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The prevalence of fragility fractures increases as longevity increases the proportion of the

elderly in the community. Until recently, the majority of studies have targeted women with

osteoporosis defined as a bone mineral density (BMD) T score of < −2.5 SD, despite

evidence that the population burden of fractures arises from women with osteopenia.

Antiresorptive agents reduce vertebral and hip fracture risk by ∼50 percent during 3

years but efficacy against non-vertebral fractures, 80% of all fractures in the community,

is reported in few studies, and of those, the risk reduction is only 20–30%. Recent

advances in the use of antiresorptives and anabolic agents has addressed some of these

unmet needs. Zoledronic acid is now reported to reduce vertebral and non-vertebral

fractures rates in women with osteopenia. Studies using teriparatide demonstrate better

vertebral and clinical (symptomatic vertebral and non-vertebral) antifracture efficacy than

risedronate. Abaloparatide, a peptide sharing amino acid sequences with teriparatide,

reduces vertebral and non-vertebral fractures. Romosozumab, a monoclonal antibody

suppressing sclerostin, reduces vertebral and non-vertebral fractures within a year of

starting treatment, and does so more greatly than alendronate. Some recent studies

signal undesirable effects of therapy but provide essential cautionary insights into long

term management. Cessation of denosumab is associated with a rapid increase in bone

remodeling and the uncommon but clinically important observation of increased multiple

vertebral fractures suggesting the need to start alternative anti-resorptive therapy around

the time of stopping denosumab. Antiresorptives like bisphosphonates and denosumab

suppress remodeling but not completely. Antifracture efficacy may be limited, in part,

as a consequence of continued unsuppressed remodeling, particularly in cortical

bone. Bisphosphonates may not distribute in deeper cortical bone, so unbalanced

intracortical remodeling continues to cause microstructural deterioration. In addition,

suppressed remodeling may compromise the material composition by increasing matrix

mineral density and glycosylation of collagen. As antiresorptive agents do not restore

microstructural deterioration existing at the time of starting treatment, under some

circumstances, anabolic therapy may bemore appropriate first line treatment. Combining

antiresorptive and anabolic therapy is an alternative but whether anti-fracture efficacy is

greater than that achieved by either treatment alone is not known.
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INTRODUCTION

Bone remodeling, a sequential process of bone resorption and
formation, occurs throughout life renewing the composition of
the mineralized matrix volume (1). During young adulthood,
bone remodeling is balanced—an equal volume of bone is

resorbed and subsequently replaced so no net loss or gain
occurs (2). Around midlife, bone formation by the osteoblasts

of the basic multicellular units (BMUs) decreases, producing
remodeling imbalance (3). In addition, as a consequence of
the estrogen deficiency accompanying menopause, remodeling

imbalance worsens and the rate of remodeling increases—less
bone is deposited than was resorbed by each of the many
BMUs initiated upon the three (intracortical, endocortical,
trabecular) components of the endosteal (inner) bone surface (4).

Estrogen therapy, by influencing the lifespan of osteoblasts and
osteoclasts, may reverse the estradiol dependent component of
the remodeling imbalance (5–7).

There is a reduction in total mineralized bone matrix
volume and the decreasing total mineralized bone matrix
volume becomes deteriorated in its microstructure. Unbalanced
remodeling upon trabeculae cause them to thin, perforate and
disappear. Unbalanced intracortical remodeling initiated upon
the intracortical canal surfaces enlarge them, they coalesce
and fragment the cortex. With advancing age bone loss from
the trabecular compartment lessens because trabeculae with
their surfaces disappear (remodeling requires a surface to be
initiated upon). Bone loss becomes predominantly cortical
as intracortical surface area increases facilitating initiation of
unbalanced intracortical remodeling (8, 9). The microstructural
deterioration produces bone fragility out of proportion to the
bone loss producing it (10).

The burden of fragility fractures is increasing in absolute terms
because longevity is increasing the proportion of the population
over 65 years of age (11). Reducing the burden of fractures is
an unmet need because there are unresolved issues in detection
of individuals at high risk for fracture that need to be addressed
(12). For example, identifying methods able to detect individuals
at imminent risk for fracture is a challenge. Commonly used
tools such as bone densitometry lack sensitivity. A BMD T score
threshold of− 2.5 SD designated as “osteoporosis” identifies only
30–40% of women having fragility fractures (13–15).

The word “osteoporosis” is often used synonymously with
bone fragility but women with osteopenia are not free of the risk
of fracture (13, 15). Indeed, most women and men sustaining
fragility fractures have osteopenia and many have so-called
“normal” BMD (14). Women with osteopenia at risk for fracture
can be identified by measuring microstructural deterioration
(16, 17) but high-resolution imaging methods are not yet widely
available. The use of clinical risk factor assessment tools such as
FRAX have met with variable success (18, 19). Challenges also
arise in the uptake and adherence to therapy, in part, because of
concerns regarding the serious but uncommon long term adverse
effects of therapy (20, 21).

Antiresorptive agents are the first line and most commonly
used treatments for prevention and treatment of bone fragility
(22). Apart from denosumab, which virtually abolishes

remodeling, most antiresorptives slow unbalanced remodeling
so microstructural deterioration continues to occur albeit
more slowly (23). This lower rate of remodeling reduces
fracture risk compared to untreated women in whom rapid
remodeling continues to deteriorate the skeleton. This is a
relative risk reduction. In absolute terms, fracture risk does not
decrease during antiresorptive therapy because microstructural
deterioration present is not reversed and the slow continued
unsuppressed and unbalanced remodeling continues to
deteriorate bone. This, in part, may explain why fracture risk
reduction with antiresorptives is modest. Teriparatide increases
bone matrix volume predominantly through remodeling based
bone formation (24). It is likely that the anabolic effect of
abaloparatide, which acts via the same receptor as teriparatide,
is also remodeling based like teriparatide, although rigorous
assessment of its mechanism of action has not been undertaken
(25). Both reduce the risk of vertebral and non-vertebral fractures
(26, 27) but no adequately designed trials have been done to
determine whether hip fracture risk is reduced.

Several comprehensive literature reviews are available (28, 29).
We confine this manuscript to defining advances that have taken
place in existing therapies and new therapies that are available
or may become available soon, particularly the development of
anabolic agents, therapies that partly reconstruct the skeleton but
are also not without their limitations.

ANTI-RESORPTIVE THERAPY

Bisphosphonates
Bisphosphonates are currently first line treatment and the
most common antiresorptive therapy used. The antiresorptive
efficacy of bisphosphonates depend on inhibition of farnesyl
pyrophosphate (FPP) synthase, required for osteoclast resorptive
function, as well as their affinity for mineral which influences
uptake, distribution, and retention in the bone (30–33). High
affinity binding agents, like alendronate, have a reduced ability to
penetrate and distribute widely in deeper cortical matrix so that
when osteoclasts remodel cortical bone they encounter matrix
free of bisphosphonates and continue to resorb bone.

This may partly account for the finding of less reduction in
porosity with alendronate than denosumab (34). The reduction
in porosity is the net result of fewer cavities being excavated
plus the incomplete filling of the resorption cavities excavated
shortly before treatment (35). Likewise, ibandronate is avidly
bound to matrix mineral and is present in lower concentrations
in cortical than trabecular bone. Studies of ibandronate in
ovariectomized cynomolgus monkeys demonstrate reduced
remodeling and improved trabecular bone strength but not
intracortical remodeling suppression or improved cortical bone
strength (36). Lower binding affinity of risedronate than
alendronate results in wider distribution of risedronate through
the bone and may contribute to its earlier suppression of bone
remodeling as reported in animal models and claims of possible
earlier fracture risk reduction (37, 38).

Several advances have been made in the study of zoledronic
acid. This drug is usually given as an annual 5mg infusion
for 3 years. Fracture risk is reduced in postmenopausal women
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with osteoporosis, by 77% for clinical (symptomatic) vertebral
fractures, 25% for non-vertebral, and 41% for hip fractures (39).
Zoledronic acid was also associated with a 28% reduction in
mortality after hip fracture, independent of its effects on fracture
risk reduction (40, 41).

Discontinuation of zoledronic acid at 3 years, followed by no
treatment for 3 years, was associated with minimal reduction
in BMD but 30 new morphometric vertebral fractures occurred
compared to 14 in those treated for 6 years (odds ratio = 0.51; P
= 0.035) (42) In further follow-up, women treated for 6 years and
3 years off treatment did not have more fractures than women
treated for 9 years. However, the loss of the inception cohort and
small numbers of events make interpretation problematic (43).

Several very insightful studies have been published regarding
zoledronic acid treatment. In a post-hoc analysis of pooled data
from the HORIZON studies, there were comparable ∼30%
reductions in clinical fractures in those who received a single
infusion or three or more annual infusions (44). Whether
differing baseline characteristics influenced this outcome is not
clear, but given the protracted remodeling suppression with this
drug, it is of interest to determine the appropriate regimen
needed for efficacy and safety.

This has been evaluated by Reid et al. in postmenopausal
women with osteopenia randomized to a single dose of
zoledronic acid 1, 2.5, or 5mg. These doses resulted in a similar
increase in spine and hip BMD in the 2.5 and 5mg groups at 2
years but not at 5 years (45), where increases were greater in the
5mg than 2.5mg group (46).

More recently, Reid et al. addressed two important unmet
needs. There is a lack of information regarding the antifracture
efficacy of drugs given to women with osteopenia, the source
of over 60% of all fragility fractures (13). There is also little
information regarding the prevention of non-vertebral fractures,
80% of all fractures in the community (11). The investigators
evaluated 2,000 women with osteopenia, mean age 71 years,
treated with zoledronic acid 5mg or placebo every 18-months
for 4 doses. After 6 years of follow up, treated women had
a 34% reduction in non-vertebral fractures (HR 0.66, 95% CI
0.51–0.85) (47).

Denosumab
Denosumab is a fully humanized monoclonal antibody
directed against RANK-ligand, a major regulator of osteoclast
development which inhibits osteoclast recruitment, activity
and survival. Denosumab (60mg subcutaneously administered
every 6 months) produces almost complete suppression of bone
remodeling. Treatment for 3 years resulted in a 68% reduction
in vertebral fractures, 40% reduction in hip fracture and 20%
reduction in non-vertebral fractures (48).

Remodeling suppression with denosumab is greater than that
achieved with any other antiresorptive agent (49). This greater
suppression of remodeling accounts for greater increases in BMD
achieved in postmenopausal women treated with denosumab
compared to bisphosphonates (34, 50–52). Whether these BMD
differences translate to differences in fracture risk reduction
between the two groups is not known.

No trials have been conducted with a placebo control group
beyond 3 years. Because of this, whatever the fracture rate,
it is not possible to infer with confidence that fracture rates
reported are attributable to the drug rather than healthy user
bias. In the open label extension of the FREEDOM study (53),
all participants were treated with denosumab and followed up
for 7 years. Ten years of denosumab treatment was associated
with an acceptable safety profile, sustained suppression of bone
remodeling, continued increase in BMD without plateau and
“low” fracture rates. The lack of controls and the large number of
participants withdrawn from the trial, suggest that the finding of
low and further reductions in fracture rates should be cautiously
interpreted.

In the long-term group, BMD increased by 21.7% in the
lumbar spine and 9.0% in the femoral neck at 10 years compared
to FREEDOM baseline. The mechanism of increase in BMDmay
be due to progressive secondary mineralization. It is plausible
that in the face of suppressed remodeling, continued slow age-
related modeling based bone formation becomes detectable
as reported in studies of histomorphometry conducted in
cynomolgus monkeys (54, 55). Dempster et al. also report some
evidence of modest trabecular modeling based bone formation
after 3 months of denosumab therapy (56). Further studies are
needed to determine whether antiresorptive therapy permits
expression of any existing modeling based bone formation when
remodeling is suppressed.

An important insight into treatment with denosumab is
the report that cessation of denosumab caused a rapid rise in
bone remodeling markers with a transitory overshoot above
baseline, a decline in BMD in 12 months and, uncommonly, an
increased risk in multiple vertebral fractures (57, 58). Occurrence
of multiple vertebral fractures were initially reported in several
case series (59–64). In a subsequent post hoc analysis of the
FREEDOM and FREEDOM Extension trials (65), vertebral
fracture rate after discontinuation of denosumab increased to
7.1 per 100 participant years vs. 8.5 per 100 participant years
in the placebo group. In those who developed one or more
vertebral fractures, the proportion of multiple vertebral fractures
(>2) was higher in those discontinuing denosumab (60.7%) than
in those discontinuing placebo (38.7%, P = 0.049). The risk
of multiple vertebral fractures after stopping denosumab was
greatest in those with a prior vertebral fracture, either before or
during treatment (odds 3.9, 95% CI 2.1–7.2) (65). Investigators
recommend commencement of an alternative antiresorptive
agent soon after cessation of denosumab, although the agent to
use and when to start needs further evaluation.

At present, there is no evidence that the increased risk of
vertebral fractures is due to the rapid increase in remodeling. The
term “rebound” is used but cessation of remodeling suppression
produces expansion of the reversible remodeling space with
any antiresorptive (66). When an antiresorptive is stopped, the
effect has similarities to the onset of menopause. There is a
rapid increase in the number of remodeling units starting to
excavate bone and hence a rapid rise in remodeling markers.
With denosumab, given the drug is not retained in the skeleton
like bisphosphonates, the increased number of resorptive cavities
is not offset as it is with bisphosphonate cessation. With
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bisphosphonate cessation, increased resorption may lead to
release of bisphosphonate and readsorption into matrix slowing
the decrease in BMD. In the absence of denosumab, the rapid
increase in number of resorption cavities is not inhibited
and may create stress concentrators which pre-dispose to
microcrack propagation and increased vertebral fracture risk
(67, 68). Whether this increase in resorption is amplified by
rapid differentiation of existing osteoclast precursors remaining
undifferentiated until denosumab is stopped is not known.

While this “rebound” or “overshoot” in remodeling markers
is reported, remodeling returns to its pretreatment level and the
reduction in BMD returns to baseline leaving a residual higher
BMD than untreated controls (58, 69). If there was accelerated
loss of bone, beyond that found early after stopping treatment
due to many more excavated cavities than those incompletely
refilling after starting denosumab, then BMD should decline to
levels no different to untreated controls (70). Bone fragility is
likely to occur after stopping treatment because the accelerated
remodeling occurs in the setting of an already deteriorated
skeleton (as antiresorptive agents do not reverse microstructural
deterioration present at the time of starting treatment). This
is not the same after menopause where there is little, if any,
deterioration before menopause.

Selective Estrogen Receptor Modulators
Raloxifene, a selective estrogen receptor modulator (SERM),
reduces the rate of bone remodeling by about 20–30% as
determined using circulating bone remodeling markers (71). It
produces a modest transitory increase in BMD during early
treatment, as fewer new resorption cavities are excavated while
the many more cavities excavated before treatment refill, albeit
incompletely. With more protracted treatment, unbalanced
remodeling continues at 20–30% slower rate than before
treatment so microstructural deterioration continues (70). The
decline in BMD during prolonged therapy is well documented
(71, 72) and probably accounts, in part, for the modest vertebral
fracture risk reduction and lack of evidence for non-vertebral
fracture risk reduction (71).

Raloxifene appears to reduce vertebral fractures with small
and perhaps transient effects on BMD. It is of interest that
pre-clinical studies demonstrate an increase in the material
strength produced by increases in skeletal-bound water with
minimal effect on tissue mineral composition or microdamage
accumulation (73–75). These findings provide a novel target
for future pharmacological interventions to improve bone
strength and lower fracture risk. This is of particular interest
given the concerns of protracted remodeling suppression by
bisphosphonates and denosumab which are likely to pre-dispose
to loss of toughness and atypical femoral fractures (AFFs).

Treatment of osteoporosis in patients with AFFs is
challenging; withholding an antiresorptive will result in ongoing
structural decay predisposing to fragility fracture, conversely,
if an antiresorptive is continued, structural decay will slow but
material composition will be compromised predisposing to AFFs
(76). One approach may be to use a weaker antiresorptive such as
raloxifene, which improves bone toughness with minimal effects

on tissue mineral composition or microdamage accumulation.
The efficacy of raloxifene in this context has not been established.

ANABOLIC AGENTS

Teriparatide (PTH 1-34) and abaloparatide are available for clinic
use, romosozumab is a modeling based anabolic agent that is still
under investigation.

Teriparatide and Abaloparatide
The anabolic effects of PTH 1-34 are ∼70% remodeling based.
Abaloparatide, which shares amino acid sequences with both
parathyroid hormone-related protein (PTHrP) and PTH, acts
via the same receptor as teriparatide (PTHR1). Both teriparatide
and abaloparatide increase trabecular thickness and improve
trabecular microstructure (77–79). There is a transitory phase
of increased cortical porosity produced with PTH 1-34 (80, 81).
Whether the anabolic effect of abaloparatide is accompanied
by less resorptive activity and less cortical porosity needs to be
confirmed (27, 82, 83).

Parathyroid hormone analogs have consistently been reported
to reduce vertebral fractures but evidence for non-vertebral
fracture risk reduction reported by Neer et al. has not been
replicated (84). No randomized controlled studies have been
done to evaluate anti-hip fracture efficacy, an omission that needs
to be addressed.

Abaloparatide also reduces vertebral and non-vertebral
fractures (27). In a phase 3 clinical trial, 2463 ambulatory
postmenopausal women, of which 1901 completed the study,
were randomized to 18 months of abaloparatide (80 µg
daily), placebo or open-label teriparatide (20 µg daily). New
morphometric vertebral fractures occurred in 0.58% (n = 4) of
the abaloparatide group, 4.22% (n = 30) of the placebo group
(relative risk 0.14, 95% CI 0.05–0.39), and 0.84% (n = 6) of
the teriparatide group. The Kaplan-Meier estimated event rate
for non-vertebral fracture was 2.7% for abaloparatide, 4.7% for
placebo (HR 0.57, 95% CI 0.32–1.00), and 3.3% for teriparatide
(P = 0.22 compared to placebo and P = 0.44 compared to
abaloparatide) (27). Major osteoporotic fractures were reduced
with abaloparatide compared to placebo or teriparatide, Kaplan-
Meier estimated event rate for placebo was 6.2% (HR 0.30, 95%
CI 0.15–0.61) and for teriparatide was 3.1% (HR 0.45, 95% CI
0.21–0.95, P = 0.03) (27).

While these findings are encouraging, the claim that
abaloparatide produced an earlier and more efficacious fracture
risk reduction than teriparatide is problematic because of an
increase in number of subjects who fractured in the first few
weeks of treatment in the placebo and teriparatide group that is
unlikely to be associated with therapy (27). Differences in fracture
rates in the two treatment arms in the second and third 6 months
of the 18-month trial were minimal (83). In addition, evidence
that the anabolic effect is accompanied by less bone resorption
with abaloparatide than teriparatide is also not well founded (83).

Increases in BMDwith abaloparatide were greater (∼1%) than
those with teriparatide at the total hip and femoral neck at all time
points and∼2% at the lumbar spine at 6 and 12months (both P<

0.001). At 18-months, BMD in the lumbar spine was no different
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between the two groups (27). These difference in BMD at the
femoral neck and total hip were attributed to the net difference
in resorption and formation markers claimed to be surrogates of
more net bone deposition with abaloparatide than teriparatide, a
problematic interpretation for a range of reasons (83, 85).

Romosozumab
Romosozumab is a humanized monoclonal antibody against
sclerostin, an endogenous inhibitor of bone formation.
Treatment results in an increase in modeling based bone
formation and evidence of decreases in bone resorption. Two
studies support the antifracture efficacy of this anabolic agent
(86, 87). Cosman et al. enrolled 7,180 postmenopausal women
with osteoporosis to monthly romosozumab (210mg) or placebo
for 12 months followed by denosumab (60mg 6 monthly) for 12
months (86). At 12 months, risk reductions were reported for
vertebral fractures by 73% (P < 0.001), for clinical fractures by
36% (P = 0.008) and non-vertebral fractures by 24% (P = 0.10).
At 24 months, vertebral fracture risk was reduced by 75% (P <

0.001) (86).
Saag et al. (87). assigned 4,093 postmenopausal women

with osteoporosis and a fragility fracture to romosozumab
(210mg) or weekly alendronate (70mg) for 12 months then
open label alendronate in both groups. Over 24 months,
romosozumab/alendronate reduced vertebral fracture risk by
48% (P < 0.001), clinical fractures by 27% (P < 0.001), non-
vertebral fracture by 19% (P = 0.04), and hip fracture by 38%
(P = 0.02). At 12 months, romosozumab reduced new vertebral
(risk ratio 0.63, 95% CI 0.47–0.85) and clinical (HR 0.72, 95%
CI 0.54–0.96) fractures compared to alendronate. Non-vertebral
fracture risk was also reduced by 26% with romosozumab, but
this difference was not statistically significant (P = 0.06) (87).
The use of romosozumab is under FDA review after results of
the trial demonstrated a higher incidence of adjudicated serious
cardiovascular events with romosozumab (50/2040) compared
to alendronate (38/2014) at the end of 12 months, which
did not persist in the 24-month open label extension (87).
These findings were not replicated in the much larger placebo-
controlled FRAME study (88).

Recent work by McClung et al. (89). report loss of benefit of
romosozumab soon after cessation of therapy. Three hundred
and sixty-four postmenopausal women with low bone mass were
treated with romosozumab for 24 months and then randomized
to either denosumab or placebo for a further 12 months.
Treatment with romosozumab led to a continued increase in
BMD over 2 years with further accrual in those that transitioned
to denosumab, whereas BMD returned toward pre-treatment
levels in those that transitioned to placebo (89).

Given the inability of antiresorptives to reverse existing
microstructural deterioration, and the evidence that anabolic
therapy may partly restore bone microstructure, is there
evidence supporting better antifracture efficacy using anabolic
therapy than antiresorptive therapy. Kendler et al. studied 1360
postmenopausal women with severe osteoporosis randomized
to teriparatide (20 µg daily) or risedronate (35mg daily)
over 2 years (26). Overall, 72% of participants received at

least one bone targeted treatment prior to study entry, most
commonly a bisphosphonate (59% in the teriparatide group
and 57% in the risedronate group) and median duration
of bisphosphonate treatment was 3.5 years (IQR 1.1–7.0) in
the teriparatide group and 3.6 years (IQR 1.3–6.1) in the
risedronate group. At 2 years, treatment with teriparatide
resulted in a 56% (risk ratio 0.44, 95% CI 0.29–0.68) reduction
in incident vertebral fractures with a reduction in non-
vertebral fractures that did not achieve statistical significance;
25 (4.0%) in the teriparatide group vs. 38 (6.1%) in the
risedronate group (hazard ratio (HR) 0.66, 95% CI 0.39–1.10,
P = 0.10) (26). In a subgroup analyses, these changes were
consistent across a range of characteristics of the participants
(90).

Combined Antiresorptive and Anabolic

Therapy
Combining antiresorptive and anabolic therapy is a missed
opportunity for two reasons (70). First, no studies have been
done demonstrating greater antifracture efficacy than achieved
by either treatment alone. This is a valid reason for a cautionary
approach to the uptake of this regimen. The second reason is the
widely held belief that antiresorptive therapy suppresses, “blunts,”
remodeling based bone formation by PTH (91–93). This is largely
based on two influential papers and the accompanying editorial
in the New England Journal of Medicine (91, 93, 94). The notion
of blunting was based on the assumption that a higher BMD or
higher P1NP mean more bone formation and a lack of response
means less bone formation.

Comparator studies that use changes in BMD and bone
remodeling markers as the outcome variable are problematic
endpoints. Remodeling based anabolic therapy increases bone
matrix volume by replacing more fully mineralized bone with
young less fully mineralized bone. Modeling based anabolic
therapy adds young less fully mineralized bone to existing older
bone. Imaging using radiation transmission often results in a
net reduction in BMD because young less mineralized bone
transmits rather than attenuates photons leading to the inference
that bone “loss” and fragility have occurred. Antiresorptives slow
remodeling. Matrix no longer “turned over” undergoes more
complete mineralization increasing BMD leading to the inference
that bone “volume” or “mass” has increased, and that bone
strength has increased even though the matrix becomes less
ductile.

As an example, even if an increase or lack of an increase
in BMD is accepted on face value, examination of Figures 1
to 3 of the study by Black et al. does not support the notion
of blunting (91). Relative to PTH alone, combined therapy (i)
did not produce a smaller increment in spine or femoral neck
BMD, (ii) did produce a greater increase in total hip BMD, (iii)
did reduce the decline in distal radius BMD, (iv) did prevent
the reduction in total hip and femoral neck vBMD produced
by PTH alone. Curiously, the increase in total hip and femoral
neck cortical volume by PTH, a modeling effect, was prevented
by combined therapy. Moreover, combined therapy increased
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trabecular vBMD less than PTH alone but this may be a benefit,
not blunting. The antiresorptive might prevent PTH mediated
increase in intracortical remodeling, cortical porosity and the
increase in cortical fragments that look like “trabeculae” (35).
Blunting of the rise in P1NP and CTX is likely to be the
result of suppressed remodeling, not a reduction in the net
volumes of bone deposited or resorbed respectively (85). If
blunting of the BMD response was due to fewer BMUs then
blunting should be more severe with co-administration of PTH
with zolendronate, denosumab, or osteoprotegerin (OPG, an
endogenous inhibitor of RANKL) than with alendronate. The
opposite is reported, and many studies report additive effects
(95–98).

The difficulties in using BMD are also present using high-
resolution peripheral computed tomography. Tsai et al. (80).
report that combined PTH 1-34 and denosumab increased
cortical vBMD yet PTH 1-34 reduced it and denosumab had
no effect. Combined therapy increased cortical matrix mineral
density yet PTH 1-34 decreased it and denosumab had no
effect. Combined therapy had no effect on porosity yet PTH 1-
34 increased it while denosumab had no effect. These findings
do not add up, probably because there are methodological
challenges in segmenting (separating) the cortical and trabecular
compartments and quantifying porosity and trabecular density
because low image resolution and changes in matrix mineral
density influence the quantification of microstructure (8, 99).

Sequential Therapy
Anabolic to Anti-resorptive

Cessation of anabolic treatment results in loss of the benefits.
Antiresorptives maintain or increase BMD, particularly
denosumab because it is the most efficacious in suppressing
remodeling. In the DATA-Switch study, 2 years of PTH 1-34
followed by 2 years of denosumab resulted in further increases in
BMD (100). At 48 months, women treated with combined PTH
1-34 and denosumab for 2 years followed by denosumab alone
had greater gains in BMD than those treated with PTH 1-34
followed by denosumab. Whether this results in fewer fractures
is not known but it is likely that stopping any of the treatments
will result in the loss of benefits and eventual increase in fracture
risk.

In another publication of the abaloparatide trial by Miller
et al. (27), Bone et al. (101) administered alendronate after
abaloparatide which maintained the fracture risk reduction
relative to placebo also given alendronate after 18 months.
This design does not address the question of whether
stopping abaloparatide produces loss of benefits as found
with PTH, which requires an arm with abaloparatide given
placebo. Any comparisons of abaloparatide/alendronate and
placebo/alendronate is flawed as the placebo group is likely
to have undergone bone loss and microstructural deterioration
during 18 months. The likelihood is however, that stopping
abaloparatide will result in loss of benefits. This has recently
been reported with romosozumab; where stopping treatment was
accompanied by loss of the benefits achieved by the modeling
dependent anabolic effect (89).

Anti-resorptive to Anabolic

Two recent trials evaluating antiresorptive therapy followed by
an anabolic agent have been conducted (100, 102). In the DATA-
switch study, women receiving denosumab had a reduction in
hip BMD during 12 months of PTH 1-34 followed by a gradual
increase in BMD, but remained lower than women in the PTH
1-34 to denosumab group and the PTH 1-34/denosumab to
denosumab group (100). Spine BMD decreased in the first 6
months but then increased to a value no different to the above two
groups at 48 months. Bone remodeling markers increased in the
denosumab to PTH 1-34 group by over 200% relative to baseline
values. Whether bone fragility increases is difficult to determine
given the decline in BMD may be due to the replacement of
more mineralized with less mineralized new bone by remodeling
or addition of under mineralized bone by modeling which
then becomes mineralized. High remodeling is found using
anabolic agents but fracture rates do not increase, they decrease.
Nevertheless, cessation of denosumab is associated with rapid
increases in remodeling andmultiple vertebral fractures; whether
this might be prevented or worsened by PTH 1-34 is not known.

In an unblinded study comparing romosozumab (120mg
monthly) vs. PTH 1-34 (20 µg daily) in postmenopausal
women previously treated with bisphosphonates, total hip
BMD increased with romosozumab by 2.6% compared to a
decrease of 0.6% with PTH 1-34 (102). Both drugs increased
spine BMD (romosozumab 9.8% vs. PTH 1-34 5.4%). At the
hip, romosozumab increased cortical vBMD whilst PTH 1-34
decreased it. Trabecular vBMD was similarly increased with both
drugs (102). The comparison of BMD changes is problematic
given BMD may decrease when a large volume of bone that is
still unmineralized is deposited and the effects on microstructure
which contribute disproportionately to bone strength are not
taken into account.

CONCLUSION

Fragility fractures are a public health burden. Advances are
occurring, but several challenges remain unmet. Most fractures
occur in women with osteopenia yet methods of identifying
the women forming the population burden of fractures remain
to be identified. Even when women at risk are identified,
the uptake and adherence to therapy is poor for reasons
that are not well defined. Antiresorptive agents are first line
approaches to therapy even though these agents do not restore
bone volume or the microstructural deterioration present at
the time of treatment. Most, if not all, controlled trials
are 3 years duration and long-term efficacy is unknown.
Anabolic therapies have not been as comprehensively studied.
Although newer agents are emerging and vertebral fracture
risk reduction is confirmed, less evidence is available for non-
vertebral fracture risk reduction, and no anabolic agent has
been evaluated for hip fracture risk reduction in randomized
controlled studies. Bone densitometry was a good beginning
but most fractures in the community arise in persons with
a BMD T-score less reduced than −2.5 SD and so they
are not offered treatment. Whether assessment of bone
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microstructure might help identify and target therapy more
effectively remains an unmet challenge, but it is an opportunity
in need of exploration because bone fragility is caused by
microstructural deterioration.
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