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Cell cycle proteins are critical to pituitary development, but their contribution to

lineage-specific tumorigenesis has not been well-elucidated. Emerging evidence from

in vitro human tumor analysis and transgenic mouse models indicates that G1/S-related

cell cycle proteins, particularly cyclin E, p27, Rb, and E2F1, drive molecular mechanisms

that underlie corticotroph-specific differentiation and development of Cushing disease.

The aim of this review is to summarize the literature and discuss the complex role of

cell cycle regulation in Cushing disease, with a focus on identifying potential targets for

therapeutic intervention in patients with these tumors.
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INTRODUCTION

Pituitary corticotrophs play critical physiologic roles in hypothalamic–pituitary–adrenal axis
functions, including the acute stress response, regulation of body metabolism and energy
expenditures, and immune function (1). Patients with Cushing disease caused by a pituitary
corticotroph adenoma can manifest obesity, diabetes, susceptibility to infections, psychosis, and
coagulopathy, which contributes to increased mortality (2). Surgical tumor resection is the primary
therapy for Cushing disease, but persistent/recurrent disease is seen in 12–40% of patients
depending on surgical expertise, the definition of remission, and the duration of follow-up (3, 4).
Pituitary-directed radiation and bilateral adrenalectomy to inhibit adrenal cortisol production
are effective at inducing biochemical control but are infrequently used. Response to radiation
therapy is slow and risk of hypopituitarism is high. Following adrenalectomy, lifelong replacement
glucocorticoid and mineralocorticoid is needed, and the loss of negative feedback on pituitary
adrenocorticotropic hormone (ACTH) can lead to tumor growth (5, 6).

Safe and effective medical management of Cushing disease has also proven challenging. The
steroidogenesis inhibitors ketoconazole and metyrapone normalize cortisol in about 50% of cases,
but with a risk of inducing adrenal insufficiency or hepatotoxicity (7, 8). The investigational
steroidogenesis inhibitor osilodrostat showed improved responses, with up to 80% achieving
biochemical remission, but still carries the risk of adrenal insufficiency and hepatotoxicity, and
the loss of feedback led to a 4-fold increase in ACTH (9). The glucocorticoid receptor blocker
mifepristone, approved for treatment of diabetes due to Cushing’s syndrome, improves the systemic
effects of excess cortisol on glycemia and weight, but is associated with risk of adrenal insufficiency,
hypokalemia, and endometrial thickening, and may induce tumor growth (10). Importantly, none
of these agents directly target the tumor.

Currently, two tumor-targeting agents are used in Cushing disease (11). The dopamine agonist
cabergoline targets D2 receptors in the tumor and biochemical control is seen in 30–40% of patients
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after treatment with relatively high doses of 2–3 mg/week for at
least 2 years (12, 13). However, cabergoline is not approved for
use in this disease. The somatostatin receptor ligand pasireotide,
which targets somatostatin receptors, is currently the only tumor-
targeting agent approved for use in patients with Cushing disease.
In the phase 3 trial, 26% of patients achieved urinary free cortisol
normalization after the 6 months of treatment. However, 73%
showed hyperglycemic-related events (14).

An alternative approach to medical therapy for Cushing
disease is to more specifically target the corticotroph lineage
(15). Corticotroph differentiation occurs following expression
of the corticotroph-specific transcription factor Tpit (16);
these cells do not express differentiation transcription factors,
such as Prop1 and Pit1, that are required for somatotroph,
lactotroph, and thyrotroph lineage development (17, 18). Some
cell cycle proteins involved in pituitary development are also
involved in tumorigenesis (19), specifically serine-threonine
cyclin-dependent kinases (CDKs), cyclins, CDK inhibitors,
retinoblastoma (Rb) and its complex with transcription factor
(Rb/E2F), and pituitary tumor transforming gene (PTTG)
(20). However, the contribution of cell cycle proteins to
development of lineage-specific tumors has not been well-
elucidated.

In this review, we discuss molecular mechanisms underlying
the corticotroph lineage-specific cell cycle proteins cyclin E,
the CDK inhibitor p27, Rb, and E2F1 in Cushing disease
tumorigenesis and consider how cell cycle regulation affects
pituitary biology. Then, we present updated data from studies
evaluating corticotroph lineage targeting therapy for Cushing
disease.

OVERVIEW OF CELL CYCLE PROTEINS
AND PITUITARY TUMORIGENESIS

Cell division is divided into four phases: S phase (synthesis of
DNA), M phase (mitosis), and G1 and G2 (gap) phases. G1 phase
occurs before S phase, and G2 precedes M phase. In mammalian
cells, this process is driven by CDKs that regulate progression
through the phases of the cell cycle (21). Cyclin D (D1, D2, and
D3) activates CDK4 and CDK6 and facilitates progression during
G1. CDK2/cyclin E (E1 and E2) complexes become active at the
end of G1 and participate in the transition from G1 to S phase. At
the end of S phase and during G2, cyclin E is substituted by cyclin
A (A1, A2) to activate CDK2 and CDK1. Finally, CDK1/cyclin B
(mostly B1 and B2) complex is involved in progression through
G2 and entry into M phase.

Cell cycle progression is also under the control of negative
regulators. Specifically the CDK inhibitors INK4 and Cip/Kip
families (22). The INK4 family, including p16, p15, p18,
and p19, targets the CDK4/6/cyclin D complexes, while the
Cip/Kip family, which consists of p21, p27, and p57, targets the
CDK2/cyclin E complex (23).

Finally, the tumor suppressor protein Rb negatively regulates
entry into the cell cycle and G1/S progression (24–26) by
binding to the transcription factor family E2F to target cell cycle-
specific genes for repression, while PTTG, part of the securin

family, is associated with cell cycle proteins in G1/S phase and
chromosomal instability (27–29).

The Rb heterozygous knockout mouse was the first model
linking cell cycle proteins with pituitary tumorigenesis, with
nearly 100% developing pituitary tumors by age 12 months
(30–32). Several CDK inhibitor knockout models, including p18
and p27, also exhibited pituitary tumors (23, 33), while models
of combined CDK inhibitor knockout shortened latency of
tumor formation or increased size of pituitary tumors, including
knockout of p21/Rb (34), p27/Rb (35), p16/p18 (36), p27/cyclin E
(37), p27/p18 (33), p21/p18 (38), and CDK4/p27 (39). Germline,
but rarely somatic, mutations (40–42) as well as underexpression
or DNA methylation of CDK inhibitors (43) have also been
reported in human pituitary tumors.

CELL CYCLE PROTEINS AND
CORTICOTROPH LINEAGE

Corticotrophs represent 10–15% of pituitary anterior lobe cells.
Corticotroph is the earliest pituitary lineage to initiate cell
development and reaches terminal differentiation by expressing
lineage-specific transcription factors such as Tpit (16, 44). Cell
cycle proteins cyclin E, p27, Rb, and E2F1 exhibit different levels
of lineage-specific expression patterns in embryonic cells, adult
normal pituitary, and corticotroph adenoma (Table 1).

Cyclin E and Corticotroph Lineage
Specificity
Cyclin E is upregulated in late G1 and is maintained into S
phase, forming a complex with and activating CDK2 at the
restriction point shortly prior to entry into S phase. Unique
transient expression patterns of cyclin E have been reported in
early stages of pituitary cell development. Pituitary progenitor
cells in cell cycle progression express cyclin A, D1, D2, and D3,
but cyclin E and p57 are only expressed once progenitor cells
exit from the cell cycle (23, 46). By the time Tpit is expressed,
cyclin E can no longer be detected in corticotroph progenitors
(23).

Cyclin E expression is significantly increased in corticotroph
adenomas compared to normal pituitary as well as to
somatotroph, lactotroph, and non-functional adenomas (45). In
a zebrafish model with PTTG-driven corticotroph adenomas, we
found cyclin E was significantly upregulated, while cyclin D, p27,
and Rb was unchanged (47). By contrast, others have shown that
cyclin D is upregulated in non-functioning adenomas and in
aggressive non-functioning pituitary adenomas (45, 60, 61).

Transgenic mice overexpressing cyclin E in cells
expressing the adrenocorticotrophin (ACTH) precursor
proopiomelanocortin (POMC) show abnormal reentry into
the cell cycle as well as centrosome instability (37, 62).
Molecular analysis suggests that cyclin E levels inversely
correlate with expression of the tumor suppressor Brahma-
related gene 1 (Brg1), which exerts negative feedback on
the glucocorticoid receptor through the rPomc promoter
(37, 62). Brg1 forms a complex with histone deacetylase 1,
the glucocorticoid receptor, and orphan nuclear receptor
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TABLE 1 | Expression of cell cycle proteins in corticotrophs.

Expression Corticotroph lineage

specificity

Evidence of

tumorigenesis

Cell cycle phase References

Embryo Normal corticotroph Corticotroph adenoma

Cyclin E Precursors + + + (↓) +++ + G1/S (23, 37, 45–47)

p27 Fetal cells + + + (↓) ++ +++ G1/S (48–52)

Rb ? + + (↓/?) +/? +++ G1/S (31, 53–57)

E2F1 ? + + (?) +++ +/? G1/S (58, 59)

↓ Decreased expression in corticotroph adenoma compared to normal corticotroph.

growth factor 1B; loss of Brg1 disrupts this complex, inducing
loss of glucocorticoid negative feedback, as is evident in
the clinical phenotype of Cushing disease (62). Indeed,
disordered Brg1 and/or cyclin E expression was found in
about half of corticotroph tumors derived from 25 patients
with Cushing disease, indicating that loss of Brg1 tumor
suppression combined with cyclin E upregulation may
contribute to corticotroph tumorigenesis (37). Transgenic
mice overexpressing cyclin E exhibit pituitary hyperplasia but
no pituitary tumors (37), and cyclin E overexpression in a
p27 knockout model known to induce pituitary tumor show
increased tumor size, further confirming the contribution of
cyclin E to corticotroph tumor development and proliferation
(37).

Nevertheless, as noted above, about half of 25 Cushing
tumors showed an inverse correlation between Brg1 and
cyclin E, but the other half did not fit the pattern (37).
Also, study of 48 human prolactinoma specimens showed
increased expression of both cyclin D1 and cyclin E on
immunostaining, and that co-expression correlated with
invasiveness (63). These data suggest additional mechanisms
of cyclin E regulation in corticotroph lineage specific
tumorigenesis.

p27 and Corticotroph Lineage Specificity
p27, a member of the Cip/Kip family of CDK inhibitors,
targets G1/S progression. p27 knockout mice develop enlarging
pituitaries by as early as 10 weeks, and tumors in the intermediate
lobe show positive POMC expression by 12 months (48–50).
Combined Rb/p27 knockout results in even shorter latency of
pituitary tumors (35), suggesting two separate pathways for p27
and Rb in G1/S phase deregulation. On immunohistochemistry,
p27 labeling is suppressed in corticotroph adenomas and
carcinomas (51), and recurrent human pituitary adenomas
show lower p27 protein levels than do non-recurrent adenomas
(52, 64), supporting the contribution of p27 to corticotroph
tumorigenesis. In human specimens, p27 germline mutations are
reported as MEN type 4, which manifests as neuroendocrine
tumors as well as pituitary tumors, including, but not limited
to, Cushing disease (65–67). p27 somatic mutations in human
specimens are even rarer (40, 41, 68) and p27 mRNA
levels are not altered in corticotroph tumors. Rather, post-
translational modifications such as proteolysis or ubiquitination
may be involved in downregulating p27 protein levels (69,
70).

Rb and Potential Corticotroph Lineage
Specificity
Rb regulation of cell cycle progression was initially studied in
Rb heterozygous knockout mice as homozygous knockout is
lethal (30–32). In humans, individuals who inherit one defective
copy of Rb have an ∼90% risk of developing retinoblastoma
at an early age (71). Mice heterozygous for Rb do not develop
retinoblastoma, but instead exhibit nearly 100% penetrance of
pituitary tumors by 12 months (30–32). Pituitary tumors have
been reported in the intermediate lobe in Rb heterozygous mice
(54) and in POMC-specific conditional Rb heterozygous mice
in which the reporter gene was restricted to the intermediate
and anterior lobes (57). Tumors in the former knockout model
stained positive for α-melanocyte–stimulating hormone, and
neither reported on the presence of tumors in the anterior lobe.

In humans, pituitary neoplasms have not been reported
in those with familial retinoblastoma (72). However, loss of
an Rb allele has been reported in case reports and a few
small series of corticotroph adenomas. No allelic loss of Rb
was seen in a study of 12 human pituitary tumors, including
one corticotroph microadenoma and one macroadenoma (53),
but among 13 highly invasive human pituitary adenomas or
metastatic carcinomas tumors, all showed loss of Rb, suggesting a
preference for loss of Rb in more aggressive corticotroph tumors
(55). Indeed, in a patient with adjacent pituitary benign adenoma
and carcinoma, Rb expression was significantly reduced in the
corticotroph carcinoma but not in the adenoma (56). Given the
potential association between aggressive corticotroph tumors and
Rb loss, as well as the tendency for Rb to complex with the
corticotroph-specific E2F1 (59), it is tempting to speculate that
Rb-related dysregulation of the cell cycle might have corticotroph
preferential pattern, but further investigation is still needed.

E2F1 and Corticotroph Lineage Specificity
The E2F family of cell cycle proteins, numbered E2F1 through
E2F8, includes those that interact with Rb and act on G1 to
S phase progression (73). E2F family proteins are expressed
ubiquitously, particularly in association with cancer cell cycles
and tumorigenesis. Free E2F1 unbound from Rb, the active form
of E2F1, binds to target gene promoters and may target cell cycle
regulators such as cyclin E and cyclin D (74).

We studied E2F1 and POMC gene regulation in ectopic
ACTH-secreting tumors (58). In addition to its cell cycle
effects, E2F1 also directly binds to the POMC promoter
(58). Co-transfection of E2F1 and its heterodimerization
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partner DP1 enhanced POMC promoter activities as well
as POMC mRNA levels, while knocking down E2F1 by
siRNA-suppressed POMC. E2F1 direct binding and dissociation
from POMC promoter region is controlled by site-specific
phosphorylation/de-phosphorylation of E2F1 serine 337 (58).

Of note, we found that E2F1 expression is highly specific
to corticotrophs in human pituitary tissue (59). By co-staining
with human pituitary hormones, we found that E2F1 co-localizes
with POMC in normal human corticotrophs, but not with
prolactin or growth hormone in lactotrophs or somatotrophs,
respectively (59). E2F1 corticotroph specificity also seems to be
subclass specific: E2F1 but not E2F3 enhanced POMC promoter
activities by deletion mutant hPOMC luciferase assays using
ectopic ACTH-secreting tumor cells derived from human small
cell lung cancer DMS79 cells (58). Others similarly found that
overexpression of E2F3 is not sufficient to produce pituitary
tumors, even though it leads to pituitary hyperplasia (75).

Whether E2F1 is involved in pituitary development or
tumorigenesis is unknown. Double Rb and E2F1 gene knockout
mice show fewer pituitary tumors than do Rb knockout mice
with intact E2F1 (76), suggesting a role of E2F1 in pituitary
tumorigenesis, but Rb heterozygous mice with double E2F4
knockout also show increased tumor incidence (77).

E2F1 as Part of Downstream Signaling of
EGFR
Epidermal growth factor receptor (EGFR) is expressed to
varying degrees in human pituitary tissue, including corticotroph
adenomas (78), and EGFR regulates POMC transcription and
ACTH production (79). However, mechanisms for corticotroph-
specific tumor induction by EGFR or for EGFR upregulation of
ACTH/POMC expression have not been clearly elucidated.

rPomc promoter-driven EGFR transgenic mice show pituitary
corticotroph tumors in the anterior and intermediate lobes and
demonstrate phenotypes similar to those in human Cushing
disease, including obesity, glucose intolerance, and adrenal
hyperplasia (59). E2F1 and phosphorylated serine 337-E2F1 were
both upregulated in these tumors, but were attenuated with
EGFR inhibition. Although EGFR is expressed in other lineages
of aggressive pituitary tumors (80), our findings suggest that
EGFR signaling induces E2F1-mediated POMC transcription
and corticotroph adenoma pathogenesis. This pathway may
therefore be a candidate for corticotroph-specific targeted
therapy in patients with Cushing disease.

Recently, gain-of-function somatic mutations in USP8 were
reported in 30–50% of Cushing tumors (81, 82). USP8
is a deubiquitinase that protects EGFR from lysosomal
degradation. These mutations lead to a higher rate of USP8-
induced EGFR deubiquitination, increasing EGFR pathway
stimulation, and ultimately increasing ACTH secretion (81, 82).
However, the mechanisms and influence of USP8 mutations on
Cushing tumors are not fully understood. EGFR expression is
unchanged comparing mutated vs. non-mutated tumors (83),
and phenotypic features of aggressive tumors, particularly larger
tumor size, are not consistently seen (81, 83, 84). Further study of
these mechanisms and the clinical implications ofUSP8-mutated
Cushing tumors is ongoing.

G1/S Phase Is the Key in Corticotroph
Tumors
The cyclin E promoter has binding sites for E2F1, which, in turn,
upregulates cyclin E mRNA (74, 85). E2F1 also binds Rb, while
p27 targets the CDK2/cyclin E complex. This suggests cyclin E,
p27, E2F1, and Rb could interact to regulate cell cycle progression
through G1 (74).

Dysregulation of G1/S transition is often seen in human
cancers. Our data suggest that lineage-specific amplification
of cyclin E/E2F1 signals contribute to uncontrolled POMC
transcription and autonomous ACTH production in
corticotroph tumors (86), and cyclin E, p27, Rb, and E2F1
have also been shown to affect G1/S transition in corticotrophs
(23, 58, 59, 62). Targeting G1/S could therefore be a reasonable
therapeutic approach in patients with corticotroph tumors
(Figure 1).

THERAPEUTIC TARGETING OF CELL
CYCLE PROTEINS IN CORTICOTROPH
TUMORS

Several small molecule CDK inhibitors are being evaluated in
different pituitary tumor types (87, 88). To date, such agents
have proven effective in preclinical studies (39, 47, 86). The
first study treated CDK4/p27 double knockout mice harboring
anterior pituitary tumors with flavopiridol, an inhibitor of CDK1,
CDK2, CDK4, CDK6, and CDK7 that causes cell-cycle arrest
at G1 and G2, and showed shrinkage of pituitary tumor size
as well as prolonged survival (39). Using the small molecule
E2F inhibitor HLM006474, originally developed as a therapy
for melanoma (89, 90), we showed dose-dependent suppression
of POMC mRNA expression in primary cultures of surgically
resected Cushing tumor tissue, but no suppression of growth
hormone used as a control (59). Despite its lack of specificity for
E2F1, the corticotroph-specific effects suggest this agent may be
useful in POMC-producing tumors.

Using a germline transgenic zebrafish model overexpressing
PTTG in pituitary corticotrophs to recapitulate human Cushing
disease, we tested several small molecule CDK inhibitors
on corticotroph adenomas in vivo, including flavopiridol, R-
roscovitine (seliciclib; primarily an inhibitor of CDK1 and
CDK2 in late G1 but not an inhibitor of CDK4 and CDK6),
olomoucine (CDK1, CDK2), PD-0332991 (CDK4/6 in early G1),
and CAY10572 (CDK7 in S phase). Addition of PD-0332991 or
CAY10572 to the culture medium of double transgenic embryos
generated by breeding the POMC:PTTG model with transgenic
zebrafish expressing green fluorescent protein (eGFP) resulted
in no significant change in pituitary expression of POMC-eGFP
compared with controls, while a modest reduction of ∼20%
was observed in the olomoucine-treated group (47). By contrast,
R-roscovitine-treated embryos exhibited ∼40% reduction in
pituitary POMC-eGFP expression compared with controls (P <

0.02) (47).
R-roscovitine is a second-generation CDK inhibitor that

interrupts ATP binding of CDK. It has a relatively broad range of
activity, but primarily targets the CDK2/cyclin E complex (91).
R-roscovitine has been studied in patients with nasopharyngeal
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FIGURE 1 | Mechanisms for therapeutically targeting the cell cycle G1/S phase in corticotroph adenomas. Cartoons depicting (A) Cell-cycle targets for the

CDK2/cyclin E inhibitor R-roscovitine, which is being investigated in a phase II clinical trial, and the E2F inhibitor HLM006474, which is being investigated in preclinical

models; and (B) Suppression of the POMC promoter through cyclin E and E2F1 by R-roscovitine and HLM006474.

cancer, non-small lung cancer, and B-cell malignancies, but few
clinical trial data have been reported (92). Side effects include
mild to moderate fatigue, nausea/vomiting, constipation, fever,
cough, and elevated liver enzymes, which typically resolved after
drug discontinuation (93).

In AtT20 cells, a murine corticotroph adenoma cell line
commonly used as a model for Cushing disease, as well as in
PTTG zebrafish models, R-roscovitine treatment significantly
suppressed POMC expression both in vitro and in vivo (47).
Plasma ACTH, corticosterone levels, and tumor size were
significantly reduced in AtT20 cells xenografted in mice with
R-roscovitine treatment (47), and POMC mRNA and ACTH
levels were dose dependently suppressed in primary cultures
derived from human corticotroph adenomas (86). In addition
to its cell cycle effects, R-roscovitine also has direct inhibitory
effects on the POMC promoter (58, 86). Deletion mutant
and point mutant rPomc luciferase assays showed that R-
roscovitine suppressed the rPomc promoter by targeting the Tpit
binding region (TCACACC) and suppressed protein expression
of cyclin E and E2F1 in a dose-dependent manner (86),
suggesting that suppression of Tpit expression is mediated
by cyclin E/E2F1 reciprocal regulation. Importantly, viable
tumor cell numbers were largely unchanged despite decreased
ACTH concentration in the culture medium of primary cultures
(86). In ectopic ACTH-secreting tumor xenografted mice,
R-roscovitine similarly suppressed POMC/ACTH secretion,
but it did not alter tumor proliferation in DMS79 cells
(58, 94). The inhibitory effect of this agent in human
corticotroph tumors preferentially targets ACTH expression
rather than tumor cell growth suggests other corticotroph
mechanisms independent of cell cycle regulation may be
present. A phase II study of R-roscovitine (seliciclib) is

currently underway for the treatment of patients with de novo,
recurrent, or persistent Cushing disease (ClinicalTrials.gov
NCT02160730).

CONCLUSIONS

Corticotrophs are sensitive to changes in cell cycle regulation,
and evidence suggests involvement of corticotroph lineage-
specific cell cycle regulators such as cyclin E, p27, Rb, and
E2F1 in tumorigenesis. Currently, only R-roscovitine, a cyclin
E/E2F1 inhibitor, is in clinical development, but it is likely
that other agents targeting these factors will prove attractive
as novel medical therapy options for patients with Cushing
disease.
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