,

miR-200c-3p

• Maternal blood (189) Diabetes status not stated

MicroRNA-376a

(miR-376a)

• Maternal blood (190) No diabetes

Mitochondrial DNA

(mtDNA)

• Maternal blood (191) GDM, No diabetes

Nesfatin-1 • Maternal blood (54) GDM, No diabetes

• Cord blood (54) GDM, No diabetes

Obestatin • Umbilical cord blood (62) GDM, No diabetes

Pigment

Epithelium-Derived

Factor (PEDF)

• Umbilical cord blood (46) T2DM, GDM, No diabetes

Platelets • Umbilical cord blood (129) T1DM, No diabetes

Placental Growth Factor

(PlGF)

• Maternal blood (192) Diabetes, No diabetes

(193) Diabetes, No diabetes

• Amniotic fluid (49) Diabetes status not stated

Placental Growth

Hormone (PGH)

• Maternal blood (142) Pre-existing IDDM, NIDDM, No diabetes

(164) T1DM, No diabetes

(158) T1DM

(126) T1DM

(194) No diabetes

(194) No diabetes

(Continued)
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TABLE 1 | Continued

Biomarker

(Alphabetical order)

Source Significant association with birthweight/

macrosomia (Most adjusted result used. Maternal

diabetes status of sample population provided; all

were pregnant unless otherwise stated)

Non-significant association with

birthweight/macrosomia (Most adjusted result used.

Maternal diabetes status of sample population

provided; all were pregnant unless otherwise stated)

• Umbilical cord blood (164) T1DM, No diabetes

Placental imprinted

genes: BLCAP, DLK1,

H19, IGF2, MEG3, MEST,

NNAT, NDN, PLAGL1

• Placenta (195) Diabetes status not-stated

Placental Lactogen • Maternal blood (57) No diabetes

Placental Protein 13

(PP13)

• Maternal blood (196) Diabetes status not stated

Plasminogen Activator

Inhibitor-type 1 (PAI-1)

• Maternal blood (34) No diabetes

Plasminogen Activator

Inhibitor-2 (PAI-2)

• Maternal blood (192) Diabetes not excluded

Pregnancy-Associated

Plasma Protein-A

(PAPP-A)

• Maternal blood (58) Diabetes, No diabetes

(197) Diabetes, No diabetes

(198) No diabetes

(199) Diabetes status not stated

(59) No diabetes

Progesterone • Maternal blood (38) No diabetes

• Umbilical cord blood (38) No diabetes

Prolactin • Maternal blood (38) No diabetes

Regulated on Activation,

Normal T cell Express

and Secreted upon

uptake (RANTES)

• Umbilical cord blood (200) T2DM, GDM, No diabetes

Retinol-Binding Protein 4

(RBP4)

• Umbilical cord blood (201) GDM, No diabetes

Resistin • Maternal blood (202) GDM, No diabetes

(34) No diabetes

• Umbilical cord blood (202) GDM, No diabetes

RNA: PHLDB2, CLDN1,

C15orf29, LPHN3, LEP,

GCH1,

• Placenta (203) Diabetes status not stated

Sex Hormone Binding

Globulin (SHBG)

• Maternal blood (38) No diabetes

• Umbilical cord blood (174) GDM, No diabetes (38) No diabetes

Soluble Fms-like tyrosine

kinase-1

(sFlt-1)

• Maternal blood (192) Diabetes, No diabetes

Soluble Fms-like tyrosine

kinase-1

/Placental Growth Factor

ratio

• Maternal blood (193) No diabetes

Soluble Leptin Receptor

(sOB-R)

• Umbilical cord blood (47) No diabetes

Soluble TNF-α receptor-2

(TNFR2)

• Maternal blood

• Umbilical cord blood

(35) No diabetes

Squalene • Maternal blood (204) GDM, No diabetes

Stromal Cell-derived

Factor-1a (SDF-1a)

• Amniotic fluid (205) No diabetes

Testosterone • Maternal blood (38) No diabetes

• Umbilical cord blood (38) No diabetes

Total cholesterol • Maternal blood (111) GDM

(21) GDM, No diabetes

(30) GIGT, No diabetes

(Continued)
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TABLE 1 | Continued

Biomarker

(Alphabetical order)

Source Significant association with birthweight/

macrosomia (Most adjusted result used. Maternal

diabetes status of sample population provided; all

were pregnant unless otherwise stated)

Non-significant association with

birthweight/macrosomia (Most adjusted result used.

Maternal diabetes status of sample population

provided; all were pregnant unless otherwise stated)

(146) No diabetes

(55) No diabetes

• Umbilical cord blood (206) GDM, No diabetes (43) No diabetes

(68) No diabetes

Total lipids • Maternal blood (111) GDM

Triglycerides • Maternal blood (143) T1DM, T2DM, No diabetes

(94) GDM, GIGT, No diabetes

(207) GDM, GIGT, No diabetes

(208) GDM, No diabetes

(209) GDM

(144) GDM

(210) GDM, No diabetes

(146) No diabetes

(211) No diabetes

(212) No diabetes

(213) No diabetes

(146) No diabetes

(214) No diabetes

(25) No diabetes (pregnant), No diabetes (non-pregnant)

(148) T1DM, No diabetes

(21) GDM, No diabetes

(111) GDM

(100) GDM, No diabetes

(30) GIGT, No diabetes

(215) No diabetes

• Umbilical cord blood (211) No diabetes

(215) No diabetes

(43) No diabetes

(55) No diabetes

Tumor Necrosis Factor-α

(TNF-α)

• Maternal blood (71) No diabetes

Uric acid • Maternal blood (55) No diabetes

Vascular Cell Adhesion

Molecule-1 (sVCAM-1)

• Maternal blood (74) T1DM, T2DM

Vascular Endothelial

Growth Factor (VEGF)

• Maternal blood (193) No diabetes

(216) Diabetes status not stated

Very Low Density

Lipoprotein (VLDL)

• Maternal blood (57) No diabetes

Visfatin • Maternal blood (48) No diabetes

• Umbilical cord blood (48) No diabetes

Vitamin C • Maternal blood

• Umbilical cord blood

(217) No diabetes

T1DM, Type 1 diabetes mellitus; T2DM, Type 2 diabetes mellitus; GDM, Gestational diabetes mellitus; IDDM, Insulin-dependent diabetes mellitus; NIIDM, Non-insulin dependent diabetes

mellitus; GIGT, Gestational impaired glucose tolerance.

to avoid or reduce the associated risks. Induction of labor
and elective cesarean section are possible options; although,
definitive evidence for improved outcomes and cost-effectiveness
from these strategies is lacking at present (15, 235). Thus,
further development and evaluation of appropriate management
options is needed, and improved prediction strategies could be
instrumental in this.

Available Methods for Macrosomia
Prediction
Different methods for predicting macrosomia are currently
available, as outlined in Table 2. Risk-factor based prediction
aims to assess the likelihood of macrosomia based on identified
unmodifiable and modifiable risk factors (13). Diabetes is
the strongest risk factor for macrosomia (13, 235), and
even maternal hyperglycaemia below diagnostic thresholds
for diabetes increases the risk (102). Maternal body mass

index (BMI) and gestational weight gain (GWG) are also
well-established risk factors (252, 253), with pre-pregnancy
obesity increasing the odds of macrosomia by threefold (254).
Furthermore, clinical methods of fetal size estimation include
physical examination techniques, with symphysis fundal height
measurement and abdominal palpation being the primary
manoeuvres (255). Maternal estimation of fetal weight by parous
women has also been described (247). Finally, ultrasound
estimation of fetal weight is routinely used, which employs
formulae incorporating fetal biometric parameters (248).

In comparing the performance of the available prediction
methods, the broad conclusion is that no single method
demonstrates clear superiority over the others (246, 256).
Importantly, these current methods all have their limitations—
a major limitation is their imprecision, displaying a sensitivity
and specificity for macrosomia detection of around 55 and
90%, respectively (15, 246). The false positive and false negative
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FIGURE 1 | Rationale for macrosomia prediction. Macrosomia is associated with a number of adverse outcomes for both the mother and fetus (223–231). Prediction

of macrosomia may reduce or avoid these via guiding appropriate obstetric management.

rates are of concern, as inaccurate results can carry serious
consequences including unnecessary intervention (14, 256, 257).
Thus, these methods have limited clinical utility and caution
is needed if used to guide management (15). From this it is
evident there exists a need to improve macrosomia prediction
beyond current capabilities, particularly in pregnancies affected
by diabetes.

Biomarkers for Macrosomia Prediction
Biomarkers may hold potential for enhancing macrosomia
prediction. Biomarkers represent a biological source of
information, revealing unique insight into the in-utero
environment that may be leading to accelerated fetal growth.
Hence by reflecting the possible proximal determinants of
excessive growth, biomarkers could provide predictive capacity
for macrosomia.

A number of fetal and maternal biomarkers have been
previously assessed for an association with birthweight
or macrosomia in pregnancies with and without diabetes
(Table 1;Figure 2). An approach to selecting biomarkers for
further evaluation was informed by the known risk factors for
macrosomia. The risk factors for which a detectable biological
correlate (biomarker) may be present and therefore may reflect
“proximal macrosomia determinants” are maternal glucose
metabolism/diabetes and maternal weight (pre-pregnancy

obesity and GWG). Although the underlying mechanisms by
which these risk factors mediate their influence on fetal growth
have not yet been definitively determined, a theory linking these
two with fetal macrosomia considers “direct” and “indirect”
pathways (249, 258) (Figure 3).

The direct pathway relates to insulin effectiveness and
action (221, 249). Maternal diabetes and/or obesity affects this
pathway via exaggerating the physiological insulin resistance
that develops during pregnancy, which in-turn contributes to
maternal hyperglycaemia and dyslipidaemia (249). This then
leads to increased nutrient delivery to the fetus, subsequently
resulting in fetal hyperinsulinaemia and macrosomia as per
the modified Pedersen hypothesis (249, 258). Thus, biomarkers
of maternal glycaemic control that may provide indication
of the glycaemia-related risk of the direct pathway include
blood glucose, glycosylated hemoglobin (HbA1c), and 1,5-
anhydroglucitol (1,5-AG). While maternal triglycerides and
cholesterol may be markers of the dyslipidaemia-related effects
on growth. On the other hand, the indirect pathway centers on
placental function (249). Placental changes that have been linked
to maternal diabetes and obesity, such as alterations in structure,
utero-placental blood flow, and placental transporters, may lead
to altered feto-placental nutrient transport (249, 259). This
likewise increases nutrient delivery to the fetus and stimulates
fetal hyperinsulinaeamia. As adiponectin and insulin-like growth
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TABLE 2 | Evaluation of available methods for macrosomia prediction.

Method Description Performance Advantages Disadvantages

Risk-factor

assessment

• Assesses the likelihood of

macrosomia based on factors known

to increase macrosomia risk.

• Unmodifiable risk factors include

maternal age, parity, parental height,

ethnicity, fetal sex (male), and

previous macrosomic delivery

(224, 236–238).

• Modifiable risk factors include

pre-pregnancy weight, GWG,

gestational age, impaired glucose

tolerance/diabetes

(224, 236, 238, 239).

• Accuracy varies with the risk

factors assessed and population

studied.

• One prediction equation

demonstrated 57% sensitivity, 90%

specificity, PPV 47%, NPV 93%

(cut off value 3,750 g); although this

excluded women with

complications including diabetes

(240).

• Risk factors can be readily

assessed with history and

examination

• No cost

• Non-invasive

• A validated, accessible, user-

friendly predictive tool using risk

factors is lacking

• A notable proportion of

macrosomia occurs in pregnancies

that have no or low identifiable risk

Symphysis fundal

height (SFH)

measurement

• The SFH is a measurement of the

maternal abdomen from the superior

margin of the symphysis pubis to the

highest point of the uterine fundus

using a tape measure (241).

• Measurements greater than the

normal range for gestational age as

per fundal height curves may indicate

a large fetus (241).

• Estimates of the predictive

performance for macrosomia vary

widely, with reported sensitivity

ranging from 16–98% and

specificity of 88-95% (242–244).

• Available at the bedside

• No cost

• Non-invasive

• Accuracy problems relating to the

measurement technique, inter-

observer variability, gestational age

dating or use of different fundal

height curves.

• Maternal diabetes and obesity may

also affect accuracy (245)

Abdominal

palpation

• Abdominal palpation using Leopold

manoeuvres estimate fetal size by

tactile assessment of fetal parts

(246).

• When performed by experienced

clinicians, abdominal palpation can

predict 70% of birthweights to

within 10% of the actual value

(246).

• Available at the bedside

• No cost

• Non-invasive

• Accuracy influenced by the

subjective nature of the

assessment and

operator-dependence

Maternal

estimation

• A parous women is asked to

estimate the birthweight of her child

prior to delivery (247).

• A study in post-term pregnancies

demonstrated prediction of

macrosomia with 56% sensitivity,

94% specificity, PPV 77%, NPV

86%(247).

• Available at the bedside

• No cost

• Non-invasive

• Involves the mother

• Limited to women with a previous

pregnancy

Ultrasound

assessment

• Ultrasound assessment of fetal size

involves determining the gestational

age of the pregnancy, measurement

of fetal biometry (e.g., abdominal

circumference), use of various

formulae to estimate fetal weight, and

comparing fetal size with population

standard charts for gestational age to

obtain the corresponding percentile

(248).

• Masurement error of ultrasound

fetal weight estimation has been

reported as ± 15–20% (241, 249).

• Poorer accuracy at the extremes of

fetal weight (250).

• Mean detection rate of macrosomia

is 29% in the general obstetric

population (250).

• Margin of error in pregnancies with

diabetes is ±20–25% (251).

• Wide availability

• Rapidly produces results

• Perceived objectivity

• Requires trained operators

• Resource requirements & costs

• Inconvenience of extra

appointments

PPV, positive predictive value; NPV, negative predictive value.

factor-1 (IGF-1) are proposed to be involved in these placental
alterations, they therefore represent potential biomarkers of
this indirect pathway (249). Hence these biomarkers are prime
candidates to be assessed for associations with fetal weight.
Maternal rather than fetal (cord blood) biomarkers will be the
focus due to being the source relevant for antenatal predictive
testing. Pre-existing diabetes, GDM, and pregnancies without
diabetes will be examined in turn (results summarized in
Table 3).

Blood Glucose
In womenwith pre-existing diabetes, various parameters of blood
glucose have been assessed for associations with birthweight. The
Diabetes in Early Pregnancy (DIEP) study focused on elucidating
the contribution of fasting verses postprandial glucose to infant
birthweight, comparing women with T1DM and controls across

pregnancy (93). The findings indicated that postprandial glucose
was more important for macrosomia (birthweight ≥ 90th
percentile) risk, with the third trimester postprandial glucose
levels the strongest predictor. Other studies also support the
importance of postprandial blood glucose; with postprandial
glucose levels in the third trimester predicting macrosomia
(birthweight >90th percentile) (87), and mean postprandial
glucose in the second trimester associated with birthweight (91).
However, these studies have often analyzed the fasting and
postprandial glucose measurements as the average across a whole
trimester, hindering more specific timing effects of glycaemia on
macrosomia risk to be determined. Addressing this by calculating
the mean fasting and post-prandial glucose measurements over
3 week blocks in women with pre-existing diabetes, Persson
et al. found the mean fasting glucose levels between 27 and 29
weeks’ gestation were independently associated with macrosomia
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FIGURE 2 | Biomarkers associated with birthweight and/or macrosomia. Biomarkers that have previously demonstrated a significant association with birthweight

and/or macrosomia. Abbreviations provided in Table 1.

(birthweight >2 standard deviations), whereas postprandial
levels were not (88). This fasting glucose measurement and pre-
pregnancy weight together accounted for 12% of the variance
in birthweight. In addition to the different time periods over
which averages were calculated, variations in the measurement
methods including the use of patient self-monitoring of blood
glucose (SMBG) via a glucometer compared to laboratory testing,
could have contributed to the conflicting findings. Nonetheless,
they substantiate the contribution of second and third trimester
maternal glycaemia to fetal growth in pregnancies complicated
by pre-existing diabetes (89, 260, 261).

Furthermore, as postprandial hyperglycaemia involves
transitory glycaemic excursions, this supports the notion that
glucose fluctuations in addition to chronic hyperglycaemia, are
important in influencing excessive fetal growth (92, 123, 124).
To comprehensively assess such temporal patterns in glucose
control, continuous glucose monitoring systems (CGMS) are
needed, particularly in women with T1DM, as fluctuations
are often missed by SMBG (262, 263). Indeed, initial studies
using CGMS have shown maternal glucose excursion profiles
are related to macrosomia (90, 264–266). For example,
a multi-center study involving women with T1DM and

T2DM using CGMS, identified that glucose excursions at
specific time periods throughout the day were associated with
macrosomia (birthweight >90th percentile) in each trimester
(264). For the second and third trimesters, the macrosomia-
related glucose levels were higher and showed greater
variability.

Meanwhile, studies in the setting of GDM have mostly used
measures of maternal glucose obtained from the oral glucose
tolerance test (OGTT). These measures, particularly the fasting
values, have often been associated with macrosomia (95–99).
Although, a Canadian study found glucose levels (fasting or post-
glucose load) only independently accounted for 3–5% of the
variance in birthweight (98).

Importantly, maternal glycaemia has been shown to be
related to macrosomia risk amongst healthy women in the
absence of overt diabetes (102, 103). The landmark study
in the area is the Hyperglycaemia and Adverse Pregnancy
Outcomes (HAPO) study. This multinational investigation
assessed outcomes associated with glucose parameters from the
OGTT at 24–32 weeks’ gestation in healthy pregnant women
(102). The blinded data from∼23,000 participants demonstrated
linear associations between increasing maternal glucose levels

Frontiers in Endocrinology | www.frontiersin.org 12 July 2018 | Volume 9 | Article 407

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Nahavandi et al. Macrosomia Biomarkers

FIGURE 3 | Proposed link between macrosomia risk factors and the selected biomarkers. Maternal diabetes and obesity have proposed links to fetal macrosomia via

direct and indirect effects on fetal growth (249, 258). Biomarkers (red) possibly related to these pathways may therefore capture information that has predictive

capacity for macrosomia.

below diagnostic thresholds for diabetes with both birthweight
above the 90th percentile and umbilical cord blood C-peptide
above the 90th percentile (indicative of fetal hyperinsulinaemia).
The findings support the Pedersen hypothesis and indicated
even mild maternal hyperglycaemia without diabetes increases
macrosomia risk, which has had subsequent implications for
GDM diagnostic thresholds.

However, other studies with participants of varying diabetes
status have not found blood glucose to be associated with
birthweight (25, 109–111). Variations in glucose testing protocols
and treatment regimens may provide some explanation for this.
Thus, uncertainties remain regarding the utility of blood glucose
for birthweight/macrosomia prediction (8).

Glycosylated Hemoglobin (HbA1c)
HbA1c is produced by non-enzymatic glycosylation of
hemoglobin. It is a long-term marker of glycaemic control,
reflecting the average glucose concentration over the previous
2–3 months (267, 268).

In women with pre-existing diabetes, macrosomia and
birthweight have been significantly associated with HbA1c
measured at different time points. In multiple studies, third
trimester values have demonstrated positive associations with
macrosomia (90, 92, 109, 123, 126, 127) and birthweight (91,
128). A notable study is a prospective nation-wide investigation
of 289 women with T1DM in The Netherlands (123). Amongst

this cohort with acceptable glycaemic control, the third trimester
HbA1c measurement was the strongest predictor of macrosomia
(birthweight >90th percentile), accounting for 4.7% of the
variance of macrosomia. Furthermore, HbA1c measured in
trimester 1 (119, 121), or trimester 2 and 3 (116, 124,
125, 129) have also been associated with birthweight or
macrosomia. Across all of these studies, HbA1c has been
reported to explain ∼5–23% of variance in birthweight (119,
123).

Contrastingly, other research groups have not found a
significant association between HbA1c and birthweight (19,
87, 88, 269). Contributing factors to these inconsistencies may
include the sample collection time-points and the use of averages
of HbA1c across varying periods. This could be influential as
HbA1c normally declines during pregnancy and is a retrospective
weighted average marker (267). It may also relate to the study
protocol reducing glycaemic variability (87, 88) or to differences
in analytical assays (270).

In addition, a prominent issue is the persistence of high
macrosomia rates in women with pre-existing diabetes even
when HbA1c values indicate “good” glycaemic control (87,
92, 123, 133). This “macrosomia despite normoglycaemia” may
be linked to HbA1c-determined normoglycaemia not revealing
glycaemic variability. As previously mentioned, postprandial
hyperglycaemia and glycaemic fluctuations are considered
important in accelerating growth (8, 271). This is consistent with
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TABLE 3 | Summary of evidence in support of an association between the selected biomarkers and birthweight/macrosomia.

Biomarker (Maternal

source unless

otherwise stated)

T1DM T2DM GDM No diabetes

Blood glucose • Strongest evidence for second

& third trimester

measurements.

• Postprandial over fasting

measurements.

• Strongest evidence for second

& third trimester

measurements.

• Postprandial over fasting

measurements.

• Support for glucose

parameters in the oral glucose

tolerance test.

• Support for glucose

parameters in the oral glucose

tolerance test.

Glycosylated

hemoglobin

• Strongest evidence for third

trimester measurements.

• Strongest evidence for third

trimester measurements.

• Limited supportive evidence. • Limited supportive evidence.

1,5-Anhydroglucitol • Significant association in all

available studies.

• Significant association in all

available studies.

• Mixed results. • No supportive evidence.

Lipids • Triglycerides and HDL-C with

most support.

• Triglycerides and HDL-C with

most support.

• Triglycerides and HDL-C with

most support.

• Triglycerides and HDL-C with

most support.

Adiponectin • Lack of maternal adiponectin

studies.

• Fetal adiponectin not

significant (limited studies).

• Lack of maternal adiponectin

studies.

• Fetal adiponectin not

significant (limited studies).

• Some support for maternal

and fetal adiponectin.

• Some support for maternal

and fetal adiponectin.

Insulin-like growth

factor-1

• Mixed results for maternal

IGF-1.

• Stronger support for fetal

IGF-1.

• Mixed results for maternal

IGF-1.

• Stronger support for fetal

IGF-1.

• Some support for maternal

and fetal IGF-1.

• Some support for maternal

and fetal IGF-1.

some studies indicating tighter blood glucose control and thus
reduced glycaemic excursions, can reduce macrosomia incidence
(260, 272, 273).

There is weaker evidence for a significant association between
HbA1c and birthweight in women with GDM (21, 95, 111,
134, 135). This may related to the reduced aberrations in
HbA1c in GDM compared with T1DM and T2DM (274).
Also, many studies have measured HbA1c at the same time
as GDM diagnostic testing (around 28 weeks’ gestation) for
convenience. However, when HbA1c was measured at delivery in
women with GDM, HbA1c >6.8% was associated with a fivefold
increased risk of macrosomia (birthweight ≥4,000 g) compared
with HbA1c<6.0% (81). Later HbA1c testing may therefore be
more useful for predicting macrosomia.

Meanwhile, for women without diabetes, a correlation
between HbA1c at various times with birthweight has been
identified by some (103, 130, 131, 139), but not other researchers
(137, 138). In the HAPO cohort, glucose measures had a
significantly stronger association with birthweight than HbA1c
(132). Furthermore, another study assessed ultrasound and
HbA1c prediction of macrosomia (birthweight ≥4,000 g) within
1 week prior to delivery (138). It found HbA1c measurements
were not useful and thus could not improve ultrasound
prediction accuracy. However, HbA1c levels were low in this
cohort without diabetes. Thus overall, HbA1cmay bemore useful
in women with pre-existing diabetes and later in pregnancy.

1,5-Anhydroglucitol (1,5-AG)
1,5-AG is the 1-deoxy form of glucose and is a short-term
glycaemic marker (275). During normoglycaemia, serum 1,5-
AG is in a steady-state, with >99% renal reabsorption (275).
However in hyperglycaemic conditions, glucose competitively
inhibits renal reabsorption of 1,5-AG, thereby increasing 1,5-AG

excretion and reducing the serum 1,5-AG concentration (268). It
reflects the glycaemic control over the preceding 24 h to 2 weeks,
and importantly, it can capture glycaemic fluctuations (268, 275).

With these benefits in detecting glycaemic excursions, Nowak
et al. compared 1,5-AG and HbA1c in pregnant women
with T1DM and found 1,5-AG was the stronger predictor of
macrosomia (birthweight >90th percentile) (20). The receiver
operator characteristic (ROC) area under the curve (AUC)
for third trimester 1,5-AG macrosomia prediction was 0.81.
This improved to 0.84 with the addition of HbA1c, and
could achieve sensitivity and specificity of 86 and 71%,
respectively. As 80% of the cases of macrosomia occurred
in women that met HbA1c targets, it suggested that glucose
excursions that were not reflected in the HbA1c level but were
captured by the 1,5-AG values may have contributed to fetal
overgrowth. This assertion was supported by CGMS records
which showed 1,5-AG was strongly correlated with CGMS
indices including ameasure of glucose variability, but HbA1c was
not.

Building on this, a study involving women with T1DM,
T2DM, and GDM found that there was a significant inverse
association between 1,5-AG and birthweight z-score across the
groups (19). Of note, HbA1c was not associated with birthweight,
possibly due to the participants having overall low HbA1c
measurements. The authors contend however, that as 1,5-AG
was significantly associated with birthweight even amongst a
population with good glycaemic control according to HbA1c, it
could be used to identify the subset of pregnancies that are at risk
of macrosomia, despite HbA1c within target ranges.

Wright et al. similarly found an inverse linear association
between mean 1,5-AG and birthweight z-scores in a cohort of
T1DM, T2DM, and GDM pregnancies (18). The association for
mean HbA1c was not significant. The lack of blood glucose
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data (SMBG/CGMS) is a limitation, as conclusions regarding
glycaemic control and fluctuations require consideration of these
immediate measures of glycaemia.

In contrast, a study comparing women with GDM and
pregnant women without diabetes did not find 1,5-AG to be a
significant predictor of birthweight (21). Although, serum 1,5-
AG concentration was significantly lower in the women with
GDM compared to controls and there was a trend for an inverse
association between 1,5-AG and birthweight in the GDM group.

There have been concerns that the reduction in renal glucose
threshold during normal pregnancy may affect renal excretion
of 1,5-AG and thus serum levels, thereby possibly limiting the
utility of 1,5-AG in reflecting glycaemic changes while pregnant
(275, 276). However, the few available evaluations of 1,5-AG as
a marker of glycaemic control in pregnancies complicated by
diabetes have shown that it performs well (20, 277).

Lipids
Lipid metabolism is altered during normal pregnancy. Increased
fat storage occurs initially in the “anabolic phase” of pregnancy
(278). The switch to the “catabolic phase” in the third trimester
involves prominent lipolysis promoted by insulin resistance (279,
280). This is paralleled with an increase in the major lipid
fractions, predominantly triglycerides (220, 278); which is seen to
a greater extent in women with diabetes (278, 281). In accordance
with themodified Pedersen hypothesis, maternal lipidsmay be an
important fuel in fetal overgrowth (220).

Of all lipids, triglycerides have been most consistently
related to birthweight in pregnancies with diabetes. A study
comparing women with T1DM, T2DM, and controls found both
third trimester triglycerides and high-density lipoprotein
cholesterol (HDL-C) were significantly associated with
macrosomia (birthweight >90th percentile), independent
of maternal glycaemic control (143). In GDM pregnancies,
maternal triglycerides have also been identified as a predictor
of macrosomia independent of maternal BMI and glycaemic
control (144, 209). Moreover, the ratio of triglycerides to HDL-C
has also been examined in women with well-controlled GDM
and women without diabetes at 24–28 weeks’ gestation (282).
The ROC AUC for macrosomia (birthweight >90th percentile)
prediction was 0.668, which increased to 0.806 when combined
with HbA1c and pre-pregnancy BMI. However, the overall
prevalence of macrosomia was low in this population. Together
these results indicate lipid alterations may play a distinct role
in macrosomia development amongst women with diabetes.
Indeed, maternal lipids have been proposed as a potential key
factor in “macrosomia despite normoglycaemia” (10, 283).

In women without diabetes, second or third trimester
maternal triglycerides have been found to be positively
associated with birthweight (25, 211), as well as an independent
predictor of macrosomia (94, 146, 207, 212, 213). In a Japanese
cohort, maternal fasting hypertrigylceridaemia significantly
independently predicted macrosomia (birthweight >90th
percentile), with an odds ratio of 11.6 (214). Notably, triglycerides
were more strongly associated with fetal growth than maternal
glycaemia; although, the small sample size (146 people) may
have limited analysis. It is supported however by a similar

finding in a cohort that included women with GDM (208). In
this study, the triglyceride concentrations after an OGTT were
independently associated with birthweight and also predicted
glucose intolerance.

Furthermore, macrosomia risk, and birthweight has been
inversely associated with second and third trimester maternal
HDL-C concentrations in women with pre-existing diabetes
(143) and GDM or healthy pregnancies (55, 100, 111, 146,
147). In Zhou et al.’s study which included GDM pregnancies,
low HDL-C (<2.2 mmol/L) at 20 weeks’ gestation predicted
macrosomia (birthweight>4,000 g) with 65% sensitivity and 48%
specificity (55).

In contrast, other lipid parameters have less supportive
evidence. In women without diabetes, very-low density
lipoprotein cholesterol (VLDL-C) has been negatively associated
with birthweight (57). While low-density lipoprotein cholesterol
(LDL-C) has mostly demonstrated non-significant results
(21, 30, 55, 143).

Overall, these studies suggest differential importance of
maternal lipid fractions for fetal growth. Again, some studies
have not found an association between lipids and birthweight
or macrosomia in diabetic or healthy pregnancies (21, 30).
Measurement timing may be relevant to this due to the changes
in lipid profile and hence possibly their role across pregnancy.

Adiponectin
Adiponectin is an adipokine—a bioactive peptide derived from
adipose tissue (284). It has important roles in regulating insulin
sensitivity and metabolism, and is inversely related to adipose
mass and insulin resistance (284, 285). Given this, adiponectin
is a possible mediator in the link between maternal adiposity,
insulin resistance, and excessive fetal growth (284, 286). Maternal
adiponectin may influence fetal growth via altering placental
substrate transport as it does not traverse the placenta (286).

There is a notable lack of investigation of maternal
adiponectin in women with pre-existing diabetes. Fetal
adiponectin however, has received some attention. A comparison
of neonates from mothers with T1DM with healthy controls
found umbilical cord blood adiponectin collected at birth was
not associated with birthweight (23). Similarly, cord blood
adiponectin was not associated with birthweight in a study
examining offspring of women with T2DM, GDM, and controls
(46).

Amongst GDM pregnancies there have been variable results.
Tsai and associates compared maternal adiponectin levels
collected between 24 and 31 weeks’ gestation in women with
GDM and controls (26). Adiponectin was significantly lower in
the GDM women, and a negative association between maternal
adiponectin and birthweight was evident but only significant for
the GDM group. Pre-pregnancy BMI ≥27 was also associated
with lower adiponectin levels. Cseh et al. corroborated that
maternal plasma adiponectin is significantly lower in women
with GDM compared to non-diabetic pregnant women and age-
matched non-diabetic non-pregnant women (27). Contrastingly
though, a significant positive linear correlation was demonstrated
between maternal plasma adiponectin and birthweight corrected
for gestational age in both the GDM and non-diabetic groups.
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Meanwhile, others have not found an association between
adiponectin and birthweight (36, 37). These conflicting findings
may be related to differences between the populations, including
BMI, ethnicity, and GDM management, as well as timing of the
samples. The adiponectin fractions assessed may also be relevant,
as one research group found that only the middle molecular
weight isoforms were significantly negatively associated with
birthweight in GDM (28).

Verhaeghe et al. also evaluated the value of metabolic
biomarkers for birthweight prediction in GDM and control
women (29). Maternal adiponectin combined with four other
metabolic markers together added 2% to the ∼10% explained
birthweight variance from maternal body size parameters alone.
However, only a single measurement was taken at 24–29 weeks’
gestation and given insulin resistance is maximal in the third
trimester, greater utility may be provided with later testing.

Findings from healthy pregnancies also provide insight. In
two case-control studies involving women without diabetes,
macrosomia groups had significantly lower maternal adiponectin
concentrations compared with the controls (31, 32). In one of
these, maternal adiponectin measured between 11 and 13 weeks’
gestation improved macrosomia (birthweight >95th percentile)
detection to 38.2% when added to maternal characteristics and
obstetric history (compared with 34.6% without adiponectin)
(31). Moreover, an independent inverse relationship was
identified between maternal adiponectin and birthweight in a
subset of the HAPO cohort (34). Although, other studies have
not found a significant association with maternal adiponectin
(38, 39).

Thus, despite inconsistencies there is indication adiponectin
may be related to birthweight. Pre-existing diabetes is an area that
particularly requires further investigation.

Insulin-Like Growth Factor-1 (IGF-1)
IGF-1 is a peptide hormone principally produced in the liver
(287). Normal pregnancy involves changes in the maternal IGF
axis, including variations to IGF-binding proteins (IGFBPs)
(287). Consequently, this results in increased free IGF-1, the
biologically active form. With mitogenic and metabolic actions,
maternal and fetal IGF-1 are believed to be important mediators
in fetal growth (285, 287). For maternal IGF-1, this may be via its
role in regulating transplacental nutrient transport (288, 289).

However, the literature on maternal IGF-1 in pre-existing
diabetes is conflicting. In a prospective study involving serial
maternal IGF-1 measurements in women with pre-existing
diabetes, IGF-1 was significantly positively associated with
macrosomia (156). Yet in a similar study involving only women
with T1DM, there were no differences in maternal IGF-1 across
pregnancy in diabetic women delivering a macrosomic neonate
compared with appropriate birthweight neonate (126). A notable
difference between the studies were the methods of macrosomia
assessment. The first study created post-hoc groupings according
to birthweight ratio whereas the second used the definition of
birthweight >90th percentile. Likewise, another research group
found macrosomia according to this latter definition was not
significantly associated with maternal IGF-1 (142). Although,
they did show maternal IGF-1 measured at 36 weeks’ gestation

was significantly associated with birthweight z-score (142). Thus,
the assessment measure of birthweight/macrosomia may be
relevant in identifying an association with a biomarker.

GDM pregnancies have also been investigated. In a study of
GDM and control women, elevated IGF-1 in maternal blood
in mid- and late- gestation and fetal cord blood at birth
predictedmacrosomia (birthweight>90th percentile) (159). This
is consistent with a case-control study in which serum IGF-
1 levels were significantly higher in the GDM women and
their macrosomic neonates (birthweight>2 standard deviations)
compared to matched controls with appropriate birthweight
neonates (290). Other studies have also found IGF-1 related to
birthweight (174, 291).

The relationship of IGF-1 to fetal growth across the
different types of diabetes requires clarification. An investigation
comparing women with T1DM, T2DM, GDM, and controls and
found the third trimester median maternal IGF-1 values were
not significantly different between the groups (157). Considering
all the women with diabetes together, third trimester IGF-1 was
positively associated with birthweight percentile, explaining 24%
of the variation in birthweight. However, other reports suggest
the changes across pregnancy in IGF-1 for pre-existing diabetes
and GDM are different, with lower levels in pre-existing diabetes
(163, 164, 177) and higher levels in GDM (258) compared with
controls.

For pregnancies without diabetes, maternal IGF-1 (161, 162,
167) and fetal IGF-1 (38, 161, 166, 175, 176) have been associated
with birthweight and macrosomia. These studies have been
conducted in populations of various ethnicities. Non-significant
associations have also been reported (165, 168, 178, 292). Such
discrepancies may relate to factors such as the method of IGF-1
analysis, timing of measurements, or the sample size (287).

Altogether the evidence is conflicting. Adequate assessment
has not been made of the predictive utility of IGF-1 for
birthweight and macrosomia in women with diabetes.

Evaluation of Macrosomia Biomarkers
Biomarkers face many challenges in becoming adopted
into routine clinical practice. One of the most important
requirements is biomarker validation (16), which is particularly
an issue in the field of macrosomia biomarkers. In this area,
substantial variability exists amongst published results, with the
heterogeneity of the studies a prominent contributor. Indeed,
there is considerable variation in study designs, populations,
measurement timing, outcome variables (including macrosomia
definitions), and analytical methods. This limits the conclusions
that can be made at this time and highlights the need for rigorous
validation protocols to comprehensively evaluate macrosomia
biomarker predictive performance. Future work in this field must
also assess the cost-effectiveness of biomarker use. Biomarker
adoption may become more feasible with improved accessibility
of commercial biomarker kits and multiparametric biomarker
testing for multiple pregnancy disorders together (e.g., with
preeclampsia biomarkers as they also become validated).

Furthermore, as biomarkers may be useful as part of a
combination approach, whereby biomarkers are incorporated
into a prediction algorithm with other elements such as
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macrosomia risk factors, physical examination and ultrasound
measurements, further investigation is also needed that compares
biomarkers to and in combination with the other methods
of macrosomia prediction. Of the limited such assessments
available, biomarkers have improved predictive performance
when combined with risk factors (29, 31, 282) but not ultrasound
(138). A further step is to determine if improved macrosomia
predictive accuracy can improve clinical outcomes.

CONCLUSION

Accurately predicting fetal macrosomia remains a desirable
but challenging goal. While biomarkers hold promise for
assisting in this plight, the current state of knowledge for
macrosomia biomarkers is limited. The selected biomarkers
in this review each have a theoretical link with macrosomia
with some supportive evidence for an association with
birthweight/macrosomia. However, due to the limitations
of the literature, the true value of biomarkers is not yet
clear. Further research is needed to address this, particularly

in pregnancies affected by diabetes. A focus on this area is
warranted as there is great potential and much to be gained by
further exploration. Indeed, broader implications of this research
includes providing greater insight into the pathophysiological
processes of excessive growth; which is of special interest
due to the links with later development of chronic disease
(Barker hypothesis). Ultimately, improving outcomes for
pregnant women and their babies is the driving force for this
research.
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