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It is widely recognized that obesity and associated metabolic changes are considered

a risk factor to age-associated cognitive decline. Inflammation and increased oxidative

stress in peripheral areas, following obesity, are patently the major contributory

factors to the degree of the severity of brain insulin resistance as well as the

progression of cognitive impairment in the obese condition. Numerous studies have

demonstrated that the alterations in brain mitochondria, including both functional and

morphological changes, occurred following obesity. Several studies also suggested that

brain mitochondrial dysfunction may be one of underlying mechanism contributing to

brain insulin resistance and cognitive impairment in the obese condition. Thus, this

review aimed to comprehensively summarize and discuss the current evidence from

various in vitro, in vivo, and clinical studies that are associated with obesity, brain insulin

resistance, brain mitochondrial dysfunction, and cognition. Contradictory findings and

the mechanistic insights about the roles of obesity, brain insulin resistance, and brain

mitochondrial dysfunction on cognition are also presented and discussed. In addition, the

potential therapies for obese-insulin resistance are reported as the therapeutic strategies

which exert the neuroprotective effects in the obese-insulin resistant condition.

Keywords: obese-insulin resistance, oxidative stress, inflammation, brain mitochondria, cognitive decline

INTRODUCTION

Obesity has been of interest in several fields of medical research. It has been demonstrated
that obesity can lead to the development of several complications, including cardiovascular
diseases, diabetes, and neurodegeneration (1, 2). Several reports from both in vivo and clinical
studies also showed that obesity is associated with the development of cognitive impairment by
several proposed mechanisms including the impairment of leptin signaling and the induction of
Alzheimer’s-like pathologies which include β-amyloid accumulation and hyperphosphorylation of
tau protein (1). Another pathological condition that commonly occurs following obesity (3) is
peripheral insulin resistance. This is a pathologic state in which target tissues cannot respond to
insulin at the physiological level, leading to the development of hyperinsulinemia with euglycemia.
Hyperinsulinemia can disturb the physiological function of several vital organs via the impairment
of insulin signaling and the disturbance of intracellular signaling transduction.
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The brain is one of the vital organs that can be affected as a
result of peripheral insulin resistance. Several previous studies
from our group and others have demonstrated that obesity not
only induces peripheral insulin resistance, but can also lead to
the development of brain insulin resistance, as shown by an
impairment of insulin-induced long-term depression (LTD) and
a reduction in the activation of brain insulin signaling pathway
(4–19). One possible explanation for the occurrence of brain
insulin resistance due to peripheral insulin resistance may be
the production of ceramide from high lipid generation in the
liver (20, 21). Ceramide, a compound of sphingosine and a fatty
acid, can enter circulation and cross the blood-brain barrier
(BBB). Once in the brain, ceramide can induce brain oxidative
stress, brain inflammation, and brain insulin resistance, leading
to neurodegeneration (22, 23).

Mitochondria are the vital organelles that provide
cellular energy. They play a pivotal role in insulin signaling
(24). Normally, insulin binds with its receptor, mediating
the activation of cellular glucose uptake through glucose
transporters. Following uptake, glucose is converted to pyruvate
by the glycolytic process and these pyruvates are then converted
to Acetyl-CoA, a substrate of the Krebs cycle, by glucose
oxidation (25, 26). In addition, insulin stimulates the uptake
of cellular fatty acids into the cells and the fatty acids are
further converted to fatty acyl-CoA (25). Fatty acyl-CoA can
either be converted into several lipid products, including
diacylglycerol (DAG), triacylglycerol (TAG) and ceramide or be
directly transported to mitochondria to induce mitochondrial
β-oxidation, resulting in the production of acetyl-CoA for the
Krebs cycle (25, 26). A diagram illustrating the association
between insulin signaling, glycolysis and beta oxidation is
summarized in Figure 1.

Previous studies reported that mitochondrial dysfunction
has been related to the development of insulin resistance (26,
27). Interestingly, it has been shown that brain mitochondrial
dysfunction, as indicated by the overproduction of mitochondrial
reactive oxygen species (ROS), mitochondrial depolarization and
mitochondrial swelling, has occurred in association with brain
insulin resistance and all of these events could lead to the
development of cognitive decline and Alzheimer’s disease (6, 8,
11, 13–15, 19, 28–31).

Several studies have indicated a relationship between insulin
resistance and mitochondrial dysfunction in cognitive-impaired
rats (32, 33). Barhwal and colleagues demonstrated that an
increased activation of insulin receptor subunit A (IRA)
phosphorylation, subsequently stimulating the α subunit of
AMP-activated protein kinase (AMPK), leading to improved
brain mitochondrial biogenesis (32). Furthermore, it has been
demonstrated that intranasal insulin treatment restores cognitive
function in methamphetamine-induced cognitive impairment
by improving brain insulin signaling via the PI3K/Akt/GSK3β
pathway and improving brain mitochondrial function via key-
regulatory genes related to mitochondrial biogenesis (33).
Beirami and colleagues found that insulin treatment could
improve insulin signaling, particularly in the PI3K/Akt/GSK3β
pathway and also increase key-regulatory genes related to
mitochondrial biogenesis (33). Our previous reports also

demonstrated that peripheral insulin resistance develops before
impaired cognition in obese-insulin resistant rat model (4, 6,
28). Taken together, all of these findings suggested that (1)
The stimulation of insulin receptor plays the important roles
in improving brain mitochondrial biogenesis and preserving
cognitive function and (2) insulin resistance is associated with
mitochondrial dysfunction and the cognitive impairment.

However, the association between obesity and brain insulin
resistance, brain mitochondrial function and cognition are
still not clearly understood. In this review, the current
evidence regarding the associations among obesity, brain insulin
resistance, brain mitochondrial dysfunction, and cognition
are comprehensively summarized in this review. In addition,
controversial findings in these association are presented and
discussed.

OBESITY INDUCED PERIPHERAL INSULIN
RESISTANCE AND METABOLIC
DISTURBANCE VIA THE INDUCTION OF
INFLAMMATION AND INCREASED
OXIDATIVE STRESS

Obesity can induce peripheral insulin resistance which is
an impairment of cellular insulin signaling via increased
inflammatory cytokines, oxidative stress, and mitochondrial
dysfunction of several tissues and organs, including adipose
tissue, skeletal muscle, and the liver (34–36). Adipose tissue has
commonly been acknowledged to be primarily associated with
insulin resistance during obesity (37, 38). In addition to white and
brown adipose tissue, beige adipose tissue also plays a possible
role in the development of peripheral insulin resistance since it
has ability to accumulate energy as white-type and produce heat
as brown-type (39, 40).

Under peripheral insulin resistant condition, the
overproduction of free fatty acids (FFAs) was occurred,
resulting in a release of pro-inflammatory cytokines into the
blood circulation. These cytokines can further activate several
types of serine kinase such as IκB kinase (IKK) and c-Jun
N-terminal kinase (JNK) (41–44). As reported previously, obese-
mediated activation of these serine kinases resulted in inhibiting
cellular insulin signaling by activating the phosphorylation of
insulin receptor substrate-1 (IRS-1) at serine sites including
serine-302 (pS302) and serine-307 (pS307), instead of its normal
phosphorylated site at tyrosine residue (45–49). In addition,
these cytokines activated other inflammatory-related negative
regulators of IRS proteins, particularly in Suppressor of cytokine
signaling (Socs) protein (50–52). This protein can bind with the
phosphorylated insulin receptor (IR), consequently blocking an
activation of the IRS proteins (50–52). Additionally, the Socs
proteins promoted IRS proteins for ubiquitination, resulting
in IRS degradation through the proteasomal complex. Those
findings suggest that inflammation following obesity can lead
to impaired insulin signaling or insulin resistance in the target
organs.

Although numerous studies only found the association
between brain mitochondrial dysfunction and brain insulin
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FIGURE 1 | The proposed mechanism of cellular insulin signaling on glucose and fatty acid metabolisms. Extracellular insulin can bind with its receptor, resulting in

stimulating insulin signaling cascades. Stimulation of insulin signaling cascades can activate cellular glucose uptake through glucose transporters that intracellular

glucose further can be converted to pyruvate by glycolysis and subsequently pass into the mitochondria to change to be Acetyl-CoA for the Krebs cycle. In addition to

glucose metabolism, an activation of an insulin signaling cascade can also induce intracellular uptake of free fatty acid via a fatty acid transporter (FAT/CD36) and this

free fatty acid can convert to fatty acyl-CoA that translocates to mitochondria and changes to Acetyl-CoA as well as glucose metabolism. CD36, cluster of

differentiation-36; DAG, diacylglycerol; FAT, fatty acid translocase; TAG, triacylglycerol.

resistance in obese condition, it remains unclear whether
brain mitochondrial dysfunction found in obese condition is
a primary cause of brain insulin resistance. However, four
previous studies suggest the possibility that mitochondrial
dysfunction may be responsible for insulin resistance. The first
study demonstrated that mitochondrial dysfunction induced
by hyperglycemic condition impaired the AMPK-Akt pathway
which is a downstream signaling cascade of the insulin signaling
pathway and contributed to insulin resistance (53). Peng and
colleagues suggest that mitochondrial dysfunction could lead
to neuronal insulin resistance. In the second study, mice
with liver-specific ablation of mitofusin-2 (Mfn2) developed
glucose intolerance, enhanced hepatic gluconeogenesis as well as
impaired insulin signaling in the liver and muscles (54). In the
third and fourth studies, the depletion of mitochondrial DNA
(mtDNA) resulted in an impaired glucose utilization and induced
insulin resistance in the myotubes (55, 56). All these findings
suggest that brainmitochondrial dysfunction under obesity could
be the cause of brain insulin resistance.

Excess levels of FFAs induce not only systemic inflammation,
but also increase the level of oxidative stress which is the major
contributory factor in the development of several co-morbidities

in the obese-condition (3). Oxidative stress, involving an
overproduction of free-radicals, is one of these pathological
conditions. Increased oxidative stress can damage several cellular
components, including mitochondria, lysosomes, endoplasmic
reticulum, nuclei and DNA (57). High levels of oxidative
stress can also destroy the cellular membrane, resulting in
an overproduction of cytotoxic aldehyde byproducts such as
malondialdehyde (MDA) and 4-hydroxylnonenal (HNE) (58).
Recent studies have demonstrated that excessive FFAs in WAT
also increased oxidative stress, as indicated by increasing activity
of NADPH oxidase, reduced activity of antioxidative enzymes
such as glutathione peroxidase (GPX), superoxide dismutase
(SOD), and catalase (CAT), and decreased glutathione (GSH)
synthesis (59). Excessive oxidative stress itself also induces
cellular inflammation by an activation of NF-κB in association
with an alteration in nuclear processes, including acetylation
and deacetylation of histones. It has been shown that oxidative
stress itself results in increased promotion of gene expression
of pro-inflammatory mediators such as IL-1β and TNF-α in
several organs (60). All those findings suggest that obesity
could induce peripheral insulin resistance by the induction of
inflammation and oxidative stress. The proposed mechanism
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around insulin resistance in cases of obesity as a possible outcome
of inflammation and oxidative stress is shown in Figure 2.

THE PHYSIOLOGICAL ROLE OF INSULIN
IN THE BRAIN

Under the physiological condition, insulin can be found in
different brain areas, particularly in the hypothalamus, cortex and
hippocampus. The level of insulin in those brain areas is higher
than the plasma insulin level (61–66). In addition, Hersom and
colleagues reported that the insulin level in cerebrospinal fluid
has been found to be correlated with the plasma insulin level in a
non-linear manner (67).

Several studies also showed that the insulin receptors (IRs)
have been detected widely in different brain areas, particularly in
brain areas that regulate olfaction, appetite, autonomic activity,
and cognitive function (61, 68, 69). Those findings suggest that
insulin in the brain not only comes from beta cells in the
pancreas, but also can be synthesized from cells in the brain.

Unlike peripheral organs, several studies have shown the
physiological roles of insulin in the brain are not primarily
involved with the cellular glucose uptake but associated with
cognitive function (70, 71). Normally, the glucose transporters
(GLUT), particularly GLUT-4, play an important role in cellular
glucose uptake and are regulated by insulin (72). In the brain, it
has been reported that the expression of GLUT-4 is very low and
GLUT-4 has not been regulated by insulin level (70). Moreover,
brain GLUT-4 was in only a few areas such as the olfactory
bulb, hippocampus and hypothalamus (73, 74). Along with
GLUT-4, there are several types of GLUT which could require
glucose uptake including GLUT-3 for neuronal glucose uptake
and GLUT-1 for astrocytic glucose handling (75–77). Regarding
the role of insulin in the brain, a recent study found that insulin
failed to induce cellular glucose uptake into the neurons as well
as the activation of insulin receptors because insulin has no effect
on GLUT-4 translocation (78). Consistent with this concept, the
GLUT-3-mediated neuronal glucose uptake occurs in an insulin-
independent manner (79). It is possible that insulin does not
play an essential role in neuronal glucose uptake, but it might
have a role in the regulation of normal brain function. However,
there is a recent controversial finding indicating the role of
insulin-mediated glucose utilization in the brain via GLUT-4
which might affect the brain spatial working memory (80). In
that study, they demonstrated that GLUT-4 inhibition, using a
specific GLUT-4 inhibitor; indinavir sulfate (IND), alone did not
impair neuronal glucose utilization and spatial memory in the
hippocampus, whereas exogeneous insulin-mediated memory
enhancement could be blocked by IND as well as impaired
neuronal glucose utilization. These suggested that supra-basal
insulin level might require functional GLUT-4 for neuronal
glucose utilization and enhancement of brain spatial working
memory (GLUT-4 dependent manner), but not for a basal insulin
level which is GLUT-4 independent manner.

There is increasing evidence to show that the actions
of insulin in the brain impact several aspects such as the
neuromodulator, neuroprotective effects and also have a role

in cognition and memory (70). Regarding the role of insulin
as the neuromodulator, Kovacs and Hajnal demonstrated that
insulin acts as one of the neuromodulators, as indicated by
modulating GABAergic activity in the cerebellum (81). That
study demonstrated that insulin exerted the GABA-dependent
neuronal inhibitory effects in cerebellum, and that the effect
of insulin was abolished when co-administrated with insulin
receptor (IR) inhibitor. Those findings suggest that insulin in
the brain plays a role as the neuromodulator. Regarding the role
of insulin as the neuroprotective agent, several studies reported
that insulin exerted neuroprotective effects via anti-apoptosis,
β-amyloid inhibition and antioxidant agency (82–85).

Several studies regarding the benefits on brain cognition, both
in in vivo and clinical situations have demonstrated that either
peripheral or central administration of insulin showed positive
effects on learning and memory (86, 87). Moreover, this effect
has been shown to be related to activation via insulin receptors
and downstream signaling (70, 88). The modification of learning
and memory following insulin administration has been assessed
by the improvement in brain synaptic plasticity, including
long-term potentiation (LTP) and long-term depression (LTD)
(89). Insulin could modulate neurotransmitter release at the
synaptic areas particularly in the releasing of glutamate, a pivotal
neurotransmitter required for the preservation of synaptic
transmission (89, 90). Therefore, all those findings suggest that
insulin in the brain is involved in several physiological functions,
including the neuromodulation, neuroprotection, and cognition.

EXCESSIVE FREE FATTY ACID AND
NEURONAL INSULIN RESISTANCE (IN
VITRO STUDIES)

As mentioned in the previous topics that insulin plays an
important role in brain function, several studies demonstrated
that neuronal insulin resistance can be found under obese
condition (4, 6, 7, 9–14, 16–19, 28, 30, 31, 91–94). Moreover,
the excessive free fatty acid (FFA) has been found under
an obese condition. Growing evidence from in vitro studies
has demonstrated the association between excessive FFA and
neuronal insulin resistance. It has been shown that excessive
FFA could activate the inflammation via increased release of pro-
inflammatory cytokines (42, 44). Those inflammatory cytokines
stimulate the activity of their downstream signaling, including
the serine kinases, Ikkb, and JNK1, which subsequently inhibit
the pathway of insulin receptor substrate 1 (IRS1) signaling
via promoting the phosphorylation of IRS at serine sites,
instead of tyrosine site (45–49). In addition, FFA can activate
other inflammation-related negative regulators of IRS protein,
particularly Socs proteins, and promote IRS degradation (51, 52).
Those findings suggest that excessive FFA under obesity can
impair insulin signaling, leading to an insulin resistant condition,
via the activation of inflammation.

Several studies reported that high levels of circulating
saturated free fatty acids (sFFAs) caused pathological conditions
in several tissues and organs such as adipose tissue, the liver, and
skeletal muscle as well as the brain, as a result of the induction
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FIGURE 2 | The proposed mechanisms of insulin resistance in obesity via inflammation and oxidative stress. Obesity primarily affects insulin-responsive organs

particularly in adipose tissue by inducing adipocyte hypertrophy, adipocyte apoptosis, infiltration of immune cells, TAG-derived FFA overproduction and promoting the

release of pro-inflammatory cytokines. Moreover, excessive FFA can also induce oxidative stress in adipose tissue. After that, cellular oxidative stress can induce

systemic oxidative stress and further promote systemic inflammation. As a result, these systemic pathological conditions can impair cellular insulin signaling in other

organs in association with the induction of dyslipidemia by excessive FFA production from adipose tissues. FFAs, free-fatty acids; HDL, high-density lipoprotein; IL,

interleukin; LDL, low-density lipoprotein; MDA, malondialdehyde; TAG, triacylglycerol; TC, total cholesterol; TG, triglyceride; TNF, tumor necrosis factor; T2DM, type-2

diabetic mellitus; VLDL, very low-density lipoprotein; WAT, white-adipose tissue.
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of inflammation (95–100). For example, the administration of
palmitate, a common sFFA, onto adipocytes, endothelial cells
and myotubes led to the activation of inflammation via nuclear
factor-κB (NF-κB) pathways (101–105). It has been shown
that inflammation in adipose tissues triggers the release of
several cytokines, resulting in aggravation of the severity of
inflammation in other tissues (97, 100, 106).

A recent study established that sFFAs induced insulin
resistance in the brain (107). Diaz and colleagues pointed
out that the incubation of palmitate with hypothalamic cells
also increased neuronal toxicity by raising ROS production,
resulting in the induction of inflammation and ER stress,
as well as mitochondrial dynamic impairment and reduced
phosphorylation of insulin signaling protein (107).

In contrast to the previous study, Choi and colleagues
demonstrated that exposure to either palmitate alone or a
sFFA mixture with cultured hypothalamic neuronal cell lines
induced neither neuronal inflammation nor neuronal insulin
resistance (108). A possible explanation is that the type
of hypothalamic neuronal cell line in Choi’s study might
be less sensitive to sFFA exposure, because inflammation
and insulin resistance were still observed, when those cells
were exposed to lipopolysaccharide (LPS). In addition, use
of different types of hypothalamic cell lines might result
in the different findings as shown in previous reports. All
these findings from the in vitro models are summarized in
Supplementary Table 1.

PERIPHERAL INSULIN RESISTANCE
INDUCED BRAIN INSULIN RESISTANCE
AND BRAIN DYSFUNCTION

A previous report has shown that peripheral insulin resistance
was detected at the end of 8 weeks consumption of a HFD
as characterized by an increase in body weight, an increase
in visceral fat, an elevation in plasma metabolic parameters
(fasting plasma glucose, fasting plasma insulin and HOMA
index) and an increase in hepatic triglycerides (4). Several
reports also stated that there is an association between peripheral
insulin-resistance and liver-brain connection (22, 23, 109).
Regarding the association between peripheral insulin resistance
and brain connection, a previous study demonstrated that
the development of brain insulin resistance as indicated by
an impairment in both brain insulin signaling pathways and
brain insulin sensitivity occurred after 12 weeks of HFD
consumption (4). The possible explanation could be that
peripheral insulin resistance led to increased hepatic lipid
production, particularly in ceramides. Ceramide is generated
from fatty acids and sphingosines (22). Ceramide is commonly
known to have lipid soluble properties. Thus, it is possible to
easily cross the blood-brain barrier. In addition, several studies
demonstrated that ceramide induced brain insulin resistance
via an impaired brain insulin signaling pathway (110), and
caused neurodegeneration (22, 23, 111). Although there was
no evidence showing that ceramide directly induced blood-
brain barrier disruption, it is possible that a large amount

of ceramide under obesity condition may be one risk factor
to cause the disruption of the blood-brain barrier. Moreover,
there was no direct evidence demonstrating that local insulin
production in the brain can be related to the impaired insulin
response.

There are a few studies reporting the timeline events of
peripheral insulin resistance and the occurrence of brain insulin
resistance. According to those recent studies in a rat model,
chronic HFD consumption for 8 weeks only induced peripheral
insulin resistance but did not initially cause brain insulin
resistance. However, the extension of HFD consumption to 12
weeks could lead to the development of brain insulin resistance as
shown by a reduction in insulin-related protein expression along
with the impairment of insulin-induced long-term depression
(LTD). These findings suggested that peripheral insulin resistance
occurred prior to the brain insulin resistance.

In contrast to those reports, Filippi and colleagues reported
that 3 days of lard oil-enriched HFD consumption in male
Sprague-Dawley (SD) rats demonstrated brain insulin resistance
(92). In addition, a study by Pathan and colleagues has
been reported that metabolic disturbance including the
increased plasma levels of glucose, insulin, total cholesterol, and
triglyceride occurred in 5-weeks of HFD consumption (112).
These different finding might be due to different compositions
of HFD and different strains of animals that were used in their
studies.

Supporting evidence shows that obese condition as a
result of chronic consumption of a high-fat diet (HFD) or
genetic-induced obesity and in obese-T2DM animals indicated
the development of peripheral insulin resistance subsequently
caused brain insulin resistance and could be associated with
cognitive impairment (4, 6, 7, 9–14, 16–19, 28–31, 91–
94, 113). Interestingly, a recent study also showed that
maternal obesity can lead to the development of metabolic
disturbance, hippocampal insulin resistance, and further altered
the distribution of markers of neurogenesis, neuronal synaptic
plasticity and function of the offspring (94). This suggest that
maternal obesity might affect the offspring’s neurocognitive
outcome.

Systemic inflammation and oxidative stress following obesity
could be the causes leading to disruption of the brain defense
mechanistic structures, known as the blood-brain barrier (114).
Bank and colleagues observed that under conditions of obese-
insulin resistance, either circulating inflammation or oxidative
stress decreased the expression of tight junction proteins in the
BBB, resulting in an increase in permeability to the brain (114).
That study suggested that the systemic pathological conditions
occurring in the obese-insulin resistant condition, could induce
brain pathological conditions, such as the induction of brain
insulin resistance.

Several previous studies demonstrated that chronic HFD
consumption induced obese-insulin resistance prior to
causing brain insulin resistance, as indicated by decreasing
phosphorylation of insulin receptors (IR), insulin receptor
substrate (IRS) and downstream signaling, including PI3K-Akt,
GSK3β, and AMPK pathways (4, 6, 7, 9–14, 16–19, 28–31, 91–
94). Impaired brain insulin signaling in the obese-insulin
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resistant condition also resulted in a loss of inhibitory function
to FoxO transcription factors, which normally modulate cellular
metabolism and autophagy (115).

Several studies also demonstrated that obese-insulin
resistance was caused by the impairment of mitochondrial
function in the brain, as indicated by increased mitochondrial
ROS production, induced mitochondrial membrane
depolarization, and mitochondrial swelling, demonstrated by
the observation of unfolded cristae in brain mitochondria
(6, 8, 11–16, 19, 28–31, 92, 116). Decrease in the
functional processes of mitochondria and reduced ATP
content were observed in brain mitochondria of obese
insulin resistant mice and Zucker diabetic rats (12, 116).
Moreover, this mitochondrial change was observed,
along with brain cell apoptosis, by the alteration in
apoptotic related proteins including bax, bad and bcl-2
(10, 15, 19).

Although numerous studies found the association between
brain mitochondrial dysfunction and brain insulin resistance
which occurred in an obese condition, it remains unclear
whether brain mitochondrial dysfunction in an obese condition
is a primary cause of brain insulin resistance. According
to Peng’s study, hyperglycemic condition by high-glucose
exposed to neurons led to mitochondrial dysfunction followed
by an impaired AMPK-Akt signaling pathway, which is
the downstream cascade of the insulin signaling pathway,
and possibly contributing to insulin resistance. That finding
suggested that mitochondrial dysfunction could lead to neuronal
insulin resistance (53).

However, only one study from Peng and colleagues reported
the idea that mitochondrial dysfunction is one causative
factor for the development of brain insulin resistance. In
contrast, several lines of evidence demonstrated that insulin
can control mitochondrial function in pancreatic β-cells,
cardiomyocytes and hepatocytes (117–119). In addition, the
use of the anti-diabetic drug, thiazolidinediones, regulated the
mitochondrial biogenesis suggesting that insulin can directly
regulate mitochondria (120–122). All those findings imply
that brain mitochondrial activity and brain insulin signaling
have bidirectional communication to regulate normal brain
function.

Regarding to the links among obesity-related insulin
resistance, brain mitochondrial dysfunction and dementia,
several studies reported that brain mitochondrial dysfunction
has been observed in obese-insulin resistant condition with
cognitive decline (6, 8, 11–16, 19, 28–31, 116). In addition,
several pharmacological interventions that preserved brain
mitochondrial function in obese-insulin resistant models could
improve cognitive function (6, 8, 11–16, 19, 28–31). Those
findings suggested that mitochondrial dysfunction and insulin
resistance would be underlying mechanisms leading to cognitive
decline.

Obese-insulin resistance caused by HFD consumption not
only induced systemic inflammation, but also caused brain
inflammation, as shown by increased brain pro-inflammatory
cytokine; TNF-α and a transcriptional factor; NF-κB (13, 15,
19, 116). Furthermore, brain oxidative stress was shown by an

elevation in cytotoxic aldehyde products; MDA was also found in
association with the brain inflammation following obese-insulin
resistance (8, 11, 13–15, 19, 28–31).

All of these findings suggested that obesity can increase both
systemic inflammation and oxidative stress, and both events can
lead to the development of peripheral insulin resistance as well as
brain dysfunction.

Several studies in chronic HFD consumption-induced
obese-insulin resistant condition showed an association between
cognitive decline and obese-insulin resistance, occurring
in association with impaired brain insulin signaling, brain
mitochondrial dysfunction, brain apoptosis, increased brain
inflammation, increased brain oxidative stress, and synaptic
dysplasticity (8, 11–16, 19, 28–31, 123, 124). Cognitive decline
was determined by several methods, including the Morris
Water Maze (MWM) test (8, 11, 13–16, 19, 28–31), and a
Novel Object Recognition (NOR) test (8, 12). Brain synaptic
plasticity plays a pivotal role in the learning and memory
process (125). Several studies reported synaptic dysfunction in
the chronic HFD consumption-induced obese-insulin resistant
condition, as indicated by a loss of the long-term potentiation
(LTP) process, the reduction in synaptic proteins, or a decrease
in dendritic spine density (9, 11, 13–15, 19, 31, 124, 126).
In addition, Alzheimer’s like pathologies, such as β-amyloid
accumulation and tau-hyperphosphorylation have been found
in obese-insulin resistant mice and diabetic rats (10, 16).
All those findings suggest that obese-insulin resistance can
lead to brain damage, resulting in cognitive decline and
neurodegeneration.

According to several reports, the cafeteria diet could induce
metabolic syndromes by altering metabolic profiles and causing
induced hyperlipidemia, hyperinsulinemia and increased body
weight. Although there are numerous studies that demonstrated
that the cafeteria diet caused metabolic changes along with
alterations in brain functions such as anxiety, depression, stress
and impairment of cognition (127–135), there was no direct
evidence indicating that the cafeteria diet induced brain insulin
resistance.

In contrast to the HFD-induced obese-insulin resistant model,
the genetically induced obese-insulin resistant models, such as
ob/ob mice and Zucker diabetic fatty rats, developed peripheral
insulin resistance without brain insulin resistance (116, 126).
However, other brain dysfunction, including increased brain
oxidative stress, brain mitochondrial dysfunction and brain
synaptic dysplasticity were observed in those genetically-induced
obese models. Those findings suggested that brain insulin
resistance might not be the main cause of brain dysfunction
in the genetically-induced obese-insulin resistant condition
(116, 125).

Regarding the studies from type 2 diabetes mellitus (T2DM)
animal models, the findings in these examples were similar to the
previous findings from the model of HFD- induced obese-insulin
resistance, in which peripheral insulin resistance occurred before
the development of cognitive impairment, impaired brain insulin
sensitivity, and brain mitochondrial dysfunction (16). The key
findings of the effect of obese-insulin resistance on the brain are
summarized in Supplementary Table 2.
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EVIDENCE OF BRAIN MITOCHONDRIAL
DYSFUNCTION OCCURRING IN
ASSOCIATION WITH THE DEVELOPMENT
OF COGNITIVE IMPAIRMENT IN THE
OBESE-INSULIN RESISTANT CONDITION

Mitochondria are commonly known as a cellular power house
(136). Mitochondria play roles in the regulation of ATP
production, Ca2+-storage, and the control of cell survival
or death (137). As regards brain activity, a previous study
has shown that mitochondria play a key role in brain
synaptic transmission and age-associated cognitive function
(138–141). That study suggested that changes in shape of
mitochondria in presynaptic neurons affected the synaptic
transmission. Donut-shape mitochondria has been reported
as being a hallmark of mitochondrial stress (142, 143)
and also may be related to a deficient working memory
in an old-monkey model (140). In addition, the presence
of donut-shaped mitochondria showed a correlation to the
reduction of synapses as indicated by the smaller size of
the active zone (140). All these findings indicated that
brain mitochondria have a significant impact on cognitive
function.

To support the concept that mitochondrial dysfunction could
lead to cognitive decline, several studies reported the impact
of brain mitochondria on cognitive function (144, 145). In an
AD-mouse model, brain mitochondrial dysfunction and the
accumulation of mitochondrial Aβ has been observed and these
impairments depended on a degree of cognitive impairment
in AD transgenic mice (144). In addition, Baek and colleagues
demonstrated that an inhibition of mitochondrial fission (Drp-1)
inhibitor ameliorated the synaptic depression, Aβ accumulation,
and subsequently attenuated cognitive impairment in an AD-
mouse model (145).

In addition, in cases of obese-insulin resistance, mitochondrial
dysfunction was also observed in the brain (146). Several
studies showed that brain mitochondrial dysfunction occurred
in cases of HFD consumption, the genetically-induced obese-
insulin resistant condition, and in cases of T2DM, indicated by
the excessive production of mitochondrial ROS, mitochondrial
membrane potential changes, and swollen mitochondria with
evidence of unfolded cristae in mitochondria (6, 8, 11–16, 19,
28–31, 116). The reduction of ATP level in association with
the malfunction of brain mitochondria, including decreased O2
consumption andCO2 production, has been found in brain tissue
from rats with obese-insulin resistant condition (12, 116, 123,
126).

There was no evidence to directly indicate that brain

mitochondrial dysfunction, particularly brain mitochondrial
membrane potential change, led to brain insulin resistance.

There was only an association between brain mitochondrial

dysfunction and brain insulin resistance since most of studies
demonstrated that brain mitochondrial dysfunction was

promptly observed in obese-insulin resistant animals with
brain insulin resistance as indicated by the reduction in

brain insulin-related proteins expression and impairment of

insulin-induced long-term depression in the hippocampal areas
(5, 6, 8, 11, 14, 15, 19, 29–31).

Also, several studies have demonstrated that brain apoptosis
occurs in association with brain mitochondrial dysfunction
(10, 15, 19). One possible explanation is that cytochrome
C is released following mitochondrial swelling, leading to
the formation of a complex with APAF-1. These complexes
become the apoptosomes which activate the caspase cascades
and finally induce cell death (147). Previous studies showed
that brain mitochondrial dysfunction increased the levels of
pro-apoptotic proteins (bax and bad), and decreased levels
of the anti-apoptotic protein (Bcl-2) were observed in brain
tissue from rats with the obese-insulin resistant conditions
(10, 15, 19). An increase in pro-apoptotic proteins can
induce cytochrome C release, resulting in brain apoptosis
(148). In addition, apoptotic-mediated neuronal death
has been known to be one underlying mechanism for
cognitive impairment and other neurodegenerative diseases
(149).

In addition to brain mitochondrial function, mitochondrial
dynamics, including fusion and fission, play a critical role in
cell survival or death (150). It has been demonstrated that an
imbalance in mitochondrial dynamics as well as malfunction of
brain mitochondria has been associated with neurodegeneration,
and cognitive impairment (151, 152). Previous studies
demonstrated that the imbalance of mitochondrial dynamics
as indicated by an increase in the mitochondrial fission process
in association with a decrease in the mitochondrial fusion
process, resulted in cell death and the development of cognitive
decline (152, 153). Consistent with these reports, obese-insulin
resistance led to a development in an imbalance in this dynamic
process in the brain, specifically an increase in mitochondrial
fission protein and a reduction in mitochondrial fusion protein
(10, 92, 107).

All the findings pertaining to brain mitochondria suggested
that brain mitochondrial dysfunction or an imbalance in
mitochondrial dynamics in the brain would be the underlying
mechanisms responsible for cognitive impairment associated
with the obese- insulin resistant condition. The findings
associated with brain mitochondria and obesity are summarized
in Supplementary Table 2.

PHARMACOLOGICAL INTERVENTIONS
EXERTED PERIPHERAL BENEFITS AND
NEUROPROTECTION AGAINST
OBESE-INSULIN RESISTANCE

Obesity not only induces peripheral insulin resistance, but
it also leads to brain insulin resistance, brain mitochondrial
dysfunction, resulting in cognitive decline. However, several
pharmacological interventions such as anti-diabetic drugs,
hormone therapy, and alternative medicine, which exert
beneficial effects on peripheral insulin sensitivity, have also
been reported to provide neuroprotection in the brain.
Despite medication, non-pharmacological intervention as well as
subcellular targeting interventions also provide benefits in the
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brain under obese-insulin resistant condition. All these findings
are summarized and discussed in the following section.

Neuroprotective Effects of Therapeutic
Interventions Using Unsaturated Free Fatty
Acid in vitro Studies
Recent in vitro study found unsaturated free fatty acids provided
beneficial effects in neuronal insulin-resistance caused by
saturated free fatty acid (sFFA) exposure through improving
cell insulin-related signaling and mitochondrial function in
association with reducing neuronal inflammation, oxidative
stress, and apoptosis (107). This finding suggested that neuronal
insulin resistance by sFFA induction occurred through the
impairment of neuronal inulin-related signaling, mitochondrial
dysfunction, and inflammation-oxidative stress and that
intervention using unsaturated free fatty acids could ameliorate
this neurotoxicity.

Beneficial Effects of Anti-diabetic Drugs on
the Brain in the Obese-Insulin Resistant
Condition
Therapeutic interventions including anti-diabetic drugs and
hormone therapy are required to relieve the deleterious effects
occurring as a result of obese-insulin resistance (154, 155). Of

these interventions, anti-diabetic drugs are commonly known to
reduce body weight, decrease dyslipidemia, and improve insulin
sensitivity in the obese-insulin resistant condition (155).

Several classes of anti-diabetic drugs, including a peroxisome
proliferator-activated receptor gamma (PPARγ) agonist,
biguanide, dipeptidyl peptidase-4 (DPP-4) inhibitors, and
sodium-glucose co-transporter 2 (SGLT-2) inhibitors, have
been used in obese-insulin resistant models. These drugs
not only provided beneficial effects in attenuating metabolic
disturbance, but also exerted neuroprotective effects, as indicated
by improved brain insulin sensitivity, brain mitochondrial
function and hippocampal synaptic plasticity, as well as reducing
brain inflammation, brain oxidative stress, brain apoptosis, and
dendritic spine loss. They also led to improved cognitive function
(6, 17, 19, 28–31, 112, 113, 124, 156, 157).

The neuroprotective effects of pharmacological interventions
particularly anti-diabetic drugs and hormone therapy could
possibly be due to direct effects in the brain since some types
of these drugs can pass the blood-brain barrier (158, 159) and
improve the periphery.

Beneficial Effects of Hormone Therapy in
the Brain in the Obese Insulin-Resistant
Condition
Not only the use of anti-diabetic drugs, but also the addition
of incretin hormone therapy is needed in some cases to
ameliorate the obese-insulin resistant condition (160). Incretin
hormones are a group of metabolic hormones that play a
role in decreased blood glucose levels via stimulating insulin
secretion in response to meals (161). Incretin hormones
include glucagon-like peptide-1 (GLP-1) and glucose-dependent
insulinotropic polypeptide (GIP) (162). Both GLP-1 and GIP are

secreted from enteroendocrine cells in the intestinal epithelium.
Recently, incretin hormones have been considered as a potential
intervention for diabetic therapies since they exert blood-
glucose lowering effects (161). In addition, several previous
studies reported that incretin hormones not only reduced blood
glucose levels, but also exerted other beneficial effects such as
anti-oxidant, anti-inflammation, anti-apoptotic effects and an
enhancement of cell proliferation (163–165).

However, the use of incretin hormone therapy showed
controversial effects as regards neuroprotection in conditions
of obese-insulin resistance (123, 126, 166, 167). Examples of
the findings include: (1) Use of an incretin mimetic drug,
exendin-4, resulted in neuroprotective effects by improving
hippocampal synaptic plasticity and cognitive function along
with improvement of metabolic parameters in an obese-insulin
resistant condition (166). (2) Another incretin mimetic drug,
liraglutide, in cases of either HFD or genetically induced
obese insulin resistance demonstrated that the improvement
in metabolic parameters along with a preservation in the
neurogenesis and neuronal survival resulted in improved
hippocampal synaptic plasticity and cognitive function (126,
167). (3) Lixisenatide, known as GLP-1 receptor agonist, could
improve cognitive performance by attnueating peripheral insulin
resistance and enhancing cells proliferation in brain of HFD-
fed animal model by Lennox et al. (168). (4) However, use of
incretin metabolites [GLP-1(9-36), GIP (3-42) and exendin (9-
39)] did not lead to the attenuation of either metabolic or brain
parameters including hippocampal synaptic plasticity, brain
locomotor activity and cognitive function in the HFD-fed mice
model (123). The possible explanation for the differences could
be due to the differences in pharmacokinetic structures between
incretin metabolites and incretin mimetic drugs. This possibility
requires further investigation to explore these controversial
findings.

In addition, the administration of fibroblast growth factor-
21, a starvation hormone, also exerted neuroprotection in
the obese-insulin resistant condition (15, 113). To support
these findings, FGF21 administration has been reported to
improve peripheral parameters including (1) increased an
energy expenditure, resulting in body weight reduction (169,
170), (2) improved peripheral insulin sensitivity through an
increased adipocyte glucose uptake rate, increased insulin
synthesis and decreased hepatic gluconeogenesis (171–174),
(3) exerted anti-inflammatory effect (175), and (4) increased
adiponectin biosynthesis (176, 177). In addition, FGF21 has also
demonstrated the neuroprotective effects by several underlying
mechanisms including (1) improving mitochondrial biogenesis
and function, by increasing mitochondrial respiratory capacity
and mitochondrial anti-oxidant levels (178) and (2) decreasing
brain cell damage (179).

Beneficial Effects of Alternative Medicine
in the Brain in the Obese Insulin-Resistant
Condition
Several studies have shown that other alternative interventions,
including herbal extracts or recipes, also exerted neuroprotective
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effects in the obese-insulin resistant condition (8, 12, 13, 15, 16,
180). Interestingly, the beneficial effects of these interventions
were not only indicated in the peripheral area, but also provided
neuroprotective effects against cognitive impairment in the obese
insulin-resistant condition (8, 12, 13, 15, 16, 180).

Herbal extracts, including cinnamon extract, garlic extract,
naringin, a ZiBu PiYin recipe, Thymol and Ginsenoside Re
have recently been reported as leading to improvements in
brain cognition and locomotor activity in obese insulin-
resistant animals with or without the improvement of metabolic
parameters (8, 12, 16, 17, 23, 93).

Beneficial Effects of Subcellular-Targeting
Intervention in Brain in the Obese-Insulin
Resistant Condition
Interestingly, application of a N-methyl D-aspartate receptor
(NMDARs) antagonist in a genetically-induced obese-model also
demonstrated neuroprotective effects through rescuing dendritic
spine arborization and synaptic density (180). Moreover, the

inhibition of mitochondrial fission by MDIVI-1 could prevent
brain insulin resistance through the attenuation of ER stress and
iNOS expression (92).

Beneficial Effects of Non-pharmacological
Intervention in Brain in the Obese-Insulin
Resistant Condition
In addition, non-pharmacological interventions, including
energy restriction and vagus nerve stimulation, also exerted
neuroprotective effects in the obese-insulin resistant condition
(13, 31). Regarding obese-insulin resistant models, energy
restriction attenuated metabolic disturbance and preserved
dendritic spine density (31), while the vagus nerve stimulation
led to attenuated peripheral insulin resistance as well as
improved brain function, as indicated by improved brain insulin
sensitivity/brain mitochondrial function/cognitive function,
and reduced brain inflammation, /brain oxidative stress/ brain
apoptosis/dendritic spine loss (13).

FIGURE 3 | The proposed mechanisms of obese-insulin resistance and brain mitochondrial dysfunction induced brain cognitive decline. Under obese-condition, brain

insulin signaling was initially impaired by a reduction of insulin receptor (IR) phosphorylation which led to further its downstream signaling cascade including decreasing

phosphorylation of the insulin receptor substrates (IRS), Akt and GSK3β. On the other hand, the reduction in Akt phosphorylation subsequently decreased an

inhibitory response to FoxO protein, resulting in an increased FoxO expression. In parallel with impaired brain insulin signaling pathways, brain mitochondrial

dysfunction was also observed as indicated by several anomalies in function changes (increased ROS production, 19m depolarization, in association with decreased

O2 consumption, CO2 production and respiratory exchange rate (RER), and thus induced loss of ATP content), morphological changes (mitochondrial swelling and

unfolded cristae), dynamics changes (imbalance of mitochondrial fusion and fission proteins expression), and causing neuronal apoptosis. Eventually, all these

pathological changes can lead to cognitive impairment, determined by learning and memory behavior tests. 19m; mitochondrial membrane potential, ATP;

adenosine triphosphate, FoxO, forkhead box O; GSK-3β, glycogen synthase kinase-3-beta; IR, insulin receptor; IRS, insulin receptor substrate.
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Taken together, all those findings from therapeutic
interventions suggested that all interventions in the treatment
of obese-insulin resistance not only improved the metabolic
parameters, but also protected the brain against cognitive decline.
All these findings are summarized in Supplementary Table 3.

According to previous reports, pharmacological interventions
such as anti-diabetic drugs can attenuate cognitive impairment
via the improvement of peripheral insulin sensitivity (181,
182), the provision of antioxidative effects (17, 19, 28–
31, 157, 183), a decrease in inflammation and apoptosis
(17, 19, 113, 157, 183), as well as the improvement of
mitochondrial function in the brain (6, 19, 28–31, 113).
Another factor associated with cognitive impairment is an
imbalance in brain mitochondrial dynamics (92). Only one
previous study has demonstrated that a modulation of brain
mitochondrial dynamics attenuated neuronal insulin resistance
(92). The beneficial effects of this modulation on cognitive
function in obese models have not yet been investigated.
Therefore, further investigation is needed to prove this
mechanism.

CONCLUSION

Several studies demonstrated that obese-insulin resistance
contributed to cognitive impairment through several proposed
mechanisms, including inflammation and oxidative stress. Brain
mitochondria are also damaged as a result of an obese-insulin
resistant condition with resulting cognitive decline. Therapeutic
approaches for obese-insulin resistance not only had beneficial
effects to the metabolic parameters, but also led to improvement
in brain function, brain mitochondrial function, and cognitive
function. Therefore, it is possible that mitochondria may play
an important role in cognitive decline in conditions pertaining
to obesity. A summary of the possible mechanisms involved in
the impact of obese-insulin resistance on the brain is shown in

Figure 3. Although many studies have reported an association
between peripheral insulin resistance and brain pathologies such
as brain insulin resistance, brain mitochondrial dysfunction,
and cognitive impairment, these studies could not conclude
the causative relationship between insulin resistance and brain
mitochondrial dysfunction. All of these studies imply that an
improvement in peripheral insulin sensitivity along with an
improvement in brain mitochondrial function could preserve
cognitive function under obese condition. Further investigations
are needed to better understand the underlying mechanisms
of cognitive impairment in obese condition. This information
is necessary to provide specific molecular targets for drug
development programs.
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